E1.9a Oceanic to subcontinental inland sand grassland on dry acid and neutral soils

Summary

This is a broadly defined habitat of moderately open to closed grasslands on nutrient-poor sandy soils, mostly acid to neutral though sometimes calcareous, through the lowlands and sub-montane belts of temperate Europe. Narrow-leaved graminoids dominate, associated herbs can be very numerous and more open swards can have rich annual and cryptogam floras. Across the wide range, there is considerable variety among the dominants and companions. Originating through clearance and low-intensity land-use, and maintained through grazing, mainly by sheep, this habitat is vulnerable to changes in traditional management and to eutrophication through agricultural improvement and atmospheric inputs and huge areas have been loss or declined in quality. Year-round grazing with robust breeds of sheep can probably be maintained as an economic concern but the habitat also warrants protection and conservation management.

Synthesis

Based on a short-term reduction in area of 73% and a long-term reduction of even 77%, this habitat type is Endangered (EN) both in EU28 and EU28+. Furthermore, a significant reduction in biotic and abiotic quality results in a Near Threatened status (NT).

Overall Category & Criteria						
EU	28	EU 28+				
Red List Category	Red List Criteria	Red List Category	Red List Criteria			
Endangered	A1, A3	Endangered	A1, A3			

Sub-habitat types that may require further examination

A set of vicariant subtypes may be distinguished within the broad range in Europe.

Habitat Type

Code and name

E1.9a Oceanic to subcontinental inland sand grassland on dry acid and neutral soils

Stand of the *Diantho deltoidis-Armerietum elongatae* (alliance *Armerion elongatae*) with flowering *Galium verum, Thymus serpyllum, Dianthus deltoides* and *Viola tricolor* at the footslope of a riverine dune in the Biosphere Reserve River Landscape Elbe, Brandenburg, Germany (Photo: Jürgen Dengler).

Stand of the *Plantagini subulatae-Agrostietum capillaris* (alliance *Armerio rumelicae-Potentillion*) with *Jasione heldreichii*, *Armeria rumelica* and the dominating moss *Racomitrium canescens* agg. in Northern Bulgaria (Photo: Jürgen Dengler).

Habitat description

This habitat comprises semi-natural, moderately open to closed, relatively low-grown meso-xeric grasslands on nutrient-poor, acid to neutral, sometimes slightly calcareous sands in the lowlands and middle high mountains throughout temperate Europe. These grasslands are mostly dominated by tussockforming, narrow-leaved graminoids (hemicryptophytes) of the *Festuca ovina* aggregate (namely *F. brevipila*, *F. filiformis*, *F. guestfalica*, *F. heteropachys*, *F. lemanii*, *F. ovina*), often accompanied by *Agrostis capillaris*, *Poa angustifolia* or *Carex praecox*. In good conditions they are relatively rich in herbs, forming an important nectar source for insects.

Characteristic herbs of the habitat are Armeria maritima subsp. elongata, Artemisia campestris, Dianthus deltoides, Campanula rotundifolia, Galium verum, Sedum acre, Silene otites, Potentilla argentea agg., Thymus serpyllum, Trifolium arvense, Veronica prostrata and Herniaria glabra. Present in most sites of this habitat are Achillea millefolium, Plantago lanceolata, Hieracium pilosella, Rumex acetosella, Hypochaeris radicata and Jasione montana. More open examples of this habitat contain a high cover of mosses and/or lichens and are rich in annual vascular plants (therophytes). Several 'steppe elements' have a western or northern outpost in this habitat, thanks to the extreme micro-climate, with high temperatures during the day, dropping down quickly at night. Examples of such species (most of them characteristic of the class Festuco-Brometea) are Euphorbia cyparissias, Helichrysum arenarium, Phleum phleoides and Veronica spicata. On the Balkans the vicariant alliance Armerio-Potentillion is described, with Armeria rumelica, Agrostis castellana, Jasione heldreichii, Plantago subulata and Potentilla inclinata.

Especially, the more calcareous examples of the habitat contain several characteristic species of type E1.1g. On relative acid soils the habitat shows transitions towards grasslands of habitat 'Lowland to submontane Nardus grassland' (E1.7a, mainly alliance *Violion caninae*). More natural, pioneer stages of these grasslands, develop under relatively dynamic conditions along rivers, with active sand sedimentation. On inland sandy dunes the habitat forms a succession stage after the initial *Corynephorus*-grasslands (type E1.9b), as a result of humus accumulation. Some of the grasslands of this type are rather similar to Atlantic and Baltic coastal dune grasslands (type B1.4a), and such inland and coastal grasslands are united in the same alliances.

This habitat is found on high, rarely flooded levees in river valleys, on dry, sandy parts of plains and siliceous mountains, as well as on coastal sandy cliffs in the Baltics. Its main range covers France, the UK, the Netherlands, Northern Germany, South Scandinavia, Poland and the Baltic countries. It is less frequent in the southern half of Central Europe (in siliceous mountain ranges and on dune systems along the big rivers), becomes rarer to the South (Northern Iberia, Central France) and East (e.g. restricted to the valleys of the big rivers in Ukraine). Based on available data on vegetation and soils, there seems to be a second centre of distribution in the central parts of the Balkan Peninsula (Republic of Macedonia, Serbia, Bulgaria).

The habitat type corresponds to the phytosociological orders *Trifolio arvensis-Fetucetalia ovinae* and *Thero-Airetalia* (class *Koelerio-Corynephoretea*), excluding their occurrences on coastal grey dunes. It occurs from the submediterranean to the southern boreal zones of Europe, where ever there are dry, moderately developed sandy soils, be it from dunes or as weathering product of siliceous bedrock. The range of E1.9a extends to Northern Iberia, France and the British Isles in the West, while in Eastern Central and Eastern Europe it co-occurs with the habitat type 'Pannonian and Pontic sandy steppe' (E1.1a, grasslands of the order *Festuco-Sedetalia acris*). There, type E1.9a is found on better developed soils, where it may be found side by side to habitat E1.1a on more xeric, poorly developed soils.

The habitat type mainly consists of five, largely vicariant alliances of meso-xeric perennial grasslands, differentiated by the matrix-forming graminoids: In the Atlantic region (mainly in the lowlands) the *Sedo-Cerastion arvensis* with *Festuca filiformis* occurs, in the subcontinental lowlands (mainly the areas covered by the Nordic Ice shield during the glaciations) the *Armerion elongatae* with *Festuca brevipila* and *Armeria maritima* subsp. *elongata* is widespread, the *Hyperico perforati-Scleranthion perennis* with *Festuca ovina* and *F. guestfalica* is mainly distributed in siliceous low mountain ranges and in Scandinavia, the *Agrostion*

vinealis with Poa angustifolia and Agrostis vinealis is typical for the big river valleys of East Europe (but probably not within EU28+) and the Armerio rumelicae-Potentillion with various Agrostis species, Festuca valesiaca and Armeria rumelica occurs on the Central and Northern Balkan Peninsula. There are two more alliances of perennial tussock grasslands that potentially or partly belong here. The Koelerio-Phleion phleioidis, described from the lower siliceous mountain ranges in the southern half of Central Europe is a transition between the Hyperico perforati-Scleranthion perennis and the Armerion elongatae on the one side and the Festucion valesiacae (belonging to the habitat type E1.2b) on the other side, and not accepted in the EuroVegChecklist. The Armerion junceae from Southern France has been preliminarily placed in the Trifolio arvensis-Festucetalia ovinae by the EuroVegChecklist, but this position is questionable. Lastly, there are the grasslands rich in winter-annuals (Filago arvensis, F. minima, Vulpia spp., Aira spp., Trifolium spp.) of the order Thero-Airetalia with the single alliance Thero-Airion, which occurs under similar site conditions in the Submediterranean-Atlantic parts of temperate Europe (Northern Iberia, France, British Isles), but can be found in small patches at disturbed sited within Trifolio arvensis-Festucetalia ovinae stands also further to the east.

Indicators of good quality:

Continuation of management is important, but under very dry conditions the structure and species composition may remain unchanged for rather long periods without management. Inadequate management (burning, no management) may cause dominance of a single graminoid species, and finally succession towards scrub and woodland.

Indicators of good quality include:

- Long continuation of management (grazing, hay making or a combination of both)
- · Occurrence of regional rare species (steppic elements) having an outpost in their European distribution range
- \cdot High richness in herb species, no development of dense, species-poor grassland with thick litter accumulation
- · No encroachment of mosses (*Rhytidiadelphus squarrosus*), grasses (*Calamagrostis epigejos, Arrhenatherum elatius*), shrubs (*Rubus caesius*) or trees

Characteristic species:

Flora

Vascular plants: Achillea millefolium agg., Agrostis capillaris, Agrostis castellana, Agrostis vinealis, Aira caryophyllea, Aira elegantissima, Aira praecox, Allium schoenoprasum, Allium vineale, Anthoxanthum odoratum, Arenaria serpyllifolia, Armeria maritima subsp. elongata, Armeria rumelica, Artemisia campestris subsp. campestris, Bromus hordeaceus, Campanula rotundifolia, Carex arenaria, Carex ligerica, Carex pairae, Carex praecox, Cerastium arvense subsp. arvense, Cerastium glutinosum, Cerastium semidecandrum, Dianthus armeria, Dianthus deltoides, Dianthus carthusianorum, Erodium cicutarium, Erysimum diffusum, Euphorbia cyparissias, Festuca brevipila, Festuca filiformis, Festuca guestfalica, Festuca heteropachys, Festuca lemanii, Festuca ovina, Filago arvensis, Galium verum, Helichrysum arenarium, Herniaria glabra, Hieracium hoppeanum, Hieracium pilosella, Hypochoeris radicata, Jasione heldreichii, Jasione montana, Koeleria macrantha, Luzula campestris, Myosotis ramosissima, Myosotis stricta, Ononis reprens, Ornithopus perpusillus, Orobanche arenaria, Orobanche purpurea, Phleum phleoides, Pimpinella saxifraga agg., Plantago lanceolata, Plantago subulata, Poa angustifolia, Potentilla argentea agg., Potentilla inclinata, Potentilla tabernaemontani, Rumex thyrsiflorus, Saxifraga granulata, Scleranthus perennis, Scleranthus polycarpos, Sedum acre, Sedum reflexum, Sedum sexangulare, Silene nutans, Silene otites, Taraxacum sect. Erythrosperma, Thymus pulegioides, Thymus serpyllum, Trifolium arvense, Trifolium campestre, Trifolium striatum, Veronica arvensis, Veronica prostrata, Veronica spicata,

Vicia angustifolia, Vicia lathyroides, Viola tricolor, Vulpia bromoides, Vulpia myuros.

Bryophytes: Brachythecium albicans, Ceratodon purpureus, Dicranum scoparium, Hypnum cupressiforme var. lacunosum, Polytrichum juniperinum, Racomitrium canescens agg., Syntrichia ruralis agg.

Lichens: Cladonia fimbriata, Cladonia furcata, Cladonia pyxidata, Cladonia scabriuscula, Peltigera canina, Peltigera didactyla, Peltigera rufescens.

Fauna

Reptiles: Lacerta agilis

Insects: Decticus verrucivorus

Classification

This habitat may be equivalent to, or broader than, or narrower than the habitats or ecosystems in the following typologies.

EUNIS:

E1.9 Open non-Mediterranean dry acid and neutral grassland, including inland dune grassland

EuroVegChecklist (alliances):

Armerio rumelicae-Potentillion Micevski 1978

Armerion elongatae Pötsch 1962 (without stands on coastal grey dunes)

Armerion junceae Br.-Bl. ex Br.-Bl. et al. 1952 (unclear placement)

Hyperico perforati-Scleranthion perennis Moravec 1967 (without stands on coastal grey dunes)

Sedo-Cerastion arvensis Sissingh & Tideman 1960 (without stands on coastal grey dunes)

Thero-Airion Tx. ex Oberdorfer 1957

Annex 1:

2330 Inland dunes with open Corynephorus and Agrostis grasslands p.p. (only the most closed subtypes)

6120 Xeric sand calcareous grasslands p.p. (the most base-rich types of subcontinental Europe have partly been included here).

6270 Fennoscandian lowland species-rich dry to mesic grasslands p.p. (dry types on sandy soils = Armerion elongatae or Hyperico perforati-Scleranthion perennis)

Emerald:

E1.12 Euro-Siberian pioneer calcareous sand swards

MAES-2:

Sparsely vegetated land

IUCN:

4.4. Temperate grassland

Does the habitat type present an outstanding example of typical characteristics of one or more biogeographic regions?

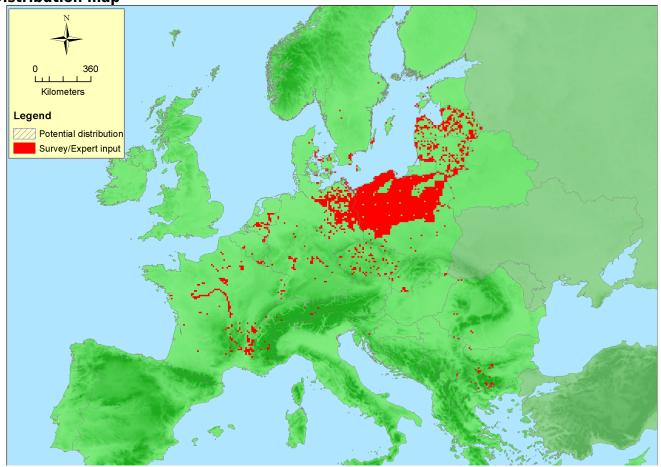
No

<u>Justification</u>

The habitat is widespread in Europe, ranging from the Atlantic to the Continental and Boreal region.

Geographic occurrence and trends

EU 28	Present or Presence Uncertain	Current area of habitat	Recent trend in quantity (last 50 yrs)	Recent trend in quality (last 50 yrs)
Austria	Present	Unknown Km ²	Unknown	Decreasing
Belgium	Present	Unknown Km ²	Unknown	Unknown
Bulgaria	Present	3 Km ²	Decreasing	Decreasing
Croatia	Uncertain	Unknown Km ²	Unknown	Unknown
Czech Republic	Present	38 Km ²	Decreasing	Decreasing
Denmark	Present	Unknown Km ²	Unknown	Unknown
Estonia	Present	4.1 Km ²	Unknown	Decreasing
Finland	Aland Islands: Uncertain Finland mainland: Present	0.7 Km ²	Decreasing	Decreasing
France	France mainland: Present	8.5 Km ²	Decreasing	Decreasing
Germany	Present	9 Km ²	Decreasing	Decreasing
Hungary	Uncertain	Unknown Km ²	Unknown	Unknown
Ireland	Present	Unknown Km ²	Unknown	Unknown
Italy	Italy mainland: Uncertain	Unknown Km²	Unknown	Unknown
Latvia	Present	9 Km ²	Decreasing	Decreasing
Luxembourg	Uncertain	Unknown Km ²	Unknown	Unknown
Netherlands	Present	4 Km ²	Decreasing	Decreasing
Poland	Present	52 Km ²	Unknown	Decreasing
Portugal	Portugal mainland: Present	43.4 Km²	Unknown	-
Romania	Uncertain	Unknown Km ²	Unknown	Unknown
Slovakia	Present	0.3 Km ²	Unknown	Decreasing
Slovenia	Uncertain	Unknown Km ²	Unknown	Unknown
Spain	Spain mainland: Present	Unknown Km²	Unknown	Unknown
Sweden	Present	Unknown Km ²	Unknown	Unknown
UK	Northern Island: Uncertain United Kingdom: Present	Unknown Km²	Unknown	Unknown


EU 28 +	Present or Presence Uncertain	Current area of habitat	Recent trend in quantity (last 50 yrs)	Recent trend in quality (last 50 yrs)
Bosnia and Herzegovina	Uncertain	Unknown Km ²	Unknown	Unknown
Former Yugoslavian Republic of Macedonia (FYROM)	Present	Unknown Km²	Unknown	Unknown

EU 28 +	Present or Presence Uncertain	Current area of habitat	Recent trend in quantity (last 50 yrs)	Recent trend in quality (last 50 yrs)
Kaliningrad	Present	Unknown Km ²	Unknown	Unknown
Kosovo	Uncertain	Unknown Km²	Unknown	Unknown
Montenegro	Uncertain	Unknown Km ²	Unknown	Unknown
Norway	Norway Mainland: Unknown Km²		Unknown	Unknown
Serbia	Uncertain	Unknown Km ²	Unknown	Unknown
Switzerland	Uncertain	Unknown Km ²	Unknown	Unknown

Extent of Occurrence, Area of Occupancy and habitat area

	Extent of Occurrence (EOO)	Area of Occupancy (AOO)	Current estimated Total Area	Comment
EU 28	2890200 Km²	2822	1900 Km²	The data provided by the country assessors (164 km²) was due to a misleading habitat description far too low; 1900 km² is a conservative assessment based on field and literature knowledge of J. Dengle
EU 28+	3057600 Km²	2832	2600 Km²	The data provided by the country assessors (164 km²) was due to a misleading habitat description far too low; 2600 km² is a conservative assessment based on field and literature knowledge of J. Dengle

The map gives an underestimation of the distribution with data gaps in Denmark, NW Germany, South Sweden, the British Isles, parts of the Northern Balkan Peninsula and northern Iberia.

How much of the current distribution of the habitat type lies within the EU 28?

90%

Trends in quantity

Recent trend EU28: -73% - EU28+: -73% (based on 66% of the total area reported). Long-term trend EU28: -77% - EU28+: -77% (based on 39% of the total area reported). The reliability of this information is restricted because the majority of country assessors did not understand the habitat type as intended. For the future, all countries that provided an assessment assume a further moderate to strong decrease.

Average current trend in quantity (extent)

EU 28: Decreasing
EU 28+: Decreasing

• Does the habitat type have a small natural range following regression?

No

Justification

EOO is $>> 50,000 \text{ km}^2$.

• Does the habitat have a small natural range by reason of its intrinsically restricted area?

No

Justification

EOO is $>> 50,000 \text{ km}^2$.

Trends in quality

Within EU28, 34% of the remaining area are degraded with 45% severity, while for none of the additional countries in EU28+ assessments were available, i.e. the calculated ratios were the same.

Average current trend in quality

EU 28: Decreasing EU 28+: Decreasing

Pressures and threats

This habitat type largely emerged due to low-intensity grazing (or also alteration of arable fields with abandonment) of sandy landscapes during past centuries and is characterised by nutrient-poor, sandy soils. Since such low-intensity grazing systems are not economically viable any more in most European countries, they have been abandoned. The former sites are then subject to free succession or conversion to forests or arable fields. Eutrophication by atmogenic nitrogen input is a second major threat as it speeds up the natural succession and also might facilitate expansion of competitive high-grown grasses, such as *Arrhenatherum elatius* or *Calamagrostis epigejos*. Some country assessments additionally mentioned mining and quarrying, direct habitat destruction and regulation of river courses as additional threats.

List of pressures and threats

Agriculture

Grassland removal for arable land Abandonment of pastoral systems, lack of grazing

Sylviculture, forestry

Forest planting on open ground

Pollution

Nitrogen-input

Natural biotic and abiotic processes (without catastrophes)

Biocenotic evolution, succession

Conservation and management

The main measure to maintain this habitat type and keep it in a good state is to continue or re-introduce low-intensity grazing systems, with sheep, cattle or best multi-species assemblages. With robust breeds that allow year-round grazing, the habitat type can even be maintained under current economic conditions via so-called large-scale pasture landscapes. Since this habitat type is still missing or neglected in many national habitat classifications, it is probably also underrepresented in the current network of conservation areas and thus well-developed large-scale examples should be put under legal conservation.

List of conservation and management needs

Measures related to agriculture and open habitats

Maintaining grasslands and other open habitats

Measures related to spatial planning

Legal protection of habitats and species

Conservation status

Annex I:

2330 ATL U2, BOR U2, CON U2, MED U1, PAN FV

6120 ATL U2, BOR U2, CON U2, MED XX, PAN U2

6270 ALP U2, BOR U2, CON U2

When severely damaged, does the habitat retain the capacity to recover its typical character and functionality?

If only a moderate succession/eutrophication of the habitat has occurred due to abandonment of grazing, often simply the reestablishment of a proper grazing scheme will suffice, potentially accompanied by some mechanical removal of woody encroachment at the beginning. Restoration of meso-xeric sandy grasslands from afforested sites is possible if there is still a seedbank in the soil. Even arable fields can be reconverted to this habitat type under certain conditions (if they were hardly fertilized); this can be facilitated by hay transfer or other means of diaspore input of target species.

Effort required

10 years	20 years		
Through intervention	Through intervention		

Red List Assessment

Criterion A: Reduction in quantity

Criterion A	A1	A2a	A2b	A3
EU 28	-73 %	Unknown %	Unknown %	-77 %

Criterion A	A1	A2a	A2b	A3
EU 28+	-73 %	Unknown %	Unknown %	-77 %

The values for A1 and A3 are calculated from the territorial data sheets, which provided trend data for 10 and 3 countries, for the 50 yr and long-term trend, respectively. Overall the value for reduction in quantity has only low to moderate reliability because many countries within the distribution range did not provide data and those who provided data in their majority seemingly did only assess small parts of the habitat type (caused by unclear original habitat description). The provided data were far too incomplete to allow assessment of A2a and A2b.

Criterion B: Restricted geographic distribution

Critorian P	B1			B2				כם	
Criterion B	EOO	a	b	С	A00	a	b	С	В3
EU 28	>50000 Km ²	Yes	Yes		>50	Yes	Yes		no
EU 28+	>50000 Km ²	Yes	Yes		>50	Yes	Yes		no

EOO and AOO are far larger than the thresholds for the criteria B1 and B2. The habitat type has many occurrences throughout large parts of Europe.

Criterion C and D: Reduction in abiotic and/or biotic quality

enterion e ana b. Reduction in abiotic ana/or biotic quanty								
Criteria	C/D1		C/	D2	C/D3			
C/D	Extent Relative affected severity		Extent affected	Relative severity	Extent affected	Relative severity		
EU 28	34 %	45 %	Unknown %	Unknown %	Unknown %	Unknown %		
EU 28+	34 %	45 %	Unknown %	Unknown %	Unknown %	Unknown %		

C1		C	2	C3		
Criterion C	Extent affected	Relative severity	Extent affected	Relative severity	Extent Relative affected severity	
EU 28	Unknown %	Unknown %	Unknown %	Unknown %	Unknown %	Unknown %
EU 28+	Unknown %	Unknown %	Unknown %	Unknown %	Unknown %	Unknown %

	I	D1		D2	D3		
Criterion D	Extent affected	Relative severity	Extent affected	Relative severity	Extent affected	Relative severity	
EU 28	Unknown %	Unknown%	Unknown %	Unknown%	Unknown %	Unknown%	
EU 28+	Unknown %	Unknown%	Unknown %	Unknown%	Unknown %	Unknown%	

The data for C/D1 were calculated from the territorial data sheets, which provided assessments for 11 countries. No data were available for C/D2 and C/D3. The degradation quality refers to both biotic features and abiotic circumstances.

Criterion E: Quantitative analysis to evaluate risk of habitat collapse

Criterion E	Probability of collapse						
EU 28	Unknown						
EU 28+	Unknown						

There is no quantitative analysis available that estimates the probability of collapse of this habitat type.

Overall assessment "Balance sheet" for EU 28 and EU 28+

	A1	A2a	A2b	A3	В1	В2	В3	C/D1	C/D2	C/D3	C1	C2	C3	D1	D2	D3	Е
EU28	EN	DD	DD	EN	LC	LC	LC	NT	DD	DD	DD	DD	DD	DD	DD	DD	DD
EU28+	EN	DD	DD	EN	LC	LC	LC	NT	DD	DD	DD	DD	DD	DD	DD	DD	DD

Overall Category & Criteria									
EU	28	EU 28+							
Red List Category	Red List Criteria	Red List Category	Red List Criteria						
Endangered	A1, A3	Endangered	A1, A3						

Confidence in the assessment

Low (mainly based on uncertain or indirect information, inferred and suspected data values, and/or limited expert knowledge)

Assessors

J. Dengler

Contributors

Type description: J.A.M. Janssen (revised by J. Dengler).

Territorial data: J. Capelo, M. Chytrý, J.M. Courvreur, D. Espírito-Santo, P. Finck, M. Janišová, Z. Kącki, T. Kontula, A. Mikolajczak, D. Paelinckx, D. Paternoster, V. Rašomavičius, U. Raths, U. Riecken, E. Roosaluste, S. Rusina, A. Ssymank, R. Tzonev, E. Weeda.

Working Group Grasslands: I. Biurrun, J. Dengler, D. Gigante, Z. Molnar, D. Paternoster, J. Rodwell, J. Schaminée, R. Tzonev

Reviewers

J. Janssen

Date of assessment

21/02/2016

Date of review

01/06/2016

References

Becker, T., Schmiege, C., Bergmeier, E., Dengler, J., Nowak, B. 2012. Nutrient-poor grasslands on siliceous soil in the lower Aar valley (Middle Hesse, Germany) – neglected vegetation types in the intersection range of four classes. *Tuexenia* 32: 281–318.

Dengler, J. 2001. Erstellung und Interpretation synchorologischer Karten am Beispiel der Klasse Koelerio-Corynephoretea. Berichte der Reinhold-Tüxen-Gesellschaft 13: 223–228.

Gregor, T. 2001. Acidophile schafschwingelreiche Magerrasen im osthessischen Buntsandsteingebiet. *Bot. Naturschutz Hessen* 13: 5–19.

Jeckel, G. (1984): Syntaxonomische Gliederung, Verbreitung und Lebensbedingungen nordwestdeutscher Sandtrockenrasen (*Sedo-Scleranthetea*). *Phytocoenologia* 12: 9–153.

Jermacāne, S. 2003. Sociology of *Armeria vulgaris* Willd. in Latvia. *Acta Univ. Latv., Earth Environ. Sci.* 654: 38-63.

Juśkiewicz, B., Endler, Z. 2000. Phytocoenoses of *Diantho-Armerietum* on ex-military training ground Muszaki-agarzewo (Masurian Plain, north-eastern Poland) [in Polish, with English summary]. *Fragm. Florist. Geobot. Pol.* 7: 159–165.

Kleiven, M. 1959. Studies on the xerophile vegetation in Northern Gudbrandsdalen, Norway. *Nytt. Mag. Bot.* 7: 1–60.

Kratzert, G., Dengler, J. 1999. Die Trockenrasen der "Gabower Hänge" am Oderbruch. Verh. Bot. Ver. Berl. Brandenb. 132: 285–329.

Krausch, H.-D. 1968. Die Sandtrockenrasen (*Sedo-Scleranthetea*) in Brandenburg. *Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft N.F.* 13: 71–100.

Kuzemko, A. 2009. Dry grasslands on sandy soils in the forest and forest-steppe zones of the plains part of Ukraine: present state of syntaxonomy. *Tuexenia* 29: 369–390.

Löbel, S. and Dengler, J. 2008 ["2007"]. Dry grassland communities on southern Öland: phytosociology, ecology, and diversity. *Acta Phytogeographica Suecica* 88: 13–31.

Moravec, J. 1967. Zu den azidophilen Trockenrasengesellschaften Südwestböhmens und Bemerkungen zur Syntaxonomie der Klasse *Sedo-Scleranthetea*. *Folia Geobotanica Phytotaxonomica* 2: 137–178.

Pedashenko, H., Apostolova, I., Boch, S., Ganeva, A., Janisová, M., Sopotlieva, D., Todorova, S., Ünal, A., Vassilev, K., Velev, N. and Dengler, J. 2013. Dry grasslands of NW Bulgarian mountains: first insights into diversity, ecology and syntaxonomy. *Tuexenia* 33: 309–346.

Rūsiņa, S. 2007. Diversity and contact communities of mesophytic and xerophytic grasslands in Latvia [in Latvian, with English summary]. *Latv. Veģ.* 12: 1–366.

Süß, K., Schwabe, A. 2007. Sheep versus donkey grazing or mixed treatment: results from a 4-year field experiment in *Armerio-Festucetum trachyphyllae* sand vegetation. *Phytocoenologia* 37: 135–160.

Thébaud, G., Roux, C., Bernard, C.-E., Delcoigne, A. 2014. *Guide d'identification des vététations du nord du Massif central – Associations végétales et habitats naturels*. Presse universitaires Blaise Pascal, Clermont-Ferrand, FR.