A5.6w Mediterranean infralittoral oyster beds

Summary

Infralittoral oyster beds on rocky and soft bottoms comprised mainly by the European flat oyster *Ostrea edulis* with densities of 5 or more per m². The oysters cement themself to the substratum and can form a dense cover. They may be found as individuals or clusters attached to rock surfaces, on other shelled animals. This habitat has been affected harvesting as well as by reduced water quality and eutrophication as discharges from the agriculture plains flow in the sea. Intensive fish farming and the introduction of non-native oysters for cultivation and along with viruses and bacteria that threaten the native oyster are other threats. Cimate change is a future pressure on this habitat.

The remaining natural beds are very few, scattered through the European Mediterranean countries. Whenever these are exploited, this has to be regulated through intervention measures (changes in the extent and amount of the extracted oysters per year or bans on extraction for a long period). Detailed mapping of the extent of the natural mussel beds is lacking and should be a priority for the countries that host this habitat. Also study of the structure and biotic/abiotic characteristics and the identification of the factors that drive the reduction of the natural beds, their extent and biotic/abiotic characteristics will be beneficial.

Synthesis

This habitat has a widespread distribution in the Mediterranean but is thought to only be present in the EU 28. There is a lack of quantifiable date on trends in the extent and quality of this habitat however it is known to have declined very significantly since the last century. Although there are significant data deficiencies, expert opinion is that this habitat should be assessed as Endangered for both the EU 28 and EU 28+ on the basis of historical decline.

Overall Category & Criteria										
EU	28	EU 2	28+							
Red List Category	Red List Criteria	Red List Category	Red List Criteria							
Endangered	A3	Endangered	A3							

Sub-habitat types that may require further examination

None.

Habitat Type

Code and name

A5.6w Mediterranean infralittoral oyster beds

Infralittoral oyster beds. South Evoikos, Greece (© D.Pousanidis).

Infralittoral oyster beds. South Evoikos, Greece. (© D.Pousanidis).

Habitat description

Infralittoral oyster beds on rocky and soft bottoms comprised mainly by the European flat oyster *Ostrea edulis* with densities of 5 or more per m². The oysters cement themself to the substratum and can form a dense cover. They may be found as individuals or clusters attached to rock surfaces, on other shelled animals like the endemic noble shell (*Pinna nobilis*) or on coarse sandy bottoms. The diet of oysters consists of phytoplankton and detritus filtered from the surrounding water. More frequently they can be found close to river mouth areas or estuaries and sheltered bays. There are three distinct habitat components; the interstices within the oyster matrix; the biodeposits beneath the bed; and the substratum afforded by the oyster shells themselves. A diverse range of epibiota and infauna often exists in these parts of the habitat.

Indicators of quality:

Both biotic and abiotic indicators have been used to describe marine habitat quality. These include the presence of particular species, water quality parameters, levels of exposure to a particular exposure as well as more integrated indices which describe habitat function and structure, such as trophic index, or successful stages of development in habitats that have a natural cycle of change over time.

There are no known commonly agreed indicators of quality for this habitat, although particular parameters may be set in certain situations, e.g. protected features with Natura 2000 sites, where reference values may have been determined and applied on a location-specific basis. Presence and abundance of the oyster will be a key indicator of this habitat.

Characteristic species:

Dense aggregations of the European oyster and/or the Pacific oyster. The oysters are often encrusted with barnacles and/or bryozoans. Gastropod molluscs such as species of the families Muricidae (e.g the European oyster driller *Ocenebra erinaceus*, the rock-shell *Stramonita haemastoma*) feed on oysters by drilling them and digesting the oyster flesh. Bryozoans, polychaetes of several genera, and copepods also live in the assemblage. Due to the intensive introduction of non-native oyster species *Crassostrea gigas* for cultivation in the Mediterranean, several invasive species have been introduced.

Classification

EUNIS (v1405).

Level 4. A sub-habitat of Infralittoral Biogenic Reefs (A5.6).

Annex 1:

1170 Reefs

MAES:

Marine - Marine inlets and transitional waters

Marine - Coastal

MSFD:

Shallow sublittoral rock and biogenic reef

EUSeaMap:

Shallow photic rock or biogenic reef.

IUCN:

9.4 Subtidal sandy

9.5 Subtidal sandy-mud

Does the habitat type present an outstanding example of typical characteristics of one or more biogeographic regions?

No

Justification This is a rare habitat in the Mediterranean.

Geographic occurrence and trends

Region	Present or Presence Uncertain	Current area of habitat	Recent trend in quantity (last 50 yrs)	Recent trend in quality (last 50 yrs)
Mediterranean Sea	Adriatic Sea: Present Aegian-Levantine Sea: Present Ionian Sea and the Central Mediterranean Sea: Present Western Mediterranean Sea: Present	Unknown Km ²	Decreasing	Decreasing

Extent of Occurrence, Area of Occupancy and habitat area

	Extent of Occurrence (EOO)	Area of Occupancy (AOO)	Current estimated Total Area	Comment
EU 28	1,411,607 Km ²	212	Unknown Km ²	EOO and AOO have been calculated on the available data. Although this data set is known to be incomplete the figures exceed the thresholds for threatened status.
EU 28+	1,411,607 Km ²	212	Unknown Km ²	EOO and AOO have been calculated on the available data. Although this data set is known to be incomplete the figures exceed the thresholds for threatened status.

Distribution map

This map has been generated based on expert opinion. The map has been used to calculate AOO and EOO. The map should be treated with caution as it does not necessarily reflect the full distribution of the habitat.

How much of the current distribution of the habitat type lies within the EU 28?

Most but not all of the known location of this habtiat are hosted by the EU 28 counties in the Mediterranean.

Trends in quantity

There is limited quantified information on the historical extent of this habitat. but they are known to have covered a large part of the coastal zone, especially near river mouths, closed bays and other suitable areas in previous centuries. The intensive exploitation of the oyster beds along with the cultivation and the introduction of non-native species for cultivation have resulted in a dramatic decline in the extent of this habitat - in some cases leading to the extinction of natural beds.

There is an ongoing decline due to the intensive exploitation, the introduction of non-native oysters for cultivation and along with these the introduction of non-native species that threaten the native oyster (virus, bacteria, hunters).

- Average current trend in quantity (extent) EU 28: Decreasing EU 28+: Decreasing
- Does the habitat type have a small natural range following regression?
 No

```
NO
```

Justification

This habitat does not have a small natural range as the EOO exceeds $50,000 \text{ km}^2$.

• Does the habitat have a small natural range by reason of its intrinsically restricted area?

No Justification This habitat does not have a small natural range as the EOO exceeds 50,000 $\rm km^2$.

Trends in quality

The quality of this habitat has declined over past centuries. More recently the introduction of non-native oysters for cultivation has had both direct and indirect effects (competion and the introduction of virusus and bacteria on the quality of oyster beds.

• Average current trend in quality EU 28: Decreasing EU 28+: Decreasing

Pressures and threats

This habitat has been affected harvesting as well as by intensive agriculture and its practises which have resulted in reduced water quality and eutrophication as discharges from the agriculture plains flow in the sea. Intensive fish farming can lead to degradation and loss of oyster beds due to the heavy loads of organics from waste food and faecal matter. Low oxygen concentration and bacterial mats are additional pressures in these situations. The introduction of non-native oysters for cultivation and along with these the introduction of non-native species that threaten the native oyster (virus, bacteria, hunters) and in the future climate change is a pressure on this habitat.

List of pressures and threats

Biological resource use other than agriculture & forestry

Marine and Freshwater Aquaculture Fishing and harvesting aquatic resources

Pollution

Pollution to surface waters (limnic, terrestrial, marine & brackish) Marine water pollution

Invasive, other problematic species and genes

Invasive non-native species

Climate change

Changes in abiotic conditions Changes in biotic conditions

Conservation and management

The remaining natural beds are very few, scattered through the European Mediterranean countries. Whenever these are exploited, this has to be regulated through intervention measures (changes in the extent and amount of the extracted oysters per year or bans on extraction for a long period). Detailed mapping of the extent of the natural mussel beds is lacking and should be a priority for the countries that host this habitat.

List of conservation and management needs

Measures related to wetland, freshwater and coastal habitats

Restoring/Improving water quality

Measures related to marine habitats

Restoring marine habitats

Measures related to spatial planning

Establish protected areas/sites Legal protection of habitats and species

Measures related to hunting, taking and fishing and species management

Regulation/Management of fishery in marine and brackish systems

Measures related to urban areas, industry, energy and transport

Urban and industrial waste management

Measures related to special resouce use

Regulating/Managing exploitation of natural resources on sea

Conservation status

Annex 1:

1170: MMED XX

When severely damaged, does the habitat retain the capacity to recover its typical character and functionality?

Recovery times from over exploitation and other causes of damage have been estimated to take up to 20 years.

Effort required

20 years

Naturally and through intervention

Red List Assessment

Criterion A: Reduction in quantity

Criterion A	A1	A2a	A2b	A3
EU 28	unknown %	unknown %	unknown %	>70 %
EU 28+	unknown %	unknown %	unknown %	>70 %

The intensive exploitation of the oyster beds along with the cultivation and the introduction of non-native species for cultivation have resulted in a dramatic historical decline in the extent of this habitat - in some cases leading to the extinction of natural beds. There is an ongoing decline however the extent of this cannot be quantified. This habitat has therefore been assessed as Data Deficient under criteria A1 and A2. Expert opinion is that the historical reductions are likely to have exceeded 70% therefore this habitat has been assessed as Endangered under criteria A3.

Criterion B: Restricted geographic distribution

Critorion P	B	1			20				
CITCEIIOII D	EOO	а	b	С	A00	а	b	С	60
EU 28	>50,000 Km ²	Yes	Yes	No	>50	Yes	Yes	No	No
EU 28+	>50,000 Km ²	Yes	Yes	No	>50	Yes	Yes	No	No

This habitat has a large natural range in the Mediterranean. The precise extent is unknown however as

 $EOO > 50,000 \text{km}^2$ and AOO > 50 this exceeds the thresholds for a threatened category on the basis of restricted geographic distribution. There have been historical declines in the quanity and quality of this habitat and this is considered likely to continue. The distribution of the habitat is such that the identified threats are unlikely to affect all localities at once. This habitat has therefore been assessed as Least Concern under Criteria B.

Critoria C/D1		D1	C/	D2	C/	D3
C/D	Extent affected	Extent Relative affected severity		Relative severity	Extent affected	Relative severity
EU 28	unknown %	unknown %	unknown %	unknown %	unknown %	unknown %
EU 28+	unknown %	unknown %	unknown %	unknown %	unknown %	unknown %

Criterion C and D: Reduction in abiotic and/or biotic quality

	C	1	C	2	С	3
Criterion C	Extent Relative affected severity		Extent Relative affected severity		Extent Relative affected severity	
EU 28	8 unknown % unknown %		unknown % unknown %		unknown %	unknown %
EU 28+	unknown %	unknown %	unknown %	unknown %	unknown %	unknown %

	I	D1	[02	D3		
Criterion D	Extent Relative affected severity		Extent affected	Relative severity	Extent Relative affected severity		
EU 28	unknown %	unknown%	unknown % unknown%		unknown %	unknown%	
EU 28+	unknown %	unknown%	unknown %	unknown%	unknown %	unknown%	

This habitat is known to have declined in quality over historical time periods. Such trends are likely to continue as the pressures remain however the extent cannot be quantified. This habitat is therefore assessed as Data Deficient under criteria C/D.

Criterion E: Quantitative analysis to evaluate risk of habitat collapse

Criterion E	Probability of collapse
EU 28	unknown
EU 28+	unknown

No quantitative analysis has been carried out to assess the risk of ecosystem collapse for this habitat. It is therefore assessed as Data Deficient under criterion E.

Overall assessment "Balance sheet" for EU 28 and EU 28+

	A1	A2a	A2b	A3	B1	B2	B3	C/D1	C/D2	C/D3	C1	C2	C3	D1	D2	D3	Е
EU28	DD	DD	DD	ΕN	LC	LC	LC	DD	DD	DD	DD	DD	DD	DD	DD	DD	DD
EU28+	DD	DD	DD	EN	LC	LC	LC	DD	DD	DD	DD	DD	DD	DD	DD	DD	DD

Overall Category & Criteria										
EU	28+									
Red List Category	Red List Criteria	Red List Category	Red List Criteria							
Endangered	A3	Endangered	A3							

Confidence in the assessment

Low (mainly based on uncertain or indirect information, inferred and suspected data values, and/or limited expert knowledge)

Assessors D. Poursanidis.

Contributors S.Gubbay and N.Sanders.

Reviewers N.Dankers.

Date of assessment 08/01/2016

Date of review 25/01/2016

References

Airoldi, L., Bacchiocchi, F., Cagliola, C., Bulleri, F. and Abbiati, M. 2005. Impact of recreational harvesting on assemblages in artificial rocky habitats. *Marine Ecology Progress Series* 299: 55-66.

Airoldi, L. and Beck, M.W. 2007. Loss, status and trends for coastal marine habitats of Europe. *Oceanography and Marine Biology Annual Review* 45: 345-405.

Askew, C. 1987. *Shellfish cultivation in greece*. FI:DP/GRE/85/002, Field Document 6, November 1987. Food and agriculture organization of the United Nations.

Beck, M.W., Brumbaugh, R.D., Airoldi, L., Carranza, A., Coen, L.D., Crawford, C., Defeo, O., Edgar, G.J., Hancock, B., Kay, M.C., Lenihan, H.S., Luckenbach, M.W., Toropova, C.L., Zhang, G. and Guo, X. 2011. Oyster reefs at risk and recommendations for conservation, restoration, and management. *BioScience* 61(2): 107-116.

Benovic, A. 1997. The history, present condition, and future of the molluscan fisheries of Croatia. In: *The history, present condition, and future of the molluscan fisheries of north and Central America and Europe, vol 3, Europe.* MacKenzie, C.L. Jr., Burrell, V.G. Jr., Rosenfield, A. and Hobart, W.L. (Eds.). NOAA Technical Report NMFS 129. US Department of Commerce. pp 217-226.

Blanchard, M. 1996. Spread of the slipper limpet *Crepidula fornicata* (L., 1758) in Europe. Current state and consequences. *Scientia Marina* 61(2): 109-118.

EUNIS habitat type hierarchical view [online]. Available at: http://eunis.eea.europa.eu/habitats-code-browser.jsp (Accessed: 05/01/2016).

Giacobbe, S. 2012. Biodiversity loss in Sicily transitional waters: the molluscs of Faro Lake. *Biodiversity Journal* 3(4): 501-510.

Heral, M. 1992. Traditional oyster culture in France. In: *Seminar and study tour on molluscs culture*. Nantes/Sète, June 9-18 1992. MEDRAP II RAB/89/005-RER/87/009 Field Document 92/16.

Launey, S., Ledu, C., Boudry, P., Bonhomme, F. and Naciri-Graven, Y. 2002. Geographic structure in the European flat oyster (*Ostrea edulis* L.) as revealed by microsatellite polymorphism. *Journal of Heredity* 93(5): 331-351. doi:10.1093/jhered/93.5.331

Narcisi, V., Arzul, I., Cargini, D., Mosca, F., Calzetta, A., Traversa, D., Robert, M., Joly, J.P., Chollet, B., Renault, T. and Tiscar, P.G. 2010. Detection of *Bonamia ostreae* and *B. exitiosa* (Haplosporidia) in *Ostrea*

edulis from the Adriatic Sea (Italy). Diseases of Aquatic Organisms 89: 79-85.

Ramon, M., Cano, J., Pena, J.B. and Campos, M.J. 2005. Current status and perspectives of mollusk (bivalves and gastropods) culture in the Spanish Mediterranean. *Boletim do Instituto Espanol Oceanografico* 21: 361-373.

Svåsand, T., Crosetti, D., García-Vázquez, E. and Verspoor, E. (Eds.). 2007. *Genetic impact of aquaculture activities on native populations*. Genimpact final scientific report (EU contract n. RICA-CT-2005-022802). 176 pp. http://genimpact.imr.no/

Virvilis, C. and Angelidis, P. 2006. Presence of the parasite *Marteilia* sp. in the flat oyster (*Ostrea edulis L*) in Greece. *Aquaculture* 259(1-4): 1-5. ISSN 0044-8486, http://dx.doi.org/10.1016/j.aquaculture.2006.05.008.

Zavodnik, D. 1997. Non-conventional seafood sources at the eastern Adriatic Sea markets. In: *Thousand years from first mention of fisheries in Croats* (in Croatian). Finka, B. (Ed.). Croatian Academy of Arts and Sciences, Zagreb. pp 637-656.