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1 SCOPE AND OBJECTIVES 

The objective of this negotiated procedure was to continue the support to EEA with respect to 
the further development of the EAGLE concept and its application in the context of the CLC+ 
product suite.  

Task 1 addresses the update of the relevant EAGLE documentation and making them available 
to service providers as well as users to support the implementation of CLC+ Core, respectively 
the ingestion of data into the database.  

Task 2 concerns the update of the EAGLE web presentation and the integration of the web pages 
into the new Copernicus web portal.  

Task 3 reviews and updates the bar-coding concept in light of the lessons learned during the 
ingestions of data into CLC+ Core. On the other hand, the task shall help to simplify and 
streamline the bar-coding of CLMS products and other frequently used feature classes by 
providing a proposal for a standard bar-coding of these data.  

Task 4 finally addresses the development of an EAGLE concept for the characterisation and 
handling of change data in the CLC+ Core database as well as a critical review on the extraction 
of change data from the database.  

Task 5 is about providing support to the organisation of Copernicus related meetings.  

Task 6 addresses the scope of using AI and ML technologies (and other commercial EO-based 
analytics) for the gap filling in CLC+ instances.  

Task 7 is about providing and “EAGLE view” and support to the ISO standardisation group. 

This task 6 summary report presents the results of a scoping study of using AI and ML 
technologies (and other commercial EO-based analytics) for gap filling of especially CLC+ Legacy. 
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2 BACKGROUND TASK 6 

2.1 Background 

In 2019, a LU inventory focusing on potential input data for a future CLC+ Legacy instance was 
provided (in form of an excel table) by the Member States. The results of these returns have 
been analysed by ETC/ULS and EAGLE.  

In 2021, MS were asked to refine this first inventory with a focus on a future LULUCF Instance. 
Additionally, MS were asked to provide LU layers created from their national LU data (gap-filled 
by CLMS data in case of data gaps).  

In tasks 15, 16 and 22 of the Specific Contract EEA.59032, the ETC DI analysed the (land use) 
information provided by the Member States in response to the request above. The analysis will 
assess crucial information gaps that need to be addressed to develop the required Instances. 

 

2.2 Objective 

The objective of this task is to assess the use of modern technologies (like artificial 
intelligence/machine learning) and/or recent EO-based products that are being provided by the 
service industry to support the closing of current data and information gaps to derive the CLC+ 
LULUCF and Legacy instances. 

To reach this objective the following main activities were undertaken:  

• Inventory of data gaps for CLC+ LULUCF (also Legacy (if existing)): what type of data 
is missing (data gap typology) 

• Inventory of datasets to be used to determine LU in gaps: EO-based products, CLMS 
data sets, other spatial data 

• Evaluations of suitability AI/ML methods for gap filling – which approach to use to 
fill the gaps 

• Test specific methodologies in case study areas for certain gaps  

• Review the usefulness of commercially available analytics layers to support gap 
filling. 

 

2.3 Inputs 

Inputs for this task were the following: 

• Reports and outputs of tasks 15, 16, 17 and 22 of the Specific Contract EEA.59032 

• Spatial data layers with spatial gaps (e.g., NODATA layers from MS countries regarding 
LULUCF instance (and/or gap layers regarding CLC+ Legacy (if existing)) 

• Geospatial layers to be used for calculation of missing data 

• Analytics layers from external sources 

 

2.4 Partners 

The task is led by WENR (Marian Vittek/Gerard Hazeu). Main contributing partner was Specto 
Natura (Geoff Smith). Lechner, UBA-V, UMA and DGT were other partners with minimum 
involvement. 
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3 DATA GAPS INVENTORY AND SELECTION CRITERIA 

3.1 Data gap inventory CLC+ instances 

3.1.1 Gaps discovered in CLC+ LULUCF (based on CLMS data/national data) 

In task 22 “Support to LULUCF instance development, including prototype testing” (SC59032) a 
critical review and comparison of available LULUCF prototype instance based on only CLMS data 
and created by a service provider consortium is done. Also, the development of an own LULUCF 
instance solely based on national land use information is discussed for some specific MS. 

The comparison of the surface areas of the prototype LULUCF instances with the statistical data 
reported by the countries show deviations. Large deviations exist for the IPCC category Wetlands 
and Other Lands indicating that data harmonisation (class definitions) and data availability are 
limiting a correct classification of those categories. 

3.1.2 Gaps discovered in CLC+ Legacy (based on CLMS data/national data)  

Task 16’s report “Support for the creation of a pilot CLC+ Legacy instance for 2018 and 
comparison with CLC2018” (SC59032) gives an overview of the data situation for CLC+ Legacy. 
The data situation in the MS regarding land use data (EAGLE Land Use Attributes (LUA) and Land 
Characteristics (LCH) is diverse. 
 
The availability and the quality (e.g. temporal extent, update frequency) of LUAs and LCHs 
needed to derive CLC+ Legacy are highly variable between countries making it difficult to 
produce a harmonised European product. Furthermore, CLMS or CLC data is often used in MS 
to derive LUA/LCH elements which means without CLMS or CLC EAGLE elements could not be 
derived. 
 
As reported from the gap analysis in “Support for the creation of a pilot CLC+ Legacy instance 
for 2018 and comparison with CLC2018” (ETC-DI Report 2022/SC59032 Task 16; D 16.1) Table 1 
indicates for each CLC class the gap (expressed in %) as the share of MS where data does not 
exist. The gap analysis was carried out based on the inventory of EAGLE LUA/LCH present in MS 
national data. For each LUA/LCH the MS were asked to provide the availability and other 
characteristics of national datasets. The mapping between LUA/LCH and CLC classes allowed for 
an assessment of the gap in each CLC class. In the case of CLC classes that consist of several 
LUA/LCH elements only the summary figure is provided.  In Table 1, CLC classes are identified in 
descending order by the percent gap of relevant layers. The higher the gap, the higher the need 
to find alternative data sources for this class.   
 

Table 1: CLC classes ordered by their respective gap. The gap is measured as the share of MS where data 
is not available. Original source: EAGLE SC57755 Task 1: CLC+ Core. 

CLC code  CLC Description  Gap % of relevant layers  

331  Beaches - dunes - sands  Not analysed  

332  Bare rocks  Not analysed  

511  Water courses  Not analysed  

512  Water bodies  Not analysed  

523  Sea and ocean  Not analysed  

142  Sport and leisure facilities  89  

https://eea1.sharepoint.com/:w:/r/teams/-EXT-ETCDI/Shared%20Documents/C16.%20Pilot%20CLC%20Legacy%20instance%20for%202018/Deliverables/D16_1_SC59032_T16_CLC_Legacy_pilot_v1_small.docx?d=w31693aa55c974da0a2d57e9838d908fb&csf=1&web=1&e=BI5hQl
https://eea1.sharepoint.com/:w:/r/teams/-EXT-ETCDI/Shared%20Documents/C16.%20Pilot%20CLC%20Legacy%20instance%20for%202018/Deliverables/D16_1_SC59032_T16_CLC_Legacy_pilot_v1_small.docx?d=w31693aa55c974da0a2d57e9838d908fb&csf=1&web=1&e=BI5hQl
https://eea1.sharepoint.com/:w:/r/teams/-EXT-ETCDI/Shared%20Documents/C16.%20Pilot%20CLC%20Legacy%20instance%20for%202018/Deliverables/D16_1_SC59032_T16_CLC_Legacy_pilot_v1_small.docx?d=w31693aa55c974da0a2d57e9838d908fb&csf=1&web=1&e=BI5hQl
https://eea1.sharepoint.com/:w:/r/teams/-EXT-ETCDI/Shared%20Documents/C16.%20Pilot%20CLC%20Legacy%20instance%20for%202018/Deliverables/D16_1_SC59032_T16_CLC_Legacy_pilot_v1_small.docx?d=w31693aa55c974da0a2d57e9838d908fb&csf=1&web=1&e=BI5hQl
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334  Burnt areas  89  

121  Industrial or commercial units  81  

133  Construction sites  69  

212  Permanently irrigated land  69  

311  Broad-leaved forest  69  

312  Coniferous forest  69  

313  Mixed forest  69  

211  Non-irrigated arable land  67  

141  Green urban areas  64  

323  Sclerophyllous vegetation  62  

222  Fruit trees and berry plantations  60  

241  Annual crops associated with permanent crops  56  

213  Rice fields  50  

244  Agro-forestry areas  50  

421  Salt marshes  50  

423  Intertidal flats  50  

521  Coastal lagoons  50  

221  Vineyards  49  

231  Pastures  47  

321  Natural grasslands  47  

522  Estuaries  47  

322  Moors and heathland  46  

412  Peat bogs  45  

111  Continuous urban fabric  44  

112  Discontinuous urban fabric  44  

123  Port areas  44  

333  Sparsely vegetated areas  44  

242  Complex cultivation patterns  42  

243  
Land principally occupied by agriculture with significant areas of natural 
vegetation  

42  

124  Airports  36  

132  Dump sites  36  

223  Olive groves  36  

324  Transitional woodland-shrub  36  
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411  Inland marshes  36  

122  Road and rail networks and associated land  26  

131  Mineral extraction sites  25  

335  Glaciers and perpetual snow  0  

422  Salines  0  

  
The production of CLC+ Legacy instance for some selected countries also revealed that some CLC 
classes were more difficult to derive on basis of national data. For The Netherlands the CLC 
classes 123, 423, 522, mixed classes 242, 243 and 313 and separation of classes 511 and 512 
were not possible to derive when producing a national CLC+ Legacy (in a combination of the two 
national databases Landelijk Grondgebruik Nederland (LGN) and Bestand BodemGebruik (BBG). 
In addition, some CLC+ Legacy classes had large deviations from the original CLC2018 (e.g. CLC 
classes 122, 133, 222, 321 and 324). 

3.1.3 Gaps filled with OSM data  

In task 17 of the SC59032 with EEA the usefulness of OSM for gap filling for CLC+ Legacy was 
assessed. Although OSM has its limitations in terms of determining its accuracy, timeliness, and 
homogeneity, OSM is for some themes the only European dataset available (e.g., Sport and 
leisure facilities).  

Conclusions of this study were that OSM can be used for gap-filling the following CLC classes: 

• 142 Sport and leisure facilities,   

• 121 Industry, commerce, and public facilities.   

For these classes a revised tag set is provided in Table 2 of the task 17 report “Testing of OSM 
and other data for CLC+ Legacy” (SC59032)).  

 Other promising classes mentioned in the task 17 report, which need however further detailed 
analysis are: 

• 421 Salt marshes  

• 412 Peat bogs (possibly in combination with Peatland map)  

• 123 Port areas (possibly in combination with EuroRegionalMap)  

• 124 Airports (possibly in combination with EuroRegionalMap)  

• 132 Dump sites  

• 122 Road and rail networks and associated land (possibly in combination with 
EuroRegionalMap)  

• 131 Mineral extraction sites  

Class 141 was excluded after more detailed analysis because there is not a good tag set in OSM 
that represents the CLC description of 141. Other classes were excluded because the OSM data 
itself was partially (albeit for a small part) derived from CLC in the past1. 

Other data 

Task 17 of SC59032 suggested that next to OSM other data sources can be used to fill some gaps. 
The CLC classes that show the highest gap (above 65%) are Sport and leisure facilities (142), 

 
1 In Portugal, the use of OSM is tested to adapt our National LCLU product (COS) from 1ha to 0,5ha and to add some new thematic 
detail. OSM have proved to be very useful in land use classes like 142, 121, 123, 132, 122, and 131.  For Portugal, OSM is not helpful 
in land cover classes like 421 and 412. 
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Burnt areas (334), Industrial or commercial units (121), Construction sites (133), Permanently 
irrigated land (212), Non-irrigated arable land (211) and the three Forest classes (Broad-leaved 
forest, Coniferous forest, Mixed forest) (311, 312 and 313), see Table 1.  
 
Of those, OSM can be used for gap-filling Sport and leisure facilities and Industrial or commercial 
units.  
For the class Construction sites, given its inherently temporary nature, it is hard to find reliable 
data sources, rather even not national data in many cases. 
 
The HRL Forests Copernicus products can be used for gap-filling the Forest classes (3**).  
 
The EFFIS, GWIS and Burnt area yearly composite datasets can be used, in combination with HRL 
Forests, to identify burnt areas and therefore help gap-filling class the class Burnt areas. 
  
Finally, the explored global maps for the classes Permanently irrigated land, Non-irrigated arable 
land do not meet the general criteria for gap-filling. 
 

3.2 Selection of data gaps 

3.2.1 Background 

After several studies looking at the feasibility to produce CLC+ LULUCF and CLC+ Legacy instance 
it became clear that there is especially a lack of harmonised land use data at European level. 
Land use is particularly important for the production of CLC+ Legacy instance as CLC classes are 
namely described as a mix of land cover and land use (LC/LU). Also for CLC+ LULUCF instance 
land use (LU), i.e. management information is needed, however all the information is grouped 
into 6 reporting categories that apparently have fewer gaps compared with the required 44 
classes of CLC. For this reason, the focus in this study is on CLC+ Legacy instance.  

Experiences with the ingestion and/or extraction of national and European spatial LC/LU data 
into CLC+ Core on basis of EAGLE elements it became clear that for the moment we should focus 
on the gap filling of LU/LC classes and not on EAGLE elements. The final CLC+ instances are 
spatial datasets mapping LC/LU classes and not elements. Furthermore, training data on EAGLE 
elements (LUA or LCH) that are needed to develop AI/ML based LC/LU mapping, are more 
difficult to obtain. 

For these above mentioned reasons it was decided to see how AI/ML can potentially contribute 
to filling gaps in the production of CLC+ Legacy, i.e. can AI/ML help to map CLC+ Legacy classes 
for which no harmonised European data exist. 

The selection of CLC classes to focus on is partly based on the gap analysis performed in tasks 
performed in previous Copernicus Service Contracts (classes having high shares of MS where 
data is not available, no thematic correspondence in OSM etc). Next to the gaps discovered 
during these previous studies, it became clear that some CLC classes were difficult to map when 
creating CLC+ Legacy at national level for the Netherlands. Furthermore, to get a better insight 
in the potential of AI/ML to map CLC classes it was also decided to select some classes in both 
the urban as the semi-natural domain. Also, during the selection of CLC classes, we took the 
availability of sufficient training data into consideration. 

3.2.2 Selection criteria 

The general criteria that datasets need to fulfil to be used for gap-filling are the following (as 
mentioned in task 17 report “Testing of OSM and other data for CLC+ Legacy” (SC59032)):  
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• Reference date: the reference date of the dataset must match or be close 
enough to CLC+ Legacy. It must be possible to determine the reference date.  

• Regular updates: the dataset must be regularly updated. 

• Spatial coverage: the dataset must cover Europe (EEA-38 + UK). 

• Spatial resolution: the dataset must have the same or higher spatial resolution 
of CLC+ Legacy. 

• Thematic homogeneity: the dataset thematic definitions must be homogeneous 
across Europe, and homogeneous/comparable to CLC thematic definitions. 

• Accuracy: The accuracy of the dataset must be known.  

• Availability: the dataset must be free to use (ideally with open data licence). 

In this study on the assessment of the use of modern technologies (like artificial 
intelligence/machine learning) and/or recent EO-based products these criteria also apply. For 
the AI/ML derived products especially the reference date and spatial resolution of the data used 
for training and classifying gaps and the accuracy of the result are important in the consideration 
if data can be used for gap filling. And in addition to the list above for AI/ML derived products 
high quality (accurate, extent/area) training data is of utmost importance. 

3.2.3 Selected gaps 

On basis of the data gaps inventory discussed in section 3.1 and the section 3.2.1 and 3.2.2 we 
came to the selection of the following data gaps for CLC+ Legacy classes: 

• 121 - Industrial sites 

• 123 - Port areas 

• 141 - Green urban areas 

• 324 - Transitional woodland shrub 

• 423 - Intertidal flats 

3.2.4 Training data 

One of the selection criteria is the availability of training data. For the training of the AI/ML 
models we are using Urban Atlas and Coastal Zones hotspot datasets 2018. The more detailed 
classes of these datasets can be relatively easy aggregated as they have a hierarchical relation 
to the above mentioned CLC classes. 
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4 SELECTION AND SUITABILITY OF AI/ML METHODS FOR GAP FILLING 

4.1 AI/ML definition 

Artificial intelligence (AI) is multidisciplinary field including variety of technologies such as 
machine learning (ML) and deep learning (DL). AI is the theory and development of computer 
systems able to perform tasks normally requiring human intelligence, such as visual perception, 
decision making, speech recognition and image patterns recognition. As shown in Figure 1, DL is 
a part of ML as well as a part of the broad AI field. AI incorporates human behaviour to machines 
or systems, while ML is the method to learn from data or experience, which automates analytical 
model building. DL also represents learning methods from data where the computation is done 
through multi-layer neural networks and processing. Deep learning methodology uses term 
“deep” to refer to the concept of multiple layers of state through which data is processed for 
building a data-driven model.  

 

 

Figure 1. Overview position of artificial intelligence, machine earning and deep Learning. 

4.2 Overview of AI/ML methodologies 

AI in general offers wide range of methodologies which are in principle divided into two main 
categories: supervised and unsupervised. Supervised ML techniques are applied when there is a 
sample of data which needs to be predicted or explained. It could be done by using previous 
data of inputs and outputs to predict an output based on a new input. Unsupervised ML is 
focused on ways to relate and group data points without the use of a target variable to predict. 
In other words, it evaluates data in terms of traits and uses the traits to form clusters of items 
that are similar to one another. In the field of DL there are different groups of algorithms which 
differs on type of information to be extracted from image dataset such as object detection and 
image by image classification. In the field of remote sensing is most relevant instance 
segmentation performed by pixel-wise segmentation. 
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4.3 Potential of AI/ML technologies for land cover/use mapping 

ML methods are often applied in land cover mapping thanks to its ability to learn automatically 
complex patterns and relationships in large and high-dimensional datasets. 

DL techniques, particularly convolutional neural networks (CNNs), are increasingly being applied 
in land cover classification tasks due to their ability to automatically learn hierarchical features 
from spatial data. In the process of selecting the right algorithm, it is important to take into 
consideration several factors such as the size of dataset, the complexity of the land cover classes, 
and the computational resources available, among others.  
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5 TEST SPECIFIC AI/ML METHODOLOGIES IN CASE STUDY AREAS   

5.1 Study area 

We selected two study areas with the size of 100 x 100 km which corresponds to EEA grid 

E37N32 in Netherlands and E30N16 in Spain (Figure 2). The main reasons for selection of these 
areas were: 
 

• Test for different climate, environment, landscape 

• Presence of selected classes / data gaps 

• Different availability (coverage) of training data 

• Availability of satellite imagery (Sentinel-2) for several time steps within the reference 
year 2018 

 

 

Figure 2. Selected study sites: Above – Netherlands E37N32, below - Spain E30N16 with coverage of CLC 
(left) and UA (right). 

The list below shows an overview of the used datasets and their translation into CLC classes. 
• Urban Atlas  

– 12100 Industrial, commercial, public, military and private units -> 121 

– 12300 Port areas -> 123 

– 14100 Green urban areas -> 141 

– 32000 Herbaceous vegetation associations -> 324 

• Coastal zones (level 2/3) 
– 112 Industrial, commercial, public and military units -> 121 

– 123 Port areas and associated land -> 123 
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– 14 Green urban, sports and leisure facilities -> 141 

– 34 Transitional woodland and scrub -> 324 

– 723 Intertidal flats -> 423 

– Sentinel 2 satellite images (16) 
– 4 bands (10m) 
– 4 seasons in the year 2018 

 
The UA and CZ maps have been merged and translated into CLC classes. The merged dataset 
was created as a Union and UA has priority over CZ. So, the focus in the study was on the CLC 
classes 121 (Industrial or commercial units), 123 (Port areas), 141 (Green urban areas), 324 
(Transitional woodland/shrub) and 423 (Intertidal flats). 
 

5.2 Methods 

This task is focused on the evaluation of methodologies for mapping of CLC classes by means of 
artificial intelligence methods and classification of remote sensing imagery. Target areas for 
mapping are those areas where high-resolution datasets for direct translation into CLC classes 
are not available. We used in this task AI based approaches which are largely data oriented and 
computationally intensive. Advantage of using such a methodology is that workflows could be 
highly automated and could be repeated as soon as new data are added. From several methods 
available, we selected Random Forest and Neural network as a representation of machine 
learning and deep learning approach, respectively. 

5.2.1 Random Forest  

As a first method Random forest (RF) was selected, which is a supervised ML method working 
on the principle of constructing a multitude of decision trees at training stage and the majority 
vote (mode) across them in the classification stage. RF builds multiple decision trees by training 
each tree on a random subset of the training data within process is known as bagging. This helps 
to reduce overfitting and increases the model's stability. Since RF uses random selection of 
individual pixels and shape of entities being detected does not play important role, this method 
could be more suitable for mapping classes with irregular shapes. 

In the process of setting up the classification model, the hyperparameter tuning was performed 
by random search tool to determine optimal values for the following parameters: number of 
estimators and maximal depth of decision trees. Both the random search tool and the RF model 
use scikit learn v. 1.3.22 an open-source machine learning library in Python. 

For the RF implementation we selected the following methods of organising and processing 
data: spatial split (section 5.2.1.1) and pixel based random split (multiclass and per class 
classification) (section 5.2.1.2). 

5.2.1.1 Spatial split 

Datasets in both study sites were spatially divided for training (70%) and validation (30%). For 
the Dutch study site a division was made in direction north – training, south – validation and for 
the Spanish study site in direction east – training, west - validation in order to capture the 
variability of LC classes being mapped.  

 
2 https://scikit-learn.org/ 
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5.2.1.2 Pixel based random split 

In the pre-processing phase 2000 samples were selected for each class what gives in total 12000 
random samples over whole dataset (5 CLC classes and a ‘unknown’ or unclassified class). RF 
model was used to predict CLC classes in the whole dataset. 

5.2.1.2.1 Multiclass classification 

In the pre-processing phase 2000 random samples within the training subset of the study area 
were selected for each class in LC dataset (labels) and corresponding images layer (covariates) 
in order to create a balanced training dataset. The pixel values of these samples were used as 
an input for the training of the classification model. Following, the established model was used 
to predict pixel values representing classes for the validation subset of the study area.  

5.2.1.2.2 Per class classification 

Each of 5 classes were classified separately following the same steps as for the multiclass 
approach. 

5.2.2 Neural Networks 

The second method applied in this task is neural networks (NN). NN works on the principle of 
using layers of interconnected nodes (artificial neurons), combined together to process and 
learn from data. In particular, Convolutional Neural Networks (CNN) are relevant for use in 
semantic segmentation of images due to their ability to capture spatial hierarchies of features 
detected on satellite images. By employing hierarchical layers, the CNN model architecture is 
capturing broader spatial relationships and contextual information that can aid in making more 
accurate segmentation predictions. Contextual information helps the model understand the 
global structure of the scene and improves its ability to differentiate between different objects 
or regions within an image and could be more accurate in the urban environment featuring 
regular shape of objects. 

As for the input, there were 12000 random points selected over the study area. Input satellite 
image stack and label layer were split into tiles of size 32 x 32 pixels that were used in the 
sequential deep neural network model which we applied3.  

 

5.3 Results 

5.3.1 The Netherlands 

5.3.1.1 Random forest 

5.3.1.1.1 Spatial split 

Figure 3 shows the mapping result after applying the RF algorithm for the Dutch test area. 
Multiclass classification resulted in a low overall accuracy (47%) (see Figure 4). The accuracy of 
individual classes when evaluating f1 score (harmonic mean of user accuracy (UA) and producer 
accuracy (PA) i.e. (2*((PA*UA)/(PA+UA)))) ranges from highest for Industrial areas (34%) through 
Port areas (30%), Green urban areas (18%), Transitional woodlands-shrub (11%) and Intertidal 
flats (3%) with the lowest f1 score.  

Class Green urban areas were best classified with a producer accuracy (PA) of 72% followed by 
Port areas (64%) and Industrial areas (53%). Industrial areas were often classified as Port areas 
or Green urban areas, but also many Port areas were classified as Industrial areas. This is to be 

 
3 https://keras.io/guides/sequential_model/ 
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expected as Industrial areas and Port areas are spectrally very similar. Lowest producer 
accuracies were for Transitional woodland/shrub (41%) and Intertidal flats (8%). Large parts of 
Transitional woodland-shrub were misclassified and assigned to Green urban areas. Also this 
could be expected as both classes have similarities in their spectral reflectance. Similarly, the 
majority of Intertidal flats class were classified as Port areas. From the areas not mapped into 
any of the target classes the largest areas were assigned to Industrial and Green urban areas. 

The user accuracies (UA) of all classes are relatively low. UA from 25% (Industrial areas) till 2% 
(Intertidal flats) are low which means large overestimations of the classes (high commission 
errors). The unclassified class has by far the highest UA. 
 

 

 

Figure 3. Original 5 CLC classes derived from UA and CZ (above) and predicted CLC classes using RF model 
at the study site in Netherlands (spatial split). 
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Figure 4. Confusion matrix showing true label of original and predicted CLC classes using RF model at the 
study site in Netherlands (spatial split). 

5.3.1.1.2 Pixel based random split 

Multiclass classification 

Figure 5 shows the mapping result after applying the RF algorithm for the Dutch test area (pixel 
based random split – multiclass classification). The multiclass classification with pixel based 
random split resulted in an overall accuracy of 64% (see Figure 6). Most remarkable is the 
overestimation of target classes when a lot of unclassified areas were assigned to different 
classes. Accuracy of individual classes when evaluating f1 score (harmonic mean of user and 
producer accuracy i.e. (2*((PA*UA)/(PA+UA)))) ranges from highest for Transitional 
woodland/shrub and Industrial areas (31%) through Port areas (22%), Green urban areas (20%) 
and Intertidal flats (11%). 

Producer accuracy (PA) is particularly high for Intertidal flats (94%) and Transitional 
woodland/shrubs (81%) meaning that a low number of pixels were missed in the classification 
(low omission error). Industrial areas and Green urban areas have the lowest producer accuracy 
46% and 66%, respectively.  

User accuracy (UA) is expressing the rate of a class not being overestimated relative to the total 
area of the class is highest for Industrial areas (23%) and Transitional woodland/shrubs (19%) 
and lowest for Green urban areas (12%) and Intertidal flats (6%). These relatively low user 
accuracies (UA) indicate that these classes are highly overestimated (high commission errors). 
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Figure 5.  Original 5 CLC classes derived from UA and CZ (above) and predicted CLC classes using RF 
model at the study site in Netherlands (pixel based random split – multiclass classification). 

 
 

Figure 6. Confusion matrix showing true label of original and predicted CLC classes using RF model at the 
study site in Netherlands (pixel based random split – multiclass classification). 

Per class classification 

The classification of Industrial areas as individual class resulted in an overall accuracy of 80% 
when class area itself and the rest of study area were evaluated together. When considering 
only the class area, f1 score (harmonic mean of user and producer accuracy) reaches 32%. 
Producer accuracy is proportionally higher (87%) than user accuracy (19%) meaning that many 
pixels of the background were classified as industrial areas while a lower number of pixels for 
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this class were missing in the classification. In other words,  a high commission error respectively 
low omission error (see Figure 7).  

The classification of Port areas as individual class has an high overall accuracy (88%) when class 
area itself and the rest of study area were evaluated together. When considering only the class 
area, f1 score reaches 12%. Producer accuracy is much higher (92%) than the user accuracy (7%) 
meaning that a very large number of background pixels were classified as Port areas while a low 
number of pixels for this class were missing in the classification. 

The classification of Green urban areas as individual class reaches overall accuracy 72% when 
class area itself and the rest of study area were evaluated together. When considering only the 
class area, f1 score reaches 17%. Producer accuracy is much higher (90%) than user accuracy 
(10%) meaning that a very large number of background pixels were classified as Green urban 
areas while a low number of pixels for this class were missing in the classification. 

The classification of Transitional woodland/shrub areas as individual class has high overall 
accuracy (87%) when class area itself and the rest of study area were evaluated together. When 
considering only the class area, f1 score gets 18%. Producer accuracy is much higher (93%) than 
user accuracy (10%) meaning that a very large number of background pixels (relative to total 
number of pixels in class) were classified as Transitional woodland/shrub areas while a low 
number of pixels for this class were missing in the classification. 

The classification of Intertidal flats as individual class has very high overall accuracy (97%) when 
class area itself and the rest of study area were evaluated together. When considering only the 
class area, f1 score reaches only 7%. Producer accuracy is much higher (98%) than user accuracy 
(3%) meaning that a very large number of background pixels were classified as Intertidal flats 
while a low number of pixels for this class were missing in the classification. In other words, a 
high commission error respectively low omission error (see Figure 7). 

The general pattern is that individual classes are being overestimated when classified 
individually. The most probable reason is that background areas are very heterogenous including 
classes very similar to the target class. 
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Figure 7. Confusion matrices evaluating true and predicted labels (left) and map coverage (right) of 
individual CLC classes and using RF model at the study site in Netherlands (Industrial areas, Port areas, 

Green urban areas, Transitional woodland/shrub and Intertidal flats from top to bottom). 

5.3.1.2 Neural Networks 

Figure 8 shows the confusion matrix for the Dutch test area after applying the neural network 
methodology. The multiclass classification with pixel based random split is validated with a 
sample dataset containing 2400 data points resulted in a relatively high overall accuracy (81%). 
The accuracy of individual classes when evaluating f1 scores ranges from highest for Intertidal 
flats (96%), through Transitional woodlands/Shrubs (89%), Port areas (81%), Green Urban areas 
(75%) and Industrial Areas (69%).  

The highest producer accuracy is for Intertidal flats (96%) and for Transitional woodland/shrubs 
89% while for other classes it ranges between 70-80%. 

The user accuracy reaches highest values for Intertidal flats (97%) and Port areas (91%) while its 
lowest value is for Industrial areas (61%). The high user accuracies mean that compared to other 
methodologies applied the commission error (or overestimation) is relatively low. 

 

Figure 8. Confusion matrix showing true label of original and predicted CLC classes using neural networks 
at the study site in Netherlands. 

5.3.2 Spain 

5.3.2.1 Random forest 

Figure 9 shows the mapping result after applying the RF algorithm for the Spanish test area. 
Multiclass classification resulted in an overall accuracy of 63% (Figure 10). The accuracy of 
individual classes when evaluating f1 scores ranges from highest for Transitional 
woodland/shrub (51%) through Industrial areas (9%), Green urban areas (9%), and Port areas 
(3%) with the lowest.  

Producer accuracy is particularly high for Transitional woodland/shrubs (82%) and Port areas 
(77%) meaning that a low number of pixels were missed in the classification (low omission error). 
Industrial areas has the lowest producer accuracy with 47%.  

User accuracy is also highest for Transitional woodland/shrubs (37%) and lowest for Port areas 
(2%). User accuracies are far lower than the producer accuracies. The low user accuracies mean 
that the classes are overestimated (high commission errors) as it was also registered in the Dutch 
test case. 
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Figure 9. Original 4 CLC classes derived from UA and CZ (left) and predicted CLC classes (right) using RF 
model at the study site in Spain. 

 

Figure 10. Confusion matrix showing true label of original and predicted CLC classes using RF model at 
the study site in Spain. 
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5.4 Conclusions and Discussion 

In overall, the deep learning approach using the neural networks classification model shows 
higher overall accuracy (81%) than the machine learning using the random forest classification 
model (64%). This comparison concerns the results of pixel based random split since it was used 
for both modelling approaches. Classification results differ in the order of individual class f1 
scores. The neural networks model resulted with highest f1 score for the classes Intertidal flats 
(96%), Transitional woodland/shrub (89%) and Industrial areas (80%), while random forest 
model has the highest f1 score for the classes Transitional woodland/shrub, Industrial areas 
(both 31%) and Port areas (22%). The high accuracy rate for Intertidal flats might not be 
representative since the number of sampled pixels is relatively high compared to the overall low 
number of pixels belonging to the class in the study area. Therefore, the pixel based random 
approach might use the same pixels for training and validation resulting in high accuracies. 

In general, the results of per class classification of individual classes has lower accuracy than the 
ones coming from the multiclass classification. The one exception is the Industrial areas class 
with f1 score 32% for the per class classification (individual class) compared to 31% for the  
multiclass classification. Classes with f1 scores of the same magnitude are Green urban areas 
and Intertidal flats with 17% and 7% (per class classification) compared to 20% and 11% for the  
multiclass classification, respectively. Relatively high differences in f1 scores exist between the 
per class and the multiclass classification for the Port areas and Transitional woodland/shrub 
classes, i.e. 12% and 18% versus 22% and 31%, respectively. The reason for lower f1 scores for 
the individual classifications could be that the unclassified or background areas have a larger 
extent and they include more area spectrally similar to the target classes to be classified.  

The random forest approach applied on data selected, for training and validation, with the pixel 
based random split approach resulted in an higher overall accuracy (64%) compared to the 
spatial split approach (47%). The reason could be that the selection of samples from a broader 
area could have a positive impact on capturing the characteristics of the class representative for 
the entire study area and not only for the training area as in the case of the spatial split approach. 
However, the accuracy in the pixel based random split approach could be a little overestimated 
since when calculating accuracy for the entire area, training pixels are also included (2000 per 
each class). This is not the case for neural networks classification where random sample pixels 
are selected as different than the ones used for the classification. 

The results of random forest classification using spatial split shows higher overall accuracy at the 
study site in Spain (63%) compared to The Netherlands (47%). In the Spanish study site f1 scores 
are much higher for class Transitional woodland/shrubs, i.e. 51% versus 11% for The 
Netherlands. For the classes Industrial, Port and Green urban areas the f1 scores in The 
Netherlands (34%, 30% and 18%, respectively) are higher than in Spain (9%, 3% and 9%, 
respectively). Intertidal flats class is occurring only in the Netherlands (f1 score = 2%). The reason 
for these differences between the study sites might be that some classes are more difficult to 
separate from their surroundings due to the fact that their spectral properties are more similar 
in Spain. Except for the Transitional woodland/shrub which is more accurately mapped in Spain 
than in The Netherlands. 

The user accuracies are in general lower than the producer accuracies (except the ones for the 
neural networks). The user accuracies for the classes classified with the neural network method 
are much higher than the ones from the random forest method which means the overestimation 
or commission errors are much lower for the classification based on the neural network method 
compared to the other methodologies applied. 
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5.5 Recommendations 

AI/ML methods showed the possibility and potential to be applied in filling gaps in CLC data. The 
methods have the benefit that they can cover large area by using a consistent approach with 
minimal human intervention. The AI/ML methods are using large amount of source data in the 
form of satellite images (and other covariates) and they are computational intensive. However, 
a drawback might be the relation/dependency between the class definition or data label used 
for the model training and the covariate layers – predictors. The class definition is not always 
reflected by the properties of the remote sensing data used as predictors, i.e. the spectral 
properties and spatial organisation of elements defining the LC/LU class are not always reflected 
by the satellite image properties. Therefore, the improvement and increasing the amount of 
training data would be beneficial. 

Also, the classification with AI/ML could be improved by using the knowledge of LU/LC 
information typically surrounding a target class to be mapped. This could be partially captured 
by using NN approach where surrounding area is considered, additional information can be 
added in form of underlaying data layers, masks or buffer zones. For example, Port areas can 
occur only within certain distance from sea and rivers, Urban green areas can only be present 
within built up areas and Transitional woodlands/shrubs occur only outside of urban areas. 

In order to get better classification results it is an option to include more covariate layers such 
as elevation, Copernicus high resolution layers etc. 

Accuracy of certain class detection depends also on level of aggregation. Mapping accurately 
CLC classes such as Industrial and Port Areas is relatively difficult if based only on remote sensing 
data. However, after aggregation to higher level (Industrial, commercial and transport units / 
Artificial surfaces) it might be easier to separate them from other higher level aggregated CLC 
classes. On other hand some classes are better distinguishable at more detailed level or non-
aggregated. E.g. individual buildings are better distinguishable then urban fabric. 

The large non-mapped or background areas, i.e. the areas not mapped by the target classes, in 
the original dataset of unclassified are very heterogeneous and sometimes spectrally looks 
similar to the target classes. For this reason the non-mapped areas might being wrongly mapped 
as one of the target classes. For avoiding or minimising the mixing-up of target classes with the 
background areas we think a two-step approach could help. A first step is the division of the 
background, i.e. the area not mapped as one of the target classes, into urban and non-urban 
background areas. The second step is to use the urban background in the mapping of the urban 
CLC classes (classes 121, 123 and 141) and to use the non-urban background for mapping the 
non-urban CLC classes (324, 423). We suggest to use for those two different groups of classes 
different AI/ML methods, possibly a neural network for the urban classes and a RF method for 
the non-urban classes. 

In overall, deep learning approach showed higher precision on mapping of classes selected in 
this task. In order to improve the results there are still different possibilities to adapt neural 
network model architecture being more customized to particular target classes.  

While RF and NN represents existing reliable methods for LU/LC mapping, additional methods 
such using generative AI could also show a good potential for the filling gaps in the LU/LC data.  
Generative AI is being typically used to generate synthetic data layers, augment existing datasets 
or simulate various environmental conditions. Generative models such as Generative 
Adversarial Networks involves generating realistic synthetic images that can be added to the 
original dataset, thereby increasing the diversity of the training data. 
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6 EXPLORATION POTENTIAL FOR DERIVED ANALYTICS FROM COMMERCIAL EO SYSTEMS 

6.1 Introduction 

This sub task aimed at exploring the potential for analytic layers derived from commercial EO 
systems to populate some of the EAGLE elements which are beyond the capabilities of Sentinel 
data and existing land cover land use sources at a pan-European level. These analytics layers 
would be ingested into CLC+ Core to provide additional capabilities for those developing 
extraction rulesets and for the production of CLC+ Instances. 

The sub task was in part built on the ‘Earth Observation methods for gap filling’ review 
undertaken in the scope of the CLC+ Core Data Need report (Task 1 of service contract 3436/R0-
Copernicus/EEA.57755) and focused on potentially usable EO methods for filling data gaps when 
deriving CLC+ LULUCF and CLC+ Legacy instances. It concluded that some EO-based intermediate 
products could be used to address around a quarter of the known data gaps at the time. 
However, not all of these were part of operational services and thus their delivery in a 
sustainable fashion could not be guaranteed. 

In this work, analytic layers / intermediate products from the commercial sector (e.g., via 
commercial satellite operators and aggregators such as Planet, Capella, SkyFi, etc.) were 
assessed to see if they could potentially support the more challenging elements of the EAGLE 
data model.  

For example, transient features and detailed spatial patterns / textures may be difficult to detect 
with the spatial resolution and temporal repeat frequency of the Sentinels. Some commercial 
systems have enhanced spatial and temporal performance even if they are more limited in terms 
of quality.  

The first part of the sub task reviewed the available analytics layers and then attempted to bar 
code them with the latest version of the EAGLE data model. 

The second half of the task tested potential options for, and identify issues with, the ingestion 
of the analytics layers into the CLC+ Core, including the likely licensing and access arrangements 
with the various data suppliers. It also demonstrated a small number of use cases to illustrate 
potential operational deployment. 

Some of the political context for this sub task was set out in early 2022 by the European 
Commission. At the 14th EU Space Conference in January, Thierry Breton4  noted that public 
procurement lowers commercial risk and provides long-term prospect to stabilise the business 
of a small companies, in particular start-ups. It also has a positive effect on private investors. 
Then at the Copernicus Horizon 2035 event5 in February, which brought together the brightest 
minds in Earth Observation, Mauro Facchini suggested that the Commission would be open to 
purchasing analytics products from the commercial sector to support Copernicus activities.  

This also coincided with increased awareness of land characterisation from the commercial 
sector with the President of Product and Business at Planet expressing an interest in the EAGLE 
data model and how these types of developments could be supported (pers. comm.). 

 

 

4 https://ec.europa.eu/commission/presscorner/detail/es/speech_22_561 
5 https://www.youtube.com/watch?v=iWtSfxIzEG0 
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6.2 Analytics layers 

The concept of analytics layers is analogous to intermediate products, which are commonplace 
within many manufacturing and production-oriented systems where a process can be broken 
down into a number of common components or sub-assemblies, which can be produced 
independently and often in an automated way6. 

6.2.1 Background 

A good example of an intermediate product is ‘flour’ within the food industry. The raw material, 
wheat, is milled into flour by an established process on a large scale with consequential increases 
in efficiency, consistency, quality and reductions in cost. The flour is then a common ingredient 
used in a wide range of food products and it passes on the cost savings and quality benefits 
provided by its efficient central production. 

The intermediate product concept grew out of the increasing complexity of end products and 
the need for production to become more efficient in terms of cost and resources. As businesses 
became more responsive to unique consumer requirements and the range of products grew to 
meet these unique configurations, the production of all components from their raw materials 
became unmanageable. Specialist businesses and production centres developed to provide the 
individual components or groups of components. It then became critical to understand the 
breakdown of the final product into its intermediate products and the structure in which they 
can be assembled most efficiently. 

An intermediate product is therefore one that is more likely to require further processing or 
combination with other products before it is useable or saleable to the ultimate end user. The 
additional processing might be done by the original producer, another processor or the end user 
themselves. Thus, an intermediate product might be a final product for one company and an 
input for another company that will process it further. To allow these approaches to work it is 
vital that clear specifications and standards are adhered to by all parties along the production 
workflow. 

So, in the context of EO, the schematic in Figure 11 attempts to show how intermediate products 
or analytics layers fit into the overall EO-based product workflow. Once the EO data has been 
processed to analysis ready data (ARD), then at each step afterwards there are potentially 
multiple onward uses. The first step should be a set of standard analytics layers, which can be 
easily explained to the end user and may already be found as part of their business systems. 
These layers can be used by multiple applications and each application can use one or more 
analytics layer along with non-EO ancillary data and domain knowledge. The final applications 
are therefore being driven by information familiar to the end users, which is consistent across 
applications and thus builds traceability and trust in the end user domain. In the case of this 
work the application is the population of the CLC+ Core with information which will support later 
ingestion rulesets. 

 

6 https://medium.com/@baggiesgeoff/bespoke-or-off-the-peg-eo-needs-to-adapt-its-offering-

afdb6e151823 
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Figure 11. A possible schematic for breaking down the EO workflow into a series of self-contained 
intermediate products. 

So, if we consider the EAGLE data model then there may be an equivalence between the 
elements of the model and some intermediate products.  The origins of each of the intermediate 
products must be considered in case they are highly correlated, but potentially the deployment 
/ population of the EAGLE data model can be supported by the use of analytics layers. Also, given 
the relatively simple nature of most of the analytics layers they are likely to be closer to a one-
to-one relationship with the EAGLE elements than when ingesting existing land cover / land use 
datasets. 

6.2.2 Potential analytics layers 

The following sections examine current examples of intermediate product implementations 
and production system.  

Public systems 
Although this sub task was aimed at commercial analytics layers it is also worth considering 
analytics layer developments in the public sector as they provide background and context. 

The most established processes for the development and exploitation of what could be 
described as analytics layers are at the global level. The NASA Moderate Resolution Imaging 
Spectrometer (MODIS) programme generates a range of land, atmosphere, ocean and ice 
products built on the heritage of processing Advanced Very High Resolution Radiometer 
(AVHRR) data to produce multi-date image and NDVI composites. Similar products were also 
produced by the European MEdium Resolution Imaging Spectrometer (MERIS) which was on 
board the Envisat platform before it failed. Over the last decades MODIS (and MERIS) have 
introduced daily to bi-weekly, super-spectral repeat global coverage of the Earth. The super-
spectral nature of these instruments supports the derivation of biophysical measures such as 
vegetation indices, Leaf Area Index (LAI) and fraction of Absorbed Photosynthetically Active 
Radiation (fAPAR). The MODIS products are grouped under a number of subheadings such as 
radiation budget variables, ecosystem variables and land cover characteristics. The ecosystem 
variables include vegetation indices, LAI, fAPAR, gross and net primary productivity, whilst the 
land cover characteristics include thermal anomalies, land cover and vegetation continuous 
fields.  

In a similar fashion the global component of the Copernicus Land Monitoring Service (CLMS) 
derived comparable products from a range of sensors including Sentinel-3. Unfortunately, the 
medium spatial resolution (300 – 500 m) of the data is too coarse to resolve many of the 
landscape features of interest when populating a grid database with a cell size of 1 ha. The pan-
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European component of CLMS includes a set of intermediate products referred to as the High 
spatial Resolution Layers (HRLs) which provide information about imperviousness, forests, 
natural grasslands, wetlands, and permanent water bodies. There are also dynamic monitoring 
products related to snow and ice and vegetation phenology and productivity. The HRLs are 
produced from 10 / 20 m spatial resolution optical satellite imagery from Sentinel-2 through a 
combination of automatic processing and interactive rule-based classification. Pan-European 
wall-to-wall products will cover the 39 European Economic Area (EEA) countries and are 
produced from a short time window (+/- 1 year) of image data.  

The USGS is now also beginning to generate level-3 products as part of the Landsat 
Collection 2 processing. These analytics layers will include Dynamic Surface Water 
Extent, Fractional Snow-Covered Area and Burned Area products. They can be delivered 
for every Landsat scene and provide information with a 30 m spatial resolution. 

Commercial systems 
Over the last decade there has been a rapid growth in commercial EO data providers as part of 
the new space trend. Some of these are pure data suppliers and others began with a potential 
market which they aimed to support with analytic information. As both these types of 
companies have evolved, they have started to add analytics layers to their product portfolios. 
Many have the potential to produce bespoke analytics layers for particular customers, but few 
are routinely producing them. 

The most prominent in relation to operational analytics layer development is the US company 
Planet. It operates a fleet of satellites offering very high spatial resolution optical imagery. The 
main image product is derived from their Super Dove satellite constellation and is marketed as 
PlanetScope. It provides daily acquisitions globally with a spatial resolution of 3 m for 8 spectral 
bands in the visible and NIR region. Internally and through the acquisition of other companies 
Planet have begun to develop a series of analytics layers produced from their own image data 
and external sources that are referred to as Planetary Variables and Analytics Feeds. The 
Planetary Variables are related to biophysical properties of the surface and are provided at a 
range of spatial and temporal resolutions. They include soil water content (100 m), biomass 
proxy (10 m), land surface temperature (100 m), above ground forest carbon (< 5 m), woody 
vegetation canopy height and canopy cover (< 5 m). The Analytics Feeds are based on 
Planetscope data so are highly detailed. They include monthly or weekly buildings and 
infrastructure detection, monthly or weekly overview of new and existing roads, and automated 
change detection for early identification of the construction of roads and buildings. Planet is 
now also looking at the development of a land cover / land use analytics product by collaboration 
with Impact Observatory (see below).  

The commercial SAR operators are also developing analytics products but they are more focused 
around change detection and feature identification given the capabilities of SAR systems. Iceye 
and Capella have change detection products based on high temporal frequency repeat 
acquisitions. Capella is also offering vessel detection which is appropriate given the contrast in 
microwave response between water surfaces and chips etc. 

Other options 
Although not strictly analytics layers, there are a number of regularly produced land cover / land 
use products at the global level which could potentially have some value compared to CLC+ 
Backbone. 

Inspired by the 2017 WorldCover conference the European Space Agency (ESA) initiated the 
WorldCover project. In October 2021 a freely accessible global land cover product at 10 m 
spatial resolution for 2020 was released based on both Sentinel-1 and Sentinel-2 data. It 
contains 11 land cover classes ("Tree cover", "Shrubland", "Grassland", "Cropland", "Built-up", 
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"Bare / sparse vegetation”, “Snow and Ice”, “Permanent water bodies”, “Herbaceous Wetland”, 
“Mangrove” and “Moss and lichen") and was independently validated with a global overall 
accuracy of about 75%. In 2022 a new version of the product with even higher quality, 
WorldCover 2021, was released with a global overall accuracy of 76.7%.  

In June 2021 Esri released a new high spatial resolution global land cover map as part of the 
company’s Living Atlas. The map was built on the Copernicus Sentinel-2 satellite image archive 
and produced using a machine learning workflow from Impact Observatory (IO) supported by 
Microsoft. The product is described as a 10 m spatial resolution raster product which records 10 
classes for the 2020 reference year. Since then, IO have continued to develop innovative AI-
powered methods for automated Land Use Land Cover mapping and monitoring in near-real-
time. IO Monitor uses a deep learning approach to classify 14 land use and land cover categories 
(including clouds) globally using Copernicus Sentinel-2 imagery. Custom land use and land cover 
change maps are available for any area of interest, over user-specified time periods, from 2018 
to the present (refreshed daily). 

To help turn satellite imagery into more useful information for quantifying change, Google 
worked with the World Resources Institute (WRI) to create Dynamic World. Powered by Google 
Earth Engine and an AI Platform, Dynamic World provides global, near real-time land cover data 
at a 10 m spatial resolution for 9 classes. 

Although, the  ESRI and Google products appear to have very impressive specifications and are 
visually appealing at small scales, their actual representation of the landscape is not what would 
be expected and are not comparable with the more conventional CLC+ BackBone and 
WorldCover datasets (Figure 12).  Given the availability of CLC+ BackBone to CLC+ Core, these 
global datasets will be less useful although should be kept under consideration as they continue 
to develop their capabilities and in particularly are trying to deliver dynamic information on 
landscape processes. 

   

Figure 12. A comparison of CLC+ BackBone (left), ESA WorldCover (middle) and ESRI Living Atlas (right) 
using a common legend. 

6.2.3 Selecting viable options 

In principle any analytics layer could be integrated into CLC+ Core, but in practice, there are a 
number of criteria which self-select a smaller subset of options: 

• Spatial resolution – When working with a 1 ha grid in CLC+ Core it is important to 
allow each cell to be characterised by a representative number of pixels thus a 
maximum spatial resolution of around 30 m would be acceptable. This is at the top 
end of the spatial resolutions used in the CLMS pan-European products (early 
version of CLC) and what might be considered appropriate for representing the 
European landscape. 

• Temporal resolution – Surface properties can change gradually (e.g., tree growth) 
or episodically (e.g., clear felling, fires or landslides) whereas others changes are 
related to dynamic and / or cyclical processes (e.g., hay cutting and grazing). To 
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reliably capture these changes and to improve the confidence in the reported 
properties it will be necessary to have high-cadence acquisitions. In the case of 
habitat monitoring in Europe the frequency of acquisitions should ensure that 
representative seasonal profiles can be produced, thus the revisit frequency needs 
to be weekly or better. 

• Time series extent – Also, for detecting seasonal changes a multi-year time series is 
required to disentangle variations in behaviour due to the impact of climatic 
variations and management practices. 

• Spatial extent – To support the CLC+ Core and the CLC+ Instances it is most 
appropriate for the analytics layers to be available for the same spatial extent as the 
CLC+ product suite, i.e., EEA38 + UK. 

Given the above factors the most obvious sources for analytic layers currently available are some 
of the individual Planet Planetary Variables and Analytics Feeds. The Iceye and Capella offerings 
and the Planet land cover products are less relevant to the EAGLE data model and they are 
currently produced only on demand. 

 

6.3 Cross reference with EAGLE 

The aim of this work was to identify which EAGLE elements within CLC+ Core can be addressed 

by the commercial analytics layers. As by default they are basic surface properties there is no 

need for full bar coding of each layer, but only to identifying the one of more elements that they 

could populate within CLC+ Core and their relevant barcode values. Also, there are only quite 

limited definitions and lists of inclusions and exclusions. 

Analytics Feed – Building and infrastructure footprints (10 m) 

• LCC-1_1_1_1 Buildings     3 

• LCC-1_1_1_2 Specific Structures and Facilities  3 

• LCH-1_2 Built-Up Pattern     1 

 

Analytics Feed – Roads (10 m) 

• LCC-1_1_1_3 Open Sealed Surfaces   5 

• LUA-4_1_1 Road Network     5 

• LCH-1_8_1 Road Network Type    5 

 

Planetary Variable - Woody vegetation canopy cover (5 m) 

• LCC-2_1 Woody Vegetation    5 

• LCH-3_13 Crown Cover Density    5 

 

Planetary Variable - Woody vegetation canopy height (5 m) 

• LCC-2_1 Woody Vegetation    5 

• LCH-9_1_4 Object Height     5 

 

Planetary Variable - Biomass proxy (10 m) 
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• LCC-2_2 Herbaceous Vegetation    5 

• LUA-1_1 Agriculture     5 

• LCH-5_1_1_1 Cropland     5 

 

6.4 CLC+ Core Ingestion / Integration 

The above lists of EAGLE elements show that these analytics layers could be relatively easily 
ingested into the CLC+ Core given the current version of the EAGLE data model and the platform 
setup. In most cases only a single element from each of three element groups were required.  

The analytics layers related to change were not considered in this sub task as there are currently 
issues around ingesting change layers into the CLC+ Core and various approaches are suggested 
with in Task 4 of this contract. 

 

6.5 Use cases 

The inclusion of the analytics layers listed above in CLC+ Core will offer a number of 
opportunities. In a conventional sense the elements they populate can be used in extraction 
rules, but their native fine spatial and temporal resolutions offer other possibilities for spatial 
patterns and temporal behaviour to be reported. 

6.5.1 Green roof 

A common example used by the EAGLE group when explaining the need for land characterisation 
rather than classification is the situation and challenges posed by green roofs (Figure 13).  A 
green roof or living roof is a roof of a building that is partially or completely covered with 
vegetation and a growing medium, planted over a waterproofing membrane. So, when mapped 
by remote sensing these artificial structures have the appearance of vegetation and are often 
miss classified as urban green space or even fields due to them commonly having a geometric 
shape. 

 

Figure 13. An example of green roof on a large industrial building. 

In the above example, this industrial building would be difficult to distinguish from the adjacent 
grassland, especially when using satellite imagery with a spatial resolution of 10 m or greater. 
However, by combing a layer for herbaceous vegetation (LCC-2_2) from CLC+ BackBone with the 
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building footprints (LCC-1_1_1_1 and LCC-1_1_1_2) from the Planet Planetary Variable it should 
be possible to identify the locations of building with green roofs. Of course, in CLC+ Core the 
buildings and / or herbaceous vegetation would need to cover a significant proportion of the 
grid cell to get a reliable result. 

6.5.2 Elaborating on built up pattern 

Within the heading LCH-1_2 Built-Up Pattern, the EAGLE data model contains five separate 
categories: 

• LCH-1_2_1 Scattered Single Houses, Discontinuous 

• LCH-1_2_2 Single Blocks, Discontinuous 

• LCH-1_2_3 Suburban Row Houses, Terraced, Semi-Detached Houses 

• LCH-1_2_4 City Street Blocks, Closed Front 

• LCH-1_2_5 Large Complex Buildings, Big Halls 

Although the building footprint layer does not contain this level 3information directly, it could 
be derived from the 10 m spatial resolution analytics layers summarised within the 1 ha cells of 
CLC+ Core. In Figure 14 there are a number of built-up patterns that can be identified given the 
appropriate geospatial analysis. Also, in this example the roads analytic layer can be used to 
support a regionalisation process. 

 

Figure 14. Examples of different building patterns in the Building Footprint Analytics Feed from Planet. 

6.5.3 Data gaps in CLC+ LULUCF and Legacy 

A clear driver for considering the commercial analytics layers as input to the CLC+ Core was the 
need to plug gaps in the production of CLC+ Instances. 

 Given the availability of other datasets the roles in supporting the CLC+ Instances may be quite 
limited. However, the increased spatial and temporal resolutions of their native specifications 
may allow to more clearly identify the changes subtle within a 1 ha grid cell. For instance, 
changes in configuration in the development of brownfield sites and the detection of 
management practices in forestry and agricultural areas. 
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6.6 Conclusions 

It is clear that some of the commercial analytics layers described above could provide input to 
the useful information for extractions if ingested in CLC+ Core. 

Those described in detail in section 6.3 should be considered the most viable at the moment, 
but analytics layers are an area of considerable a rapid development at the moment, so it is likely 
that the list will grow significantly in the coming years. Those in charge of the maintenance of 
CLC+ Core and the reviewers of user feedback should maintain a watching brief to see when new 
layers come available and what they might offer. 

At the present time, support that they can offer to the CLC+ Instances might appear limited, but 
as they continue to evolve it is likely that they may be able to address a number of the more 
specific elements of the EAGLE data model, particularly in the Land Characteristics (LCH) section. 
The building footprint example shows how some additional processing or more advanced 
ingestion rules of an analytics layer could potentially address elements which have so far been 
difficult to populate at the European scale or without complex harmonisation of diverse MS 
data. 

As a more general move in EO, more general users are starting to balk at the prospect of 
having to select and process images from the ever-increasing data stream, or drink from a fire 
hydrant as it has been described. In such a world intermediate products / analytics layers are 
only going to become more popular / practical as can be seen by the considerable interest 
surrounding the High Resolution Vegetation Phenology and Productivity (HR-VPP) product. The 
EEA should keep this in mind when developing the CLMS product suite and suggesting layers 
for inclusion in CLC+ Core. 

 


