



# Diagnostic report II





Guiding improvements in the Black Sea integrated monitoring system, data management, and assessments



















## **Diagnostic Report II**

Guiding improvements in the Black Sea integrated monitoring system (including capacity building and utilization of equipment), data management, and assessments

www.misisproject.eu

EC DG Env. Project MISIS No. 07.020400/2012/616044/SUB/D2 This document has been prepared with the financial assistance of EC DG Environment. The views expressed herein can in no way be taken to reflect the official opinion of EC DG Environment. The opinions expressed are those of the authors. Any errors or omissions are responsibility of the authors and should be reported to them accordingly.

#### **Contact details for sending comments on the Report:**

Iboicenco@alpha.rmri.ro colpan.beken@mam.gov.tr velikova\_violeta@yahoo.com

#### For bibliographic purposes this document may be cited as:

Velikova V., Boicenco L., Beken-Polat C., Moncheva S., Levent B., Sezgin M., Begun T., Oros A. 2013. "Diagnostic Report II guiding improvements in the Black Sea monitoring system". EC DG Env. MISIS Project, Ed. ExPonto, 295pp, ISBN 978-606-598-364-9

Information included in this publication or extracts thereof are free for citing on the condition that the complete reference of the publication is given as stated above.

Design and layout: Tudor Fulga

Number of pages: 594 ISBN 978-606-598-364-9

This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the authors, provided acknowledgement of the source is made. The authors would appreciate receiving a copy of any publication that uses this report as a source of information.

#### Acknowledgements

The authors thank Ms Eva Gelabert from EEA who made the Diagnostic Report I (http://www.blacksea-commission.org/\_publ-BSDiagnosticReport2010-Acknowledgements.asp) possible and lead them into the temptation to continue working so that to further generate activities, such as the MISIS Project, which would bring to an improved performance of the Black Sea region in environment protection, providing support to the ecosystem-based management of the Black Sea, observing also the needs of the people depending on this Sea's services and goods.

Great thanks to all stakeholders who worked with the MISIS Questionnaires and provided information for this report. Their names have not been mentioned in the filled Questionnaires (only the names of organizations' directors or other persons authorised to represent the organization), however, we should like to acknowledge their support and thank for the time spent to help the MISIS Project.

## **CONTENTS**

| ABBREVIATIONS                                                                          | (           |
|----------------------------------------------------------------------------------------|-------------|
| Executive Summary                                                                      | 1           |
| INTRODUCTION                                                                           |             |
| I. MONITORING                                                                          | 20          |
| 1. Legislation/Policy (national and international instruments), achievements and gaps  | <b>2</b> 3  |
| 2. Responsible organizations (those which provide the budget for monitoring and approv | ve of       |
| the programs)                                                                          | 37          |
| 3. Type of monitoring, geographical scope, stations, parameters, frequency             | 41          |
| 4. Procedures of QA/QC in monitoring (Field and Laboratory works)                      | 102         |
| 5. Reporting of data (to whom, kind of formats used)                                   | 111         |
| 6. Operational monitoring                                                              | 119         |
| 7. On-going projects with monitoring component                                         | 125         |
| 8. Gaps, missing monitoring requirements                                               | 144         |
| II. Data management, data products, QA/QC, assessments                                 |             |
| 1. Availability of permanent data bases and terms of access                            | 148         |
| 2. Data products, indicators calculated, statistical methods used, models developed    | 158         |
| 3. QA/QC procedures in data management                                                 | 163         |
| 4. Regular assessments                                                                 | 164         |
| 5. Gaps in data management and assessments preparation, missing requirements           | 169         |
| III. Progress in water quality/GES classifications                                     | 172         |
| IV. Laboratory Infrastructure, Equipment, Vessels                                      | 173         |
| 1. Infrastructure: general                                                             | 173         |
| 2. Equipment                                                                           | 177         |
| 3. Vessels                                                                             | 183         |
| V. Training                                                                            | 197         |
| VI. Data/information availability to comply with the MSFD                              | 202         |
| VII. Harmonization process (needs)                                                     | <b>2</b> 43 |
| VIII. Conclusions and Recommendations                                                  | 245         |

#### List of figures

| Figure 1. Location of the MISIS beneficiary countries (Bulgaria, Romania and Turkey) around the Black S  | Sea12   |
|----------------------------------------------------------------------------------------------------------|---------|
| Figure 2. Bulgarian Black Sea waters (green - 1 mile zone, dark blue - 12 miles zone, red line - EEZ)    | 44      |
| Figure 3. Maps of sampling stations monitored by IFR-Varna, Bulgaria                                     | 46      |
| Figure 4. Map of sampling stations of IBER-BAS                                                           | 50      |
| Figure 5. Map of IO-BAS, Varna, Bulgaria monitoring sampling stations (routine environment monitorin     | g)52    |
| Figure 6. Map of coastal stations monitored for WFD and Galata transect stations monitored for MSFD      | in 2012 |
| by IO-BAS, Varna, Bulgaria                                                                               | 52      |
| Figure 7. Map of coastal stations monitored for macrophytobenthos (WFD) by IO-BAS, Varna, Bulgaria.      | 54      |
| Figure 8. Fisheries research area in the Bulgarian Black Sea                                             | 58      |
| Figure 9. Example of a trawl survey in the Bulgarian Black Sea. Data from research survey in the Bulgari | an BS   |
| marine area (tracks/trackpoints) from the VMS center of NAFA for observation and surveillance, Varna     | branch  |
| (WebOverMap module)                                                                                      | 59      |
| Figure 10. Map of sampling sites for birds monitoring in Bulgaria                                        | 60      |
| Figure 11. Map of bathing water monitoring areas in BG (example for the Northern part of the BG coas     | t)61    |
| Figure 12. The Romanian EEZ (the contour in gray; the lines nearby the coast show baseline               | 63      |
| Figure 13. Map of the Romanian coast covered by bathing water monitoring (black dots)                    | 68      |
| Figure 14. Map of sampling stations (45 in total) of the environment routine monitoring carried out by   |         |
| Romania                                                                                                  |         |
| Figure 15. Map of macroalgae sampling stations of NIMRD, Romania                                         | 75      |
| Figure 16. Map of sampling stations of the environment routine monitoring carried out by Dobrogea W      |         |
| Branch, Romania                                                                                          | 80      |
| Figure 17. Map of sampling stations of the environment monitoring carried out by OMV-Petrom, Roma        | nia83   |
| Figure 18. Turkish EEZ (marked in gray)                                                                  | 85      |
| Figure 19. Map of sampling stations along the Turkish coast (National Monitoring Program implemente      | d by    |
| the Istanbul University in 2004-2010)                                                                    | 86      |
| Figure 20. Map of sampling stations in the vicinity of Sinop                                             | 96      |
| Figure 21. Map of sampling stations observed by IMS/METU (Erdemli) in Turkish Black Sea waters since     | 1985    |
| (a) and in the period 2006-2011 (b)                                                                      | 99      |
| Figure 22. Data flow system of NAFA                                                                      | 113     |
| Figure 23. BulArgo floats deployment locations                                                           | 121     |
| Figure 24. The Bulgarian Fishery VMS (sustained by NAFA)                                                 | 124     |
| Figure 25. The general DPSIR Scheme                                                                      | 145     |
| Figure 26. DPSIR: Eutrophication                                                                         | 146     |
| Figure 27. DPSIR: Fish decline                                                                           |         |
| Figure 28. The Fishing vessels data base of NAFA                                                         | 149     |
| Figure 29. Communication system of EuroArgo.                                                             | 157     |
| Figure 30. Visualization of BulArgo floats trajectories by ArcGis Server and Report Server               | 159     |
| Figure 31. Argo products                                                                                 |         |
| Figure 32. Multicomponent system of BS state control (a vision of data management and examples of $\mu$  | roducts |
| delivered), (re-drawn from MHI, Korotaev et al., 2010 presentation at the Black Sea Day, based on the    | Pilot   |
| version of the Black Sea Marine Forecasting Center (MFC) created by the FP7 Project "MyOcean")           |         |
| Figure 33. Operational monitoring data management and applications of data products (re-drawn from       |         |
| Korotaev et al., 2010 presentation at the Black Sea Day, based on the Pilot version of the Black Sea Mai |         |
| Forecasting Center (MFC) created by the FP7 Project "MyOcean").                                          | 170     |
| Figure 34. Atmospheric Tower in Erdemli                                                                  | 176     |

#### **List of tables**

| Table 1. Information on the response to the MISIS Questionnaire Part I on monitoring and data managem       |     |
|-------------------------------------------------------------------------------------------------------------|-----|
| in Bulgaria                                                                                                 |     |
| Table 2. Information on the response to the MISIS Questionnaire Part I on monitoring and data managem       |     |
| in Romania                                                                                                  |     |
| Table 3. Information on the response to the MISIS Questionnaire Part I on monitoring and data managem       | ent |
| in Turkey                                                                                                   | 17  |
| Table 4. Inventory of major monitoring-related legal/policy documents (international level)                 | 24  |
| Table 5. List of monitoring-related legislation/policy of the European level and its transposition into the |     |
| national legislation of Bulgaria and Romania                                                                |     |
| Table 6. Major regional agreements                                                                          | 29  |
| Table 7. Inventory of monitoring-related national legal/policy documents in Bulgaria                        | 30  |
| Table 8. Inventory of monitoring-related national legal/policy documents in Romania                         | 31  |
| Table 9. Inventory of monitoring-related national legal/policy documents in Turkey                          | 33  |
| Table 10. Organizations providing funding for monitoring in Bulgaria                                        | 37  |
| Table 11. Organizations providing funding for monitoring in Romania                                         | 39  |
| Table 12. Organizations providing funding for monitoring in Turkey                                          | 40  |
| Table 13. Information on different types of Black Sea-related monitoring in Bulgaria                        | 45  |
| Table 14. List of coordinates of stations monitored by IFR-Varna, Bulgaria                                  | 47  |
| Table 15. List of parameters monitored by IFR-Varna, Bulgaria                                               | 48  |
| Table 16. Time series data of IFR-Varna (Bulgaria) providing for trends                                     | 49  |
| Table 17. Information on the surveillance monitoring carried out by IBER-BAS, Bulgaria                      | 49  |
| Table 18. Coordinates of stations of IBER-BAS. Bulgaria                                                     |     |
| Table 19. List of parameters with frequency of observations carried out by IBER-BAS, Bulgaria               |     |
| Table 20. Time series data of IBER-BAS (Bulgaria) providing for trends                                      |     |
| Table 21. Coordinates of stations monitored by IO-BAS, Varna, Bulgaria under the MSFD (initiated in 2012    |     |
| Table 22. Coordinates of stations monitored for macrophytobenthos (WFD) by IO-BAS, Varna, Bulgaria          |     |
| Table 23. List of parameters with frequency of observations carried out by IO-BAS, Varna, Bulgaria          |     |
| Table 24. Time series data of IO-BAS, Varna, Bulgaria providing for trends                                  |     |
| Table 25. Information on different types of Black Sea-related monitoring in Romania                         |     |
| Table 26. Bathing water quality monitoring: list of stations and coordinates (observed by the Constanta Co  |     |
| Department of Public Health, Romania)                                                                       |     |
| Table 27. Bathing water monitoring: parameters observed by the Constanta and Tulcea County Departme         |     |
| of Public Health, Romania                                                                                   |     |
| Table 28. Monitoring of radionuclides carried out by the Environmental Protection Agency of Constanta,      |     |
| Romania                                                                                                     | 70  |
| Table 29. Monitoring related to drilling operations (ExxonMobil, Romania (no trends are mentioned to be     |     |
| derived from data collected)                                                                                |     |
| Table 30. Monitoring related to Port Operations (National Company Maritime Ports Administration, Roma       |     |
| no trends are mentioned to be monitored)                                                                    |     |
| Table 31. Monitoring carried out by Mare Nostrum, Romania (marine litter, marine mammals)                   |     |
| Table 32. Coordinates of stations monitored by GeoEcoMar, Romania                                           |     |
| Table 33. Monitored parameters by GeoEcoMar, Romania                                                        |     |
| Table 34. Coordinates of sampling stations of NIMRD, Romania                                                |     |
| Table 35. Parameters observed by NIMRD, Romania                                                             |     |
| Table 36. Coordinates of stations monitored by Dobrogea Littoral, Romania                                   |     |
| Table 37. List of parameters and frequency of observations carried out by Dobrogea Littoral, Romania        |     |
| Table 38. List of parameters monitored by SC AQUASERV SA, Romania                                           |     |
| Table 39. Coordinates of stations monitored by OMV Petrom SA, Romania                                       |     |
| Table 40. List of parameters* monitored by OMV Petrom SA, Romania                                           |     |
| Table 41. Information on different types of Black Sea-related monitoring in Turkey                          |     |
| Table 12: Information on americal types of black sea related monitoring in rankey minimum.                  | 00  |

| Table 42. Information on the monitoring carried out by the Institute of Marine Science and Technology, Izi              |      |
|-------------------------------------------------------------------------------------------------------------------------|------|
| Turkey                                                                                                                  | 90   |
| Table 43. Information on the monitoring carried out by the Central Fisheries Research Institute, Trabzon,               |      |
| Turkey                                                                                                                  | 90   |
| Table 44. Coordinates of stations monitored by the by the Central Fisheries Research Institute, Trabzon,                | 0.4  |
| Turkey                                                                                                                  |      |
| Table 45. List of parameters monitored by the Central Fisheries Research Institute, Trabzon, Turkey                     | 92   |
| Table 46. Coordinates of stations monitored by the Istanbul University, Institute of Marine Science and                 |      |
| Management, Turkey (National Program of Turkey implemented with and funded by the Ministry of                           | 02   |
| Environment and Urbanization)                                                                                           |      |
| Table 47. Parameters monitored by the Istanbul University, Institute of Marine Science and Management,                  |      |
| Turkey (National Monitoring Program of Turkey implemented with and funded by the Ministry of Environg                   |      |
| and Urbanization)                                                                                                       |      |
| Table 48. Parameters monitored by the Istanbul University, Institute of Marine Science and Management,                  |      |
| Turkey (National Monitoring Program of Turkey implemented with and funded by the Ministry of Environr and Urbanization) |      |
| Table 49. Information on the monitoring carried out by the Sinop University, Faculty of Fishery, Turkey                 | 96   |
| Table 50. Coordinates of stations monitored by the Sinop University, Faculty of Fishery, Turkey                         | 97   |
| Table 51. List of parameters observed by the Sinop University, Faculty of Fishery, Turkey                               | 97   |
| Table 52. Information on the monitoring carried out by TUBITAK – the Marmara Research Center, Turkey                    | 97   |
| Table 53. Parameters observed by TUBITAK – the Marmara Research Center, Turkey                                          | 98   |
| Table 54. Information on the geographical coverage of the monitoring carried out by the Karadeniz Techni                | ical |
| University, Faculty of Marine Science, Trabzon, Turkey                                                                  | 98   |
| Table 55. Parameters observed by the Karadeniz Technical University, Faculty of Marine Science, Trabzon,                |      |
| Turkey                                                                                                                  | 99   |
| Table 56. Parameters observed by IMS/METU (Erdemli), Turkey                                                             | 100  |
| Table 57. Parameters observed by Canakkale Univ., Faculty of Marine Sciences and Technology, Turkey                     | 100  |
| Table 58. State of the monitoring in BG, RO and TR – main findings on achievements and gaps                             | 101  |
| Table 59. Radionuclides QA/QC documents used by the Environmental Protection Agency of Constanta,                       |      |
| Romania                                                                                                                 |      |
| Table 60. Proficiency tests in Romania                                                                                  |      |
| Table 61. Monitoring QC/QA manuals/guidelines in Turkey                                                                 |      |
| Table 62. Proficiency tests in Turkey                                                                                   | 110  |
| Table 63. Information on data reporting in Bulgaria                                                                     |      |
| Table 64. Information on data reporting in Romania                                                                      |      |
| Table 65. Information on data reporting in Turkey                                                                       |      |
| Table 66. EuroArgo refined estimation of costs (European level)                                                         | 120  |
| Table 67. Parameters measured automatically <i>in situ</i> in the air and in BG coastal waters of the Black Sea         |      |
| (Bourgas Bay – stations B1, B2, B3, B4, coordinated have not been specified in the information provided)                |      |
| Table 68. Remote sensing data collected by IMS/METU (Erdemli)                                                           |      |
| Table 69. Air Quality Records                                                                                           |      |
| Table 70. Black Sea –related scientific projects under EC DG Research Framework Programmes                              |      |
| Table 71. Ongoing projects in Bulgaria                                                                                  |      |
| Table 72. Cruises planned in the projects of IO-BAS, Varna, Bulgaria                                                    |      |
| Table 73. Ongoing projects in Romania                                                                                   |      |
| Table 74. Ongoing projects in Turkey                                                                                    |      |
| Table 75. Specification of additional monitoring requirements                                                           |      |
| Table 76. Permanent data bases in Bulgaria                                                                              |      |
| Table 77. Permanent data bases in Romania                                                                               |      |
| Table 78. Permanent data bases in Turkey                                                                                |      |
| Table 79. Regional, European and International data bases                                                               |      |
| Table 80. Statistical data products of IBER-BAS, Bulgaria                                                               |      |
| Table 81. Statistical data products (National Institute for Research and Development in Tourism, Romania)               | 160  |

| Table 82. Data products automatically derived from data bases of NIMRD, Romania                                     | . 160 |
|---------------------------------------------------------------------------------------------------------------------|-------|
| Table 83. Data products automatically derived from the data base of Dobrogea Littoral Water Directorate,            |       |
| Romania                                                                                                             | . 160 |
| Table 84. Data products automatically derived from the data base of SC AQUASERV SA, Romania                         | . 162 |
| Table 85. Information on regular assessment/reports prepared in Bulgaria                                            | . 165 |
| Table 86. Information on regular assessment/reports prepared in Romania                                             | . 166 |
| Table 87. Research vessels number per country                                                                       | . 194 |
| Table 88. Research vessels details                                                                                  | . 195 |
| Table 89. Underwater Vehicles details                                                                               | . 196 |
| Table 90. Check of availability of biological data in Bulgaria                                                      | . 202 |
| Table 91.Check of data availability in Bulgaria versus Annex I of the MSFD                                          | . 203 |
| Table 92. Characteristics – state of the Sea in Bulgaria                                                            | . 210 |
| Table 93. Description of human activities in Bulgaria                                                               | . 210 |
| Table 94. Human activities and pressures (cross-check) in Bulgaria ( <b>Note</b> : N/A means not applicable; the Ta | able  |
| synthesizes the input of all stakeholders contacted)                                                                | . 212 |
| Table 95. Pressures and impacts (cross-check) in Bulgaria                                                           | . 213 |
| Table 96. Synthetic analysis of pressures and impacts (Bulgaria)                                                    | . 216 |
| Table 97. Check of availability of biological data in Romania                                                       | . 217 |
| Table 98. Check of data availability in Romania versus Annex I of the MSFD                                          |       |
| Table 99. Characteristics – state of the Sea in Romania                                                             | . 223 |
| Table 100. Description of human activities in Romania                                                               | . 223 |
| Table 101. Human activities and pressures (cross-check) in Romania (Note: N/A means not applicable; the             |       |
| Table synthesizes the input of all stakeholders contacted)                                                          | . 225 |
| Table 102. Pressures and impacts (cross-check) in Romania                                                           | . 226 |
| Table 103. Synthetic analysis of pressures and impacts in Romania (Note: the template is adopted from th            | ie    |
| PERSEUS Project with modifications)                                                                                 | . 229 |
| Table 104. Check of availability of biological data in Turkey                                                       | . 230 |
| Table 105. Check of data availability in Turkey versus Annex I of the MSFD                                          | . 231 |
| Table 106. Characteristics – state of the Sea in Turkey                                                             | . 236 |
| Table 107. Description of human activities in Turkey                                                                | . 236 |
| Table 108. Human activities and pressures (cross-check) in Turkey (Note: N/A means not applicable; the Ta           | able  |
| synthesizes the input of all stakeholders contacted)                                                                | . 238 |
| Table 109. Pressures and impacts (cross-check) in Turkey                                                            | . 239 |
| Table 110. Synthetic analysis of pressures and impacts (Turkey)                                                     | . 242 |

## **ABBREVIATIONS**

#### and acronyms

**Note:** The report uses abbreviations of different EC DG. Research projects, full names of these are provided in Table 70, p. 127.

|                   | Agreement on the Conservation of Cetaceans in the Black Sea, Mediterranean Sea and           |  |  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| ACCOBAMS          | contiguous Atlantic Area, http://www.accobams.org/                                           |  |  |  |  |  |  |  |  |
| ARGO              | The broad-scale global array of temperature/salinity profiling floats (http://www.argo.net/) |  |  |  |  |  |  |  |  |
| BAS               | Bulgarian Academy of Science                                                                 |  |  |  |  |  |  |  |  |
| BG                | Bulgaria                                                                                     |  |  |  |  |  |  |  |  |
| BS                | Black Sea                                                                                    |  |  |  |  |  |  |  |  |
|                   | Black Sea Commission (Commission on the Protection of the Black Sea Against Pollution),      |  |  |  |  |  |  |  |  |
| BSC               | www.blacksea-commission.org                                                                  |  |  |  |  |  |  |  |  |
| Black Sea ERA-NET | Networking on Science and Technology in the Black Sea Region, http://www.bs-era.net          |  |  |  |  |  |  |  |  |
| BlackSeaGOOS      | Global Ocean Observing System (Black Sea), http://www.ims.metu.edu.tr/Black_Sea_GOOS/        |  |  |  |  |  |  |  |  |
| BSIMAP            | Black Sea Integrated Monitoring and Assessment Program                                       |  |  |  |  |  |  |  |  |
| BSIS              | Black Sea Information System                                                                 |  |  |  |  |  |  |  |  |
| BS SAP            | Black Sea Strategic Action Plan                                                              |  |  |  |  |  |  |  |  |
| CBD               | Conservation of Biological Diversity                                                         |  |  |  |  |  |  |  |  |
| CIESM             | The Mediterranean Science Commission, http://www.ciesm.org/                                  |  |  |  |  |  |  |  |  |
| EBRD              | European Bank for Reconstruction and Development, http://www.ebrd.com                        |  |  |  |  |  |  |  |  |
| EC                | European Commission, http://ec.europa.eu/                                                    |  |  |  |  |  |  |  |  |
| FCDCoo            | Environmental Collaboration for the Black Sea (Project of EC DG Devco),                      |  |  |  |  |  |  |  |  |
| ECBSea            | http://81.8.63.74/ecbsea/en/documents/relevant/index.htm                                     |  |  |  |  |  |  |  |  |
| EcoQOs            | Ecosystem Quality Objectives                                                                 |  |  |  |  |  |  |  |  |
| EEA               | European Environment Agency                                                                  |  |  |  |  |  |  |  |  |
| EIA               | Environmental Impact Assessment                                                              |  |  |  |  |  |  |  |  |
| EMODNET           | European Marine Observation and Data Network (Project of EC DG MARE)                         |  |  |  |  |  |  |  |  |
| EPA               | Environmental Protection Agency                                                              |  |  |  |  |  |  |  |  |
| ERA-NET           | European Research Area Network                                                               |  |  |  |  |  |  |  |  |
| EU                | European Union                                                                               |  |  |  |  |  |  |  |  |
| EU FP             | European Union Framework Programmes, http://cordis.europa.eu/fp7/home_en.html                |  |  |  |  |  |  |  |  |
| EuroARGO          | European Contribution to ARGO Programme, http://www.euro-argo.eu/                            |  |  |  |  |  |  |  |  |
| EuroGOOS          | European Global Ocean Observing System, http://www.eurogoos.org/                             |  |  |  |  |  |  |  |  |
| EUROPEAID         | Development and Cooperation Directorate General of the European Commission,                  |  |  |  |  |  |  |  |  |
|                   | http://ec.europa.eu/europeaid/index_en.htm                                                   |  |  |  |  |  |  |  |  |
| GEF               | Global Environment Facilities                                                                |  |  |  |  |  |  |  |  |
| GeoEcoMar         | National Research and Development Institute for Marine Geology and Geoecology, Constanta,    |  |  |  |  |  |  |  |  |
| Georganian        | Romania                                                                                      |  |  |  |  |  |  |  |  |
| GES               | Good Environment Status                                                                      |  |  |  |  |  |  |  |  |
| GIS               | Geographic Information System                                                                |  |  |  |  |  |  |  |  |
| GMES              | Global Monitoring for Environment and Security, http://www.gmes.info/                        |  |  |  |  |  |  |  |  |
| GOOS              | Global Ocean Observing System, http://www.ioc-goos.org/                                      |  |  |  |  |  |  |  |  |
| IAEA              | International Atomic Energy Agency, http://www.iaea.org/                                     |  |  |  |  |  |  |  |  |
| IBER-BAS          | Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Science               |  |  |  |  |  |  |  |  |
| ICPDR             | Convention on the Protection of the Danube River, www.icpdr.org/                             |  |  |  |  |  |  |  |  |
| IFR               | Institute of Fishing Resources, Varna, Bulgaria                                              |  |  |  |  |  |  |  |  |
| IMO               | International Maritime Organization                                                          |  |  |  |  |  |  |  |  |
| IMS/METU          | Institute for Marine Sciences/Middle East Technical University (Erdemli, TR)                 |  |  |  |  |  |  |  |  |
| IOC               | Intergovernmental Oceanographic Commission, www.ioc-unesco.org/                              |  |  |  |  |  |  |  |  |

| IO-BAS        | Institute of Oceanology - BAS, Varna, Bulgaria                                                                                                                         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IODE          | International Oceanographic Data And Information Exchange, www.iode.org/                                                                                               |
| ISO           | International Organization for Standardization, http://www.iso.org                                                                                                     |
| LBS           | Land Based Sources (of pollution)                                                                                                                                      |
| MISIS Project | EC DG Env. Project "MSFD Guiding improvements in the Black Sea integrated monitoring system"                                                                           |
| ML            | Marine Litter                                                                                                                                                          |
| MONINFO       | Monitoring And Information System For Reducing Oil Pollution in The Black Sea (Project of EC DG Env.)                                                                  |
| MSFD          | Marine Strategy Framework Directive                                                                                                                                    |
| NAFA          | National Agency for Fishery and Aquaculture                                                                                                                            |
| NATO          | North Atlantic Treaty Organization, www.nato.int/                                                                                                                      |
| NIMRD         | National Institute for Marine Research and Development, Constanta, Romania                                                                                             |
| NODC          | National Oceanographic Data Center                                                                                                                                     |
| OSCE          | Organization for Security and Co-operation in Europe, www.osce.org/                                                                                                    |
| PA            | Project Activity                                                                                                                                                       |
| PDF           | Project Development Fund                                                                                                                                               |
| PM            | Particulate matter                                                                                                                                                     |
| QA            | Quality assurance                                                                                                                                                      |
| QC            | Quality control                                                                                                                                                        |
| SASEPOL       | Development of Security Management and Maritime Safety and Ship Pollution Prevention for the Black Sea and Caspian Sea (Project of DG DEVCO, EuropAid, www.sasepol.eu) |
| SIDA          | Swedish International Development Cooperation Agency, www.sida.se/                                                                                                     |
| RO            | Romania                                                                                                                                                                |
| SRA           | Strategic Research Agenda                                                                                                                                              |
| TDA           | Transboundary Diagnostic Analysis                                                                                                                                      |
| TPH           | Total petroleum hydrocarbon                                                                                                                                            |
| TR            | Turkey                                                                                                                                                                 |
| TUBITAK       | The Scientific and Technological Research Council of Turkey, www.tubitak.gov.tr/                                                                                       |
| UN            | United Nations                                                                                                                                                         |
| UNDP          | United Nations Development Program                                                                                                                                     |
| UNEP          | United Nation Environment Programme                                                                                                                                    |
| VTMS          | Vessel Traffic Monitoring System                                                                                                                                       |
| WB            | World Bank                                                                                                                                                             |
| WFD           | Water Framework Directive                                                                                                                                              |

#### **Partner Institutions of MISIS:**

- NIMRD, Constanta, Romania (Coordinator)
- GeoEcoMar, Constanta, Romania
- Ovidius University, Constanta, Romania
- IO-BAS, Varna, Bulgaria
- Sinop University, Sinop, Turkey
- TUBITAK the Marmara Research Center, Istanbul, Turkey (MRC/TUBITAK, Istanbul, Turkey, subcontractor to the Sinop University)

## **Executive Summary**

This Report has been prepared as part of the MISIS Project 'MSFD Guiding Improvements in the Black Sea Integrated Monitoring System (EC DG Env. Project MISIS: No. www.misisproject.eu, EC DG Env. Project MISIS: No. 07.020400/2012/616044/SUB/D2). The Report is shortly named Diagnostic II, because it builds on the findings of the EEA/BSC Diagnostic Report (Diagnostic I) upgrading it for Bulgaria, Romania and Turkey to include more information on their national monitoring programmes (or any other Black Sea-related observations), national data/information management tools (which were not part of the BSC Diagnostic Report), operational monitoring, etc. The Report utilizes also the findings of the EC SeasEraNet Project on laboratory infrastructure, equipment and vessels available with the aim to contribute to more efficient use of them in the Black Sea region.

The review includes information on the policy/legal frameworks of monitoring, types of implemented monitoring, status of operational monitoring, parameters measured, monitoring networks available, data management specifics, progress in water/ecological quality/GES classifications, research infrastructure/equipment/vessels available, trainings and harmonization process identified, etc.

The report is designed to guide a revision of national monitoring programs and improvements in data reporting and DPSIRR assessments in the MISIS beneficiary countries (Bulgaria, Romania and Turkey) based on the review of information provided by many different stakeholders. It contains 110 tables and 34 figures to present the information collected in the easiest way to digest it. The report presents detail analysis of the data/information availability in BG, RO and TR, following specifically Annex I and III of the MSFD.

Information on many different projects (past and on-going) in the Black Sea is included, with more detail notes on those which had or have monitoring component and also produced data bases.

The information mining disclosed major deficiencies in the provisions for indicator-based reporting in line with the DPSIRR model, hence, with the MSFD requirements, they are presented in detail for each beneficiary country. The gaps are at all levels – monitoring, data management, methodologies for assessments, etc. Where possible, the reasons for those deficiencies are discussed.

Each Sub-chapter is supplemented with conclusions and in the end of the Report all findings are summarised and recommendations are given. The recommendations produced take into consideration the requirements of the MSFD to provide for knowledge-based decision-making and the needs of the stakeholders contacted in strengthening of institutional frameworks, harmonisations and capacity building.



### INTRODUCTION

This Report has been prepared as part of the MISIS Project 'MSFD Guiding Improvements in the Black Sea Integrated Monitoring System (www.misisproject.eu, EC DG Env. Project MISIS: No. 07.020400/2012/616044/SUB/D2). The Project is financed by EC as an activity under the EC DG Env. Programme 'Preparatory action — Environmental monitoring of the Black Sea Basin and a common European framework programme for development of the Black Sea region/Black Sea and Mediterranean 2011'. MISIS is an integral part of the overall ongoing process of harmonization of policies in the Black Sea region in the field of environment protection, taking into consideration relevant European acqua.

The overall objective of MISIS is to support efforts to protect and restore the environment quality and sustainability of the Black Sea. Additional specific objectives have been identified as follow:

- To improve the availability and quality of the chemical and biological data provided for integrated assessments of the Black Sea state of environment, including pressures and impacts (in line with Annex I and III of the MSFD);
- To increase the number and size of protected areas in the Black Sea as well as to increase their degree of protection;
- To enhance stakeholders' participation and public awareness on environmental issues.

MISIS involves three countries: Bulgaria, Romania and Turkey (Fig. 1), they are further named 'beneficiary countries'.



Figure 1. Location of the MISIS beneficiary countries (Bulgaria, Romania and Turkey) around the Black Sea.

#### The MSFD and MISIS

The Marine Strategy Framework Directive (MSFD) requires Member States to go through a number of key stages before the subsequent implementation of management measures to achieve Good Environmental Status (GES) of their seas. These key stages are:

- 1. Carry out an initial assessment of the current status of their seas and to determine specific characteristics of GES for their marine waters, setting out specific environmental targets and indicators to assist the process (based on the 11 Descriptors of GES given in the Directive) <sup>1</sup>;
- 2. Put in place monitoring programmes to measure progress towards GES;
- 3. Implement management measures to achieve GES by 2020.

Each stage of the implementation process then has to be reviewed every 6 years and if necessary updated. The second stage is to be completed by 2014 and the MISIS project is designed to primarily provide support to revision of the existing monitoring systems so that to generate data and information for knowledge-based and ecosystem-based environmental protection.

A key requirement of the MSFD is that Member States work together to implement each stage of the Directive in a coherent and coordinated way, in order to ensure comparability across Europe. For the Black Sea, coordination between Romania and Bulgaria would not be sufficient to achieve GES. The regional cooperation includes non-Member States where the Black Sea Regional Sea Convention (the Bucharest Convention<sup>2</sup>) has been the key forum for coordination and harmonization processes. Certain progress has been made by the Black Sea Commission (BSC)<sup>3</sup>, however, further efforts to improve coordination between EU-member and non-member states are required<sup>4</sup>. MISIS contributes to the latter, having Turkey as a beneficiary country of the project results and working closely with partner-institutions from Turkey which are leaders in the workpackage dealing with the revision of monitoring programmes (Project Activity (PA) I: Contribution to development of national integrated monitoring programmes compliant with the MSFD and the WFD allowing also compliance of beneficiary countries with other international obligations, in particular implementation of the Bucharest Convention and its Protocols.

In 2010 the BSC implemented a small-scale project financed by the European Environment Agency (EEA) to guide improvements to the regular reporting process on the state of the Black Sea environment. The deliverable of this project was shortly named 'The Diagnostic Report' (http://www.blacksea-commission.org/\_publ-BSDiagnosticReport2010.asp). This report evaluated mainly the suitability of Black Sea data to apply/calculate EEA and BSC indicators, revealing also associated major gaps in BSIMAP (Black Sea Integrated Monitoring and Assessments Program) and BSIS (Black Sea Information System), with a forward-looking component related to the MSFD Descriptors included. MISIS planned to further develop the EEA/BSC Diagnostic Report, analysing in further detail the monitoring systems and data availability in Bulgaria, Romania and Turkey taking into consideration the requirements of the MSFD and WFD.

In 2011-2012, the EC Seas-EraNet Project produced a Black Sea Strategic Research Agenda (BS SRA, http://www.seas-

era.eu/np4/%7B\$clientServletPath%7D/?newsId=162&fileName=SEAS\_ERA\_BS\_SRA\_Final.pdf), which stated: 'The analysis of identified datasets and BS monitoring/observation systems revealed gaps in regularity and coverage in the national monitoring systems, and non-compliance with commitments in terms of reporting, problems with data accessibility, compatibility and suitability to produce indicators. Further analysis of the accessibility of data and relevance of monitoring systems,

<sup>&</sup>lt;sup>1</sup> This stage had to be completed by July 2012, certain delays are encountered, especially in Bulgaria.

<sup>&</sup>lt;sup>2</sup> Convention on the Protection of the Black Sea Against Pollution.

<sup>&</sup>lt;sup>3</sup> Commission on the Protection of the Black Sea Against Pollution.

<sup>&</sup>lt;sup>4</sup> The MSFD has been introduced to non-member states under the MSFD project of the BSC (Grant Agreement No 21.0401/2008/517948/SUB/D2 "Support to the Black Sea Commission for the Implementation of the Marine Strategy"), which aims at achieving of common understanding of GES in the Black Sea region, further development of BSIMAP, improvement of assessments of pressures, state and impacts, etc.

availability of data management tools and their products usage at the level of decision-making, capacities and potential for change is required to recommend improvements. Beyond the need for improvement of the monitoring and data management system in support to the regional and EU Policies; specifically the MSFD, environmental targets and GES indicators, taking into consideration Annex I and III of the MSFD, as well as the corresponding criteria and methodological standards are to be developed for the Black Sea'.

Thereafter, this report, named Diagnostic Report II, is designed to guide a revision of national monitoring programs and improvements in data reporting and DPSIRR assessments in the MISIS beneficiary countries (Bulgaria, Romania and Turkey) based on the review of:

- National monitoring systems and data/information management tools for assessing data obtained from monitoring activities with particular focus on biological quality/biodiversity components in marine environment monitoring (Ref: MSFD, Annex I and III)
- Data availability, analysis of the gaps in the initial assessments, including pressures (based on compliance monitoring of municipal and industrial sources, rivers, atmospheric pollution),

This Report utilises the findings of the EEA/BSC Diagnostic Report upgrading it for Bulgaria, Romania and Turkey to include more information on their national monitoring programmes (or any other Black Sea-related observations), national data/information management tools (which were not part of the BSC Diagnostic Report), operational monitoring, etc. The review includes information on the policy/legal framework of monitoring, types of implemented monitoring, status of operational monitoring, parameters measured, monitoring networks available, data management specifics, progress in water/ecological quality/GES classifications, research infrastructure/equipment/vessels available, trainings and harmonization process identified, etc. The recommendations produced take into consideration the needs in capacity building/training, in harmonization and the needs and obligations in reporting of different stakeholders.

The Report utilizes also the findings of the EC SeasEra Project:

http://www.seas-era.eu/np4/homepage.html

on laboratory infrastructure, equipment and vessels available contributing to their more efficient use in the Black Sea region.

A special Questionnaire (English version, Annex I) has been developed covering the numerous issues reflected in this report and the stakeholders have been inventoried (Annex II). The stakeholders were identified based on the following criteria:

- Participating in environment protection (research and management);
- Managing Monitoring Programmes;
- Implementing Monitoring Programmes and projects with a monitoring component;
- Collecting and/or managing data (sensu Annex I and III of the MSFD);
- End-users of environment data/information.

The Questionnaire has been translated into the national languages of the beneficiary countries and distributed to some of the stakeholders and their response has been also evaluated (Tables 1, 2, 3)<sup>5</sup>. In general, the response was insufficiently comprehensive, additional materials<sup>6</sup> have been reviewed to compliment the information provided by the quest so that to meet the objectives of this report.

National Gap Analysis Reports of Bulgaria, Romania and Turkey on the implementation of the BS SAP1996 (BSC Archive).

BS SAP Implementation Report, BSC publications, http://www.blacksea-commission.org/\_publ-BSSAPIMPL2009.asp

BSC Advisory Groups Annual Reports for the period 2006-2011 (BSC Archive).

Project Reports (EuroArgo, MONINFO, Baltic2Black, etc.).

Webpages of various projects (see Table 60 on p. 105).

Webpages of Ministries and organizations participating in BS-related monitoring.

<sup>&</sup>lt;sup>5</sup> The Tables reflect the responses to Part I of the Questionnaire, which deals with monitoring and data management. Part II is about data availability, needs in harmonization and training, reflected in Chapters IV-VII of the Report.

<sup>&</sup>lt;sup>6</sup> Sources for additional information:

#### **BULGARIA**

In total 8 organizations responded among the 39 stakeholders identified in Bulgaria (Annex II). Table 1 reflects the level of response to the Part I of the Questionnaire, which dealt with monitoring and data management.

Table 1. Information on the response to the MISIS Questionnaire Part I on monitoring and data management in Bulgaria

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Replied/Not replied/ Partially replied: R / NR / PR |                        |       |           |          |            |                  |           |                 |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------|------------------------|-------|-----------|----------|------------|------------------|-----------|-----------------|--|--|
|   | Type of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Part I.I          |                                                     | Part I.II (Monitoring) |       |           |          |            | I (Data m        | anagei    | ment)           |  |  |
|   | organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Genera<br>Linfo) | Legal/policy instruments                            | Type of monitoring     | QA/QC | Reporting | Projects | Data bases | Data<br>products | QA/<br>QC | Assessm<br>ents |  |  |
| 1 | Municipality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107               | mistraments                                         | monitoring             | QA/QC | Reporting | Trojects | Data bases | products         | QC        | ents            |  |  |
| _ | The state of the s |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
| 2 | NGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Black Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | NGO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R                 | PR                                                  | NR                     | NR    | NR        | NR       | R          | NR               | NR        | NR              |  |  |
| 3 | University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                     |                        |       |           |          |            |                  |           | 1111            |  |  |
|   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
| 4 | Public Institut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                 |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Institute of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Fishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | (IFR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R                 | R                                                   | R                      | R     | R         | R        | R          | PR               | PR        | R               |  |  |
|   | Institute of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Biodiversity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Ecosystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Research-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | BAS,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | of Marine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Ecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | (IBER-BAS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R                 | R                                                   | R                      | R     | NR        | NR       | R          | R                | R         | R               |  |  |
|   | Institute of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Oceanology-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                 | _                                                   | _                      | _     | _         | _        | _          | _                |           | _               |  |  |
|   | BAS (IO-BAS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R                 | R                                                   | R                      | R     | R         | R        | R          | R                | NR        | R               |  |  |
| 5 | <b>Governmenta</b><br>NAFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Agencies          |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | (National                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Agency for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Fishery and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | Aquaculture)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R                 | R                                                   | PR                     | NR    | R         | NR       | NR         | NR               | NR        | NR              |  |  |
| 6 | Ministries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .,                | .,,                                                 | ,                      | 1     |           |          |            | 1                |           |                 |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                     |                        |       |           |          |            |                  |           |                 |  |  |
|   | and Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R                 | R                                                   | NR                     | NR    | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Ministry of<br>Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R                 | R                                                   | NR                     | NR    | NR        | NR       | NR         | NR               | NR        | ı               |  |  |

In Romania, 24 stakeholders have been contacted among the 41 identified (Annex II), the response to the Part I of the Questionnaire is presented in Table 2.

Table 2. Information on the response to the MISIS Questionnaire Part I on monitoring and data management in Romania

|   |                                  |                 | Replied/Not replied/ Partially replied: R / NR / PR |                    |         |           |          |            |               |           |                 |  |  |  |
|---|----------------------------------|-----------------|-----------------------------------------------------|--------------------|---------|-----------|----------|------------|---------------|-----------|-----------------|--|--|--|
|   | Type of                          | Part I.I        |                                                     | Part I.II          | (Monito | ring)     |          | Part I.II  | I (Data ma    | anagei    | ment)           |  |  |  |
|   | organization                     | (Gener al info) | Legal/policy instruments                            | Type of monitoring | QA/QC   | Reporting | Projects | Data bases | Data products | QA/<br>QC | Assessm<br>ents |  |  |  |
| 1 | Municipality                     |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | City Hall                        |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Constanta                        | R               | NR                                                  | PR                 | NR      | NR        | NR       | NR         | NR            | NR        | NR              |  |  |  |
|   | AQUA SERV<br>Tulcea              |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | (operating                       |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | WWTP)                            | R               | PR                                                  | R                  | R       | R         | R        | R          | R             | R         | NR              |  |  |  |
| 2 | NGO                              |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Mare Nostrum                     |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | NGO                              | R               | NR                                                  | R                  | NR      | R         | R        | R          | NR            | NR        | R               |  |  |  |
| 3 | University                       |                 |                                                     |                    |         |           |          | I          |               | l         |                 |  |  |  |
| 4 | Public Institute                 |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
| _ | County                           |                 |                                                     |                    |         |           |          | <u> </u>   |               |           |                 |  |  |  |
|   | Department for                   |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Statistics                       |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Constanta                        | R               | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR            | NR        | NR              |  |  |  |
|   | NIRD<br>GeoEcoMar                | R               | R                                                   | R                  | R       | R         | R        | R          | R             | R         | R               |  |  |  |
|   | National                         | IX              | 11                                                  | IX.                | IX.     | IX.       | 11       | IX.        | IX.           | 11        | IX.             |  |  |  |
|   | Institute for                    |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Tourism                          |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Research                         | R               | NR                                                  | NR                 | NR      | NR        | R        | R          | R             | NR        | NR              |  |  |  |
|   | NIMRD "Grigore                   | R               | R                                                   | R                  | R       | R         | R        | R          | R             |           | R               |  |  |  |
| _ | Antipa"                          |                 | <u> </u>                                            | _ n                | ĸ       | _ n       | l v      | N          | l v           |           | , n             |  |  |  |
| 5 | Governmental A                   | Agencies        |                                                     |                    |         |           |          |            |               | l         |                 |  |  |  |
|   | Directorate for<br>Public Health |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Constanta                        | R               | R                                                   | R                  | R       | R         | NR       | R          | NR            | NR        | R               |  |  |  |
|   | Directorate for                  |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Public Health                    | 6               | 20                                                  |                    | ND      |           |          |            | ND            | NID       |                 |  |  |  |
|   | Tulcea<br>Environmental          | R               | PR                                                  | R                  | NR      | R         | R        | R          | NR            | NR        | R               |  |  |  |
|   | Protection                       |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Agency                           |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Constanta                        | R               | R                                                   | R                  | R       | R         | R        | R          | NR            | NR        | R               |  |  |  |
|   | National                         |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Company<br>Maritime Port         |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Administration                   | PR              | PR                                                  | R                  | NR      | R         | NR       | NR         | NR            | NR        | NR              |  |  |  |
|   | Environmental                    |                 |                                                     |                    |         | - ',      | .,,,     |            | .,,,          | . • • •   | .,,,            |  |  |  |
|   | Protection                       |                 |                                                     |                    |         |           |          |            |               |           |                 |  |  |  |
|   | Agency Tulcea                    | NR              | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR            | NR        | NR              |  |  |  |
|   | Romanian                         | 5               | ND                                                  | ND                 | ND      | ND        | 5        | _          | 5             | NID.      | NE              |  |  |  |
|   | Spatial Agency                   | R               | NR                                                  | NR                 | NR      | NR        | R        | R          | R             | NR        | NR              |  |  |  |

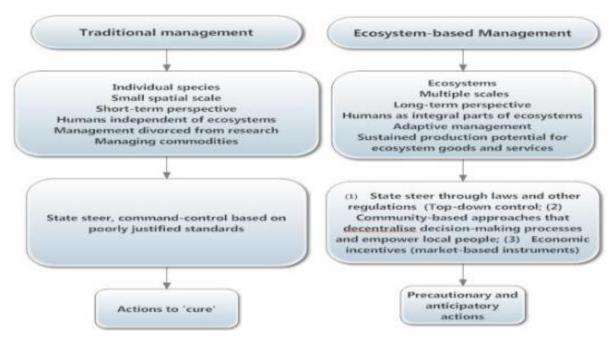
|   |                                                            |                 | Replied/Not replied/ Partially replied: R / NR / PR |                    |       |           |          |                              |               |           |                 |  |  |  |
|---|------------------------------------------------------------|-----------------|-----------------------------------------------------|--------------------|-------|-----------|----------|------------------------------|---------------|-----------|-----------------|--|--|--|
|   | Type of                                                    | Part I.I        | raitim (Montoning)                                  |                    |       |           |          | Part I.III (Data management) |               |           |                 |  |  |  |
|   | organization                                               | (Gener al info) | Legal/policy instruments                            | Type of monitoring | QA/QC | Reporting | Projects | Data bases                   | Data products | QA/<br>QC | Assessm<br>ents |  |  |  |
|   | Water<br>Administratio<br>n Dobrogea<br>Littoral           | R               | R                                                   | R                  | R     | R         | NR       | R                            | R             | NR        | R               |  |  |  |
|   | Constanta<br>Maritime<br>Hydrographic<br>Directorate       | R               | NR                                                  | R                  | NR    | R         | NR       | R                            | NR            | NR        | NR              |  |  |  |
|   | Naval<br>Academy                                           | R               | NR                                                  | NR                 | NR    | NR        | NR       | NR                           | NR            | NR        | NR              |  |  |  |
| 6 | Ministries                                                 |                 |                                                     |                    |       |           |          |                              |               |           |                 |  |  |  |
|   | Ministry of<br>Environment<br>and Forestry                 | R               | R                                                   | NR                 | NR    | NR        | NR       | NR                           | NR            | NR        | NR              |  |  |  |
| 7 | Private compa                                              | nies            |                                                     |                    |       |           |          |                              |               |           | •               |  |  |  |
|   | Thermoelectri<br>c Factory<br>Midia                        | R               | NR                                                  | PR                 | NR    | R         | NR       | NR                           | NR            | NR        | NR              |  |  |  |
|   | EXXON<br>Exploration<br>Co                                 | R               | R                                                   | R                  | R     | R         | R        | R                            | R             | R         | R               |  |  |  |
|   | OMV Petrom<br>SA - offshore<br>oil and gas<br>exploitation | R               | R                                                   | R                  | R     | R         | NR       | R                            | NR            | NR        | R               |  |  |  |

#### **TURKEY**

In Turkey 89 stakeholders have been identified (Annex II), and 23 of them have been contacted and they are those organizations which deal with the Black Sea monitoring and data collection/management. The rest of the organizations in the List of TR Stakeholders (Annex II) deal with environment protection and often with monitoring as well, however, their activities are related to other TR seas or inland fresh-waters. The response to the Part I of the Questionnaire is presented in the table below.

Table 3. Information on the response to the MISIS Questionnaire Part I on monitoring and data management in Turkey

|              |                 | Replied/Not replied/ Partially replied: R / NR / PR |                    |           |           |          |            |               |            |                 |           |  |  |  |
|--------------|-----------------|-----------------------------------------------------|--------------------|-----------|-----------|----------|------------|---------------|------------|-----------------|-----------|--|--|--|
|              | Type of         | Part I.I                                            |                    | Part I.II | (Monito   | ring)    |            | Part I.II     | I (Data ma | anage           | nagement) |  |  |  |
| organization | (Gener al info) | Legal/policy instruments                            | Type of monitoring | QA/QC     | Reporting | Projects | Data bases | Data products | QA/<br>QC  | Assessm<br>ents |           |  |  |  |
| 1            | Municipality    |                                                     |                    |           |           |          |            |               |            |                 |           |  |  |  |
|              | Zonguldak M.    | R                                                   | NR                 | NR        | NR        | NR       | NR         | NR            | NR         | NR              | NR        |  |  |  |
|              | Kastamonu M.    | PR                                                  | NR                 | NR        | NR        | NR       | NR         | NR            | NR         | NR              | NR        |  |  |  |
| 2            | NGO             |                                                     |                    |           |           |          |            |               |            |                 |           |  |  |  |
|              | Nature          |                                                     |                    |           |           |          |            |               |            |                 |           |  |  |  |
|              | Conservation    |                                                     |                    |           |           |          |            |               |            |                 |           |  |  |  |
|              | Center          | R                                                   | R                  | NR        | NR        | NR       | NR         | NR            | NR         | NR              | NR        |  |  |  |


|   |                                                                                                |                 | Replied/Not replied/ Partially replied: R / NR / PR |                    |         |           |          |            |                  |           |                 |  |  |
|---|------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------|--------------------|---------|-----------|----------|------------|------------------|-----------|-----------------|--|--|
|   | Type of                                                                                        | Part I.I        |                                                     |                    | (Monito | -         |          |            | I (Data m        | anagei    | ment)           |  |  |
|   | organization                                                                                   | (Gener al info) | Legal/policy instruments                            | Type of monitoring | QA/QC   | Reporting | Projects | Data bases | Data<br>products | QA/<br>QC | Assessm<br>ents |  |  |
|   | Turkish<br>Sturgeon<br>Conservation<br>Society                                                 | R               | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Turkish Marine Environment Protection Association (TURMEPA)                                    | R               | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
| 3 | University                                                                                     |                 |                                                     |                    |         |           |          |            |                  |           |                 |  |  |
|   | Çanakkale<br>Onsekiz Mart U.<br>Fisheries Faculty                                              | R               | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Çanakkale<br>Onsekiz Mart U.<br>Faculty of Marine<br>Science and<br>Technology<br>DEU- Ins. of | R               | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Marine Scs. and Tech.                                                                          | R               | NR                                                  | R                  | R       | R         | R        | NR         | NR               | NR        | NR              |  |  |
|   | Ondokuz Mayıs<br>U.                                                                            | R               | R                                                   | R                  | NR      | R         | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Atatürk U<br>Fisheries Faculty                                                                 | R               | NR                                                  | PR                 | NR      | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Sinop University                                                                               | R               | NR                                                  | R                  | NR      | R         | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Istanbul University Faculty of Marine Science and Management Istanbul                          | R               | NR                                                  | R                  | R       | R         | NR       | R          | NR               | NR        | NR              |  |  |
|   | University Faculty of Fishery                                                                  | R               | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
|   | Recep Tayyip<br>Erdoğan<br>University<br>(Faculty of<br>Fisheries)                             | R               | NR                                                  | NR                 | NR      | NR        | NR       | NR         | NR               | NR        | NR              |  |  |
|   | METU-IMS                                                                                       | R               | NR                                                  | R                  | R       | R         | R        | R          | NR               | R         | NR              |  |  |
|   | Karadeniz<br>Technical<br>University,<br>Faculty of Marine<br>Science                          | R               | NR                                                  | R                  | NR      | NR        | R        | NR         | NR               | NR        | NR              |  |  |
| 4 | Public Institute                                                                               |                 |                                                     |                    |         |           |          |            |                  |           |                 |  |  |
|   | Trabzon Central<br>Fisheries<br>Research<br>Institute<br>(SUMAE) <sup>1</sup>                  | R               | R                                                   | R                  | R       | R         | R        | NR         | NR               | NR        | NR              |  |  |
|   | TÜBİTAK-MRC                                                                                    | R               | NR                                                  | R                  | R       | R         | R        | R          | R                | R         | R               |  |  |
| 5 | Governmental A                                                                                 |                 |                                                     |                    |         |           |          |            |                  |           |                 |  |  |
|   |                                                                                                |                 |                                                     |                    |         |           |          |            |                  |           |                 |  |  |

|   |                                                                  |                 | Replied/Not replied/ Partially replied: R / NR / PR |                              |       |           |          |            |               |           |                 |
|---|------------------------------------------------------------------|-----------------|-----------------------------------------------------|------------------------------|-------|-----------|----------|------------|---------------|-----------|-----------------|
|   | Type of Part I.I Part I.II (Monitoring)                          |                 |                                                     | Part I.III (Data management) |       |           |          | ment)      |               |           |                 |
|   | organization                                                     | (Gener al info) | Legal/policy instruments                            | Type of monitoring           | QA/QC | Reporting | Projects | Data bases | Data products | QA/<br>QC | Assessm<br>ents |
| 6 | Ministries                                                       |                 |                                                     |                              |       |           |          |            |               |           |                 |
|   | Ministry of Environment and Urbanization                         | R               | R                                                   | R                            | R     | R         | NR       | R          | NR            | R         | NR              |
| 7 | Private compa                                                    | nies            |                                                     |                              |       |           |          |            |               |           |                 |
|   | DenAr Ocean<br>Engineering<br>Ltd. Co.                           | R               | NR                                                  | NR                           | NR    | NR        | NR       | NR         | NR            | NR        | NR              |
|   | TUDAV                                                            | R               | NR                                                  | NR                           | NR    | NR        | NR       | NR         | NR            | NR        | NR              |
| 8 | Private companies                                                |                 |                                                     |                              |       |           |          |            |               |           |                 |
|   | Doğu Karadeniz<br>Regional Union<br>of Fisheries<br>Cooperatives | R               | NR                                                  | NR                           | NR    | NR        | NR       | NR         | NR            | NR        | NR              |



# I. MONITORING (routine and operational)

No proper management of environment protection is possible without a regular and integrated monitoring and without robust scientific understanding of pressures, state, impact and response of an ecosystem to the measures taken to prevent or mitigate undesirable change. Where there are gaps in monitoring, hence, in data, information and knowledge, there will be always gaps in environmental protection. Fortunately, this understanding in the Black Sea region has not been missing before, and the regular complex monitoring of the Sea dates back to the early 1950s (the history in Turkey only is shorter). However, the new environment management approaches, coming into life, such as the Integrated Coastal Zone Management, the Ecosystem-based<sup>7</sup> and Integrated River Basin Management generated inexperienced previously challenges for scientists and decision-makers. The ecosystembased management is a serious paradigm shift (Lubchenco, 1994; Sherman and Duda, 19998) as presented below in the sheme (major differences betwenn traditional and ecosystembased management):



<sup>&</sup>lt;sup>7</sup> The approach of ecosystem-based management (EBM) is not a very new idea. The concept for the marine realm has emerged in the late 1980s (UNEP/GPA2006) in response to increasing recognition of the declining state of fisheries, and ocean ecosystems, in general. However, the EBM historical development can be traced back to the 1930's in relation to terrestrial ecosystems. During this time, the scientific communities who studied ecology realized that current approaches to the management of national parks did not provide effective protection of the species within. In 1932, The Ecological Society of America's Committee for the Study of Plant and Animal Communities recognized that US national parks needed to protect all the ecosystems contained within the park in order to create an inclusive and fully functioning sanctuary, and be prepared to handle natural fluctuations in its ecology. Also the committee explained the importance for interagency cooperation and improved public education, as well as challenged the idea that proper park management would "improve" nature (Grumbine 1994). These ideas became the foundation of the modern ecosystem-based management.

8 References cited:

Grumbine, R.E. 1994. What is Ecosystem Management? Conservation Biology. 8:27-38.

Lubchenco, J. 1994. The Scientific Basis of Ecosystem Management: Framing the Context, Language and Goals. Pages 33-39 In: Committee on Environment and Public Works, United States Senate, *Ecosystem Management: Status and Potential*. Proceedings of a Workshop by the Congressional Research Service, March 24-25, 1994. 103rd Congress, 2nd Session. United States Government Printing Office, Washington dc

Sherman, K. and A.M. Duda.1999. An Ecosystem Approach to Global Assessment and Management of Coastal Waters. Marine Ecology Progress Series, Vol. 190:271-287 www.int-res.com/jounals/meps

Ecosystem-based management is concerned with the processes of change within living systems, and with sustaining the goods and services that healthy ecosystems produce, adopting management frameworks that minimize impacts to marine environments while allowing for sustainable development, an integrated approach that recognizes humans are part of and have significant influences on their environments. Ecosystem-based management is therefore designed and executed as an adaptive, lessons-learnt process that applies science-based decision-making. And logically, it requires changes in the existing old-fashioned monitoring programmes/systems which have been intended to meet the needs of the traditional management.

In this relation, the MSFD stipulates in its Art. 11.1 on Monitoring Programmes:

1. On the basis of the initial assessment made pursuant to Article 8(1), Member States shall establish and implement coordinated monitoring programmes for the ongoing assessment of the environmental status of their marine waters on the basis of the indicative lists of elements set out in Annex III and the list set out in Annex V, and by reference to the environmental targets established pursuant to Article 10.

The sustainability of each monitoring program (existing or deemed for upgrade) lies in the acting legal/policy framework of the country implementing it (and of course in its enforcement). Further in this chapter the Report gives information on the monitoring-related legal/policy documents developed at different levels and enacted in the beneficiary countries. Bulgaria and Romania are EU Member States and apart from their national legislation the European legislation is mandatory for implementation. Turkey is in a different position, developing extensively during the last decades its own legislation so that to utilize best available practices. There are also a large number of global and regional agreements which shape various kinds of monitoring activities required to enforce compliance.

# 1. Legislation/Policy (national and international instruments), achievements and gaps



This sub-chapter deals with the achievements and weakness observed in the legislative and regulatory provisions governing inter alia the marine and other sea-related monitoring activities (e.g. pressures) in the beneficiary countries versus the requirements of the MSFD. The MSFD stipulates:

The legislative framework should provide an overall framework for action and enable the action taken to be coordinated, consistent and properly integrated with action under other Community legislation and international agreements.

For Turkey the main question was whether the acting policy/legislation allows for a coordinated and harmonized with Bulgaria and Romania environmental protection, specifically in the field of monitoring activities.

The international (global) level legislation enforced in the beneficiary countries is presented in Table 4. The level of implementation of the listed legal documents is far beyond the scope of this report, general remarks are made where possible. Among 16 important UN (United Nations) and IMO (International Maritime Organization) international agreements, seven have not been ratified by Turkey, and one, namely the Ballast Water Management Convention 2004, is not ratified by any of the beneficiary countries, though preparations are in place in all of them. Besides, the TDA 2007 report (http://www.blacksea-commission.org/\_publications-GEF.asp) and last BS SoE (for 2001-2006/7, http://www.blacksea-commission.org/\_publ-SOE2009.asp) have recognized the invasion of alien species as one of the priority transboundary environmental problems in the Black Sea, with negative consequences for human activities and economic interests, still awaiting its proper decision-making and management. The number of registered alien species in the Black Sea region amounts to 244, as 56 of them were registered between 1996 and 2010<sup>9</sup>.

Table 4. Inventory of major monitoring-related legal/policy documents (international level)

| N   | Legislation/policy                                                                                                                                                   | Bulgaria             | Romania    | Turkey     |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|------------|--|
|     |                                                                                                                                                                      | Date of ratification |            |            |  |
| 1.  | International Convention for the Prevention of Pollution from Ships (MARPOL 73/78)                                                                                   | 19.05.2005           | 18.03.1993 | 10.10.1990 |  |
| 2.  | Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention)                                                          | 24.02.2006           | 27.01.2000 | No         |  |
| 3.  | OPRC (Oil spill preparedness and response) 1990 (https://imo.amsa.gov.au/public/circular-titles/oprc.html)                                                           | 12.03.2002           | 03.10.2000 | 18.09.2003 |  |
| 4.  | Convention on Environmental Impact Assessment in a Transboundary Context (Espoo C.)                                                                                  | 12.05.1995           | 29.03.2001 | No         |  |
| 5.  | UN Convention on Biological Diversity (CBD)                                                                                                                          | 29.02.1996           | 17.08.1994 | 14.02.1997 |  |
| 6.  | UN Convention on Wetlands of International Importance especially as Waterfowl Habitat-RAMSAR                                                                         | 24.01.1976           | 21.09.1971 | 13.11.1994 |  |
| 7.  | Convention on the Conservation of European Wildlife and Natural Habitats, Bern Convention                                                                            | 01.05.1991           | 01.09.1993 | 09.01.1984 |  |
| 8.  | Convention on Migratory Species - Bonn Convention                                                                                                                    | 01.09.1999           | 01.07.1998 | No         |  |
| 9.  | UN Convention on International Trade of Endangered Species-CITES                                                                                                     | 16.04.1991           | 16.11.1994 | 22.12.1996 |  |
| 10. | UNCLOS - The 1982 United Nations Convention on the Law of the Sea                                                                                                    | 15.05.1996           | 17.12.1996 | No         |  |
| 11. | Ballast Water Management Convention, 2004                                                                                                                            | No                   | No         | No         |  |
| 12. | Convention on Access to Information, Public Participation in Decision-<br>Making and Access to Justice in Environmental Matters (Aarhus<br>Convention) <sup>10</sup> | 25.06.1998           | 11.07.2000 | No         |  |
| 13. | Framework Climate Change Convention (FCCC)                                                                                                                           | 12.05.1995           | 08.06.1995 | 24.02.2004 |  |
| 14  | Kyoto Protocol (to the FCCC)                                                                                                                                         | 15.08.2002           | 19.03.2001 | 26.08.2009 |  |
| 15. | UN Convention on Long-Range Transboundary Air Pollution                                                                                                              | 19.02.1981           |            | 18.04.1983 |  |
| 16. | Stockholm Convention on POPs                                                                                                                                         | 20.12.2004           | 28.10.2004 | 14.10.2009 |  |

<sup>&</sup>lt;sup>9</sup> The List of Black Sea non-native species is under revision, it has been finalised for fishes (http://documents.blacksea-commission.org/Downloads/BlackSea-Non\_Native\_Species\_List.pdf), for phytoplankton and zooplankton the drafts are quite advanced, benthic species are not yet attended.

<sup>&</sup>lt;sup>10</sup> The Convention has no direct relation to monitoring, but regulates the rights of public to access the data/information related to environmental matters. TR is not party to it, however, in Turkey, the Law on the Right to Access to Information came into force in 2003 and the By-law was published in 2004 which determined the frameworks of providing information to the public. Based on this law, necessary amendments were made in the Environmental Law.

<sup>&</sup>lt;sup>11</sup> Turkey became party to the Kyoto Protocol on 26 August 2009, after the deposit of instrument of accession to the United Nations following the adoption of the Law (No. 5836) approving Turkey's accession to the Kyoto Protocol to the United Nations Framework Convention on Climate Change by the Turkish Grand National Assembly on 5 February 2009 and adoption by the Council of Ministers of the Cabinet Decree (No. 2009/14979) on 13 May 2009.

#### **EUROPEAN**

Apart from the MSFD, for eutrophication, contaminants and contaminants in seafood the existing EU legislation is the WFD, the Nitrates Directive, the Urban Waste Water Treatment Directive, the revised Bathing Water Directive and the Hazardous Substances Directive. Habitats are covered by the Habitat and Bird Directives anf NATURE2000. Fishery's management is covered by the Common Fishery Policy (CFP).

Table 5. List of monitoring-related legislation/policy of the European level and its transposition into the national legislation of Bulgaria and Romania

| N Title of Convention, Directive or Agreement |                                                                                                                                                                                                                                                                  | Date of enforcement | Transposed to the national legislation                                                                                                                                                                                    |                                                                                                                                                                                                                  |  |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                               | Agreement                                                                                                                                                                                                                                                        | emorcement          | Bulgaria                                                                                                                                                                                                                  | Romania                                                                                                                                                                                                          |  |
| 1.                                            | Euratom treaty art. 35, art. 36, art 30, art.31                                                                                                                                                                                                                  | 25.03.1957          |                                                                                                                                                                                                                           | Law 111 /1996<br>republished in 2006                                                                                                                                                                             |  |
| 2.                                            | COUNCIL DIRECTIVE 76/160/EC OF 8 DECEMBER 1975 concerning the quality of bathing water                                                                                                                                                                           |                     | 08/03/2002<br>/in Ordinance N 11 for<br>the quality of bathing<br>water/                                                                                                                                                  | GD No 459/2002 for<br>the approval of quality<br>norms for bathing<br>waters GD No 88/2004<br>approving the Norms<br>for surveillance,<br>sanitary inspection and<br>control of the natural<br>areas for bathing |  |
| 3.                                            | Directive 2006/7/EC of the European Parliament and the Council from15 February 2006 regarding the management of bathing water quality and repealing the Directive 76/160/EEC                                                                                     | 15.02.2006          | 10/06/2008<br>/in ordinance N 5 for<br>management of bathing<br>water quality/                                                                                                                                            | GD No<br>546/2008 concerning<br>the management of<br>bathing water quality                                                                                                                                       |  |
| 4.                                            | Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy (Water Framework Directive)                                                                                    |                     | 22/12/2003 /in the Bulgarian Water Act/ 08/05/2007 /in ordinance N 13 for characterization of surface water/ 05/06/207 /in ordinance N 5 for water monitoring, currently replaced by ordinance N 1 for water monitoring / | Law No 310/2004<br>amending Law No<br>107/1996 (WaterLaw)                                                                                                                                                        |  |
| 5.                                            | DIRECTIVE 2008/56/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive)                                               | 17.06.2008          | 30/11/2010 /in ordinance for protection of the environment in marine water/                                                                                                                                               | Emergency Government Ordinance (EGO) no. 71 of 30 June 2010 establishing marine strategy                                                                                                                         |  |
| 6.                                            | COUNCIL DIRECTIVE 91/676/EC OF 12 DECEMBER 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive)                                                                                          |                     | 16/10/2000<br>/in ordinance N 2 for<br>protection of water<br>from pollution from<br>agricultural sources/                                                                                                                |                                                                                                                                                                                                                  |  |
| 7.                                            | COUNCIL DIRECTIVE 2009/90/EC on the technical specification of chemical analysis and monitoring of water quality                                                                                                                                                 |                     | Ordinance 1/2011 on monitoring, Chapter III (art. 84 - 86).                                                                                                                                                               |                                                                                                                                                                                                                  |  |
| 8.                                            | Common Fishery Policy (COUNCIL REGULATION (EC) No 199/2008 concerning the establishment of a Community framework for the collection, management and use of data in the fisheries sector and support for scientific advice regarding the Common Fisheries Policy) | 25.02.2008          |                                                                                                                                                                                                                           |                                                                                                                                                                                                                  |  |

| N   | Title of Convention, Directive or                                                   | Date of      | Transposed to the national legislation            |
|-----|-------------------------------------------------------------------------------------|--------------|---------------------------------------------------|
|     | Agreement                                                                           | enforcement  |                                                   |
| 9.  | COMMISSION DIRECTIVE 2009/90/EC                                                     | 31.07.2009   | 21/08/2011                                        |
|     | of 31 July 2009 laying down, pursuant to Directive 2000/60/EC of the European       |              |                                                   |
|     | Parliament and of the Council, technical                                            |              |                                                   |
|     | specifications for chemical analysis and                                            |              |                                                   |
|     | monitoring of water status                                                          |              |                                                   |
| 10. | DIRECTIVE 2008/105/EC OF THE                                                        | 16.08.2008   | 13/07/2010                                        |
|     | EUROPEAN PARLIAMENT AND OF THE                                                      |              |                                                   |
|     | COUNCIL of 16 December 2008 (Priority                                               |              | Or N:256/01                                       |
|     | substances) on environmental quality standards in the field of water policy,        |              | November 2010 (State gazette 88 publ. on 9        |
|     | amending and subsequently repealing                                                 |              | Nov. 2010)                                        |
|     | Council Directives 82/176/EC, 83/513/EC,                                            |              | 1101. 2010)                                       |
|     | 84/156/EC, 84/491/EC, 86/280/EC and                                                 |              |                                                   |
|     | amending Directive 2000/60/EC of the                                                |              |                                                   |
|     | European Parliament and of the Council                                              | 22.12.222    | 0.5 (4.4 (0.000)                                  |
| 11. | DIRECTIVE 2007/60/EC OF THE EUROPEAN                                                | 23.10.2007   | 26/11/2009                                        |
|     | PARLIAMENT AND OF THE COUNCIL of 23 October 2007on the assessment and               |              | /date of transposition in Bulgarian water act/    |
|     | management of flood risks                                                           |              | Saigarian water acy                               |
| 12. | DIRECTIVE 2006/113/EC OF THE                                                        | 30.10.1979 / | 20.10.2000 /date of                               |
|     | EUROPEAN PARLIAMENT AND OF THE                                                      | 12.12.2006   | transposition in                                  |
|     | COUNCIL of 12 December 2006 (Directive                                              |              | Bulgarian ordinance N 4                           |
|     | for the valorisation of shellfish areas                                             |              | for quality of water                              |
|     | (2006/113/CE)) on the quality required of shellfish waters (codified version)       |              | intended for fisheries<br>and shellfish breeding/ |
|     | /COUNCIL DIRECTIVE of 30 October 1979                                               |              | and stieffish breeding/                           |
|     | on the quality required of shellfish waters                                         |              |                                                   |
|     | (79/923/EEC)                                                                        |              |                                                   |
| 13. | Decision No 2455/2001/EC of the                                                     |              | 22/12/2003 /in the                                |
|     | European Parliament and of the Council of 20 November 2001 establishing the list of |              | Bulgarian Water Act/<br>08/05/2007 /in            |
|     | priority substances in the field of water                                           |              | ordinance N 13 for                                |
|     | policy and amending Directive                                                       |              | characterization of                               |
|     | 2000/60/EC                                                                          |              | surface water/                                    |
|     |                                                                                     |              | 05/06/2007 /in                                    |
|     |                                                                                     |              | ordinance N 5 for water                           |
|     |                                                                                     |              | monitoring, currently replaced by ordinance       |
|     |                                                                                     |              | N 1 for water                                     |
|     |                                                                                     |              | monitoring /                                      |
|     |                                                                                     |              | 09/11/2010 /in                                    |
|     |                                                                                     |              | ordinance for ecological                          |
|     |                                                                                     |              | quality standards for                             |
|     |                                                                                     |              | priority and some other pollutants/               |
|     |                                                                                     |              | 05/06/2007 /in                                    |
|     |                                                                                     |              | Ministerial ordinance N                           |
|     |                                                                                     |              | 321 for establishment                             |
|     |                                                                                     |              | of priority and priority                          |
|     |                                                                                     |              | dangerous substances                              |
| 14. | Council Directive 92/42/EC of 21 May                                                | 21.05.1992   | in water area/<br>09.08.2002 /in                  |
| 14. | Council Directive 92/43/EC of 21 May 1992 on the conservation of natural            | 21.05.1992   | Biodiversity Protection                           |
|     | habitats and of wild fauna and flora                                                |              | Act                                               |
|     | /Habitat Directive/                                                                 |              |                                                   |
|     | Council Directive 2001/81/EEC                                                       |              |                                                   |
|     |                                                                                     | •            |                                                   |

#### **Turkey and EU legislation**

The EU Integrated Environmental Approximation Strategy (2006) of Turkey for the period 2007-2023 sets the goals for harmonization of the national legislation with EU environmental acqua<sup>12</sup>. In Turkey, in the field of water quality management new legal instruments have been recently developed taking into consideration the "acquis communautaire":

- By-law on the urban waste water treatment (08.01.2006) aiming to protect the environment from the adverse effects of urban wastewater collection, treatment, and discharge wastewater from certain industrial sectors;
- By-law on Water Pollution Control (31.12.2004);
- By-law on protection of the waters against the nitrates originating from the agricultural sources (18.02.2004);
- By-law on the quality of water intended for human consumption (17.02. 2005);
- By-law on pollution caused by certain dangerous substances discharged into the aquatic environment (26.11.2005);
- By-law on the Quality of the Bathing Water (09.01.2006);
- Water pollution control Regulation (31.12.2004/modified 13.02.2008)
- Sensitive and Less Sensitive Water Areas Communique Concerning urban Wastewater Treatment Regulation (27.06.2009)

Note: see further Table 9.

Thus, the TR legislation on the control of water pollution was amended so as to regulate permit procedures. A regulation on environmental permits and licences (2009) was adopted to enhance the environmental inspectorates. However, there is no national environment agency. Environmental protection requirements are not yet fully taken into account in the framing of policies of other sectors (tourism, industry, agriculture, etc.).

A number of river basin protection action plans have been drafted, which will eventually be converted into integrated river basin management plans.

Less significant progress has been achieved on **nature protection**. The draft law on nature protection and biodiversity, submitted to the Turkish parliament, raises concerns, in particular as regards the abolition of the current protection status of many sites that would be a useful contribution to the Turkish NATURE2000 network. The national biodiversity strategy and action plan, and implementing legislation on birds and habitats remain to be adopted. The list of potential NATURE2000 sites has not yet been compiled. An amendment to the by-law on the protection of wetlands has weakened the protection status of wetlands (Ramsar sites).

The scope of the by-law on environmental impact assessment (EIA) has been extended and the EIA Directive is now transposed to a large degree. However, procedures for public and transboundary consultations have not been fully aligned and implemented. Transposition of the SEA Directive is at an early stage.

The main legal provision governing the **fisheries sector** is the Fisheries Law of 1971 (Law N° 1380 of 1971). On this basis, Turkey also adopted implementing regulations on fisheries (1995), on fishing ports (1996), on wholesale and retail fish markets (2004) and on aquaculture (2004). Other relevant

\_

<sup>&</sup>lt;sup>12</sup> EU Integrated Environmental Approximation Strategy (UÇES) contains the information pertaining to the technical and institutional infrastructure, and the environmental improvements that are required to be performed as well as the mandatory arrangements which are necessary to establish complete harmonization for compliance with EU Environmental Acquis Communautaire and the effective implementation of the legislation which are the two preconditions for Turkey to join the European Community. While preparing UÇES, outputs from "National Environmental Strategy and Action Plan" prepared previously and "Integrated Harmonization Strategy Project" implemented with EU resources and "Environmental Heavy Cost Investment Planning Project". In addition, it was taken into consideration that prepared strategy is coincided with the strategies and policies of the Development Plan, Annual Programs and National Programme of year 2003. UÇES document was prepared by the Ministry of Environment and Forestry (present Ministry o Environment and organizations which have important roles and responsibilities in environmental issues, also by taking the targets of harmonization of Environment Acquis into consideration.

legal acts are Ministerial Communiqués, bi-annual Circulars on Fishing as well as Decree Law N° 441 on the Establishment and Functions of the Ministry of Agriculture and Rural Affairs, which is presently renamed into Ministry of Food, Agriculture and Livestock. The overall policy framework is provided by Development Plans. Turkey has prepared the 9<sup>th</sup> Development Pan for the period 2007-2013, approved by the Turkish parliament on 28 June 2006. The main objectives of the Plan are defined as the establishment of a resource management system based on stock assessment studies, ensuring environmentally friendly aquaculture production and strengthening administrative structures. A new draft law on fisheries has been sent to parliament which once adopted will provide the legal basis for a catch and registration system, the establishment of VMS, support to fishermen, fight against illegal fishing, marketing standards and consumer information as well as for further implementing regulations. Some of the fishery vessels are equipped already with VMS, and a Fisheries Information System has been established. Similar to BG and RO, this system contains information on logbook, landing declaration, storage declaration, transfer declaration, sales notes, vessel registry and licences and permission.

In the **field of air quality** assessment and management, the major improvement is the Draft By-law on Air Quality Assessment and Management prepared to cover four daughter directives (99/30/EC, 2000/69/EC, 2002/3/EC and 2004/107/EC) and the 96/62/EC, Air Quality Framework Directive. This draft by-law sets the calendar for implementation and harmonization for 13 pollutants that are defined under the Air Framework Directive and the daughter directives. It also aims to strengthen the monitoring, sanctioning and institutionalization in the area of controlling the pollution and air quality. At present, there are 11 laws for the protection of the ambient air quality and control of air pollution where most of them had been adopted in 1980s. The legislation relating to the sulphur content of certain liquid fuels has been fully aligned with the *acquis*. A by-law on waste incineration was adopted. Turkey became a party to the Stockholm Convention on persistent organic pollutants. The legislation on the control of industrial air pollution was amended in order to regulate the permit procedures. By-laws on large combustion plants and on the control of major-accident hazards were adopted. Introduction of an integrated permit system is at an early stage.

In the field of **waste management**, Turkey adopted its national waste management plan for 2009–2013. Legislation on the control of hazardous waste, on receipt of waste from ships and on control of waste has been amended in line with the *acquis*. Legislation on the sanitary landfilling of waste was adopted, including provisions from the Waste Framework Directive on reducing the percentage of biodegradables.

In the field of **bathing water** regulation (09.01.2009) related to the Bathing Water Directive has been adopted and implemented.

In the field of climate change, a national climate change strategy was adopted by the Ministry of Environment with UNDP/GEF support. Moreover, a climate change department was established within the Ministry of Environment. However, no preparations for the EU Emissions Trading Scheme have started yet.

Legislative alignment in the field of **noise** is well advanced. However, preparation of noise maps and action plans is still at an early stage.

Overall, Turkey is aligned with certain parts of the EU *acquis* and makes efforts for further progress. Important gaps remain in areas such as fishery and habitats protection. **Full List of TR relevant legislation/policy is provided by the Ministry of Environment and Urbanization in Annex III.** 

#### **REGIONAL AGREEMENTS**

Major regional agreements in the field of Black Sea environment protection

Table 6. Major regional agreements

| N | Title of Convention or Agreement or Policy                        | Bulgaria   | Romania              | Turkey     |  |  |
|---|-------------------------------------------------------------------|------------|----------------------|------------|--|--|
|   |                                                                   | D          | Date of ratification |            |  |  |
| 1 | Convention on the Protection of the Black Sea                     | 23.02.1992 | 29.09.1992           | 29.03.1994 |  |  |
|   | Against Pollution and its four Protocols <sup>13</sup> (Bucharest |            |                      |            |  |  |
|   | Convention) and Strategic Action Plan <sup>14</sup>               |            |                      |            |  |  |
| 2 | International Convention on the Protection of the                 | 1994       | 1994                 | Observer   |  |  |
|   | Danube River (ICPDR) <sup>15</sup>                                |            |                      |            |  |  |
| 3 | Agreement on the Conservation of Cetaceans in the                 | 23.09.1999 | 13.06.2000           | N          |  |  |
|   | Black Sea, Mediterranean Sea and contiguous                       |            |                      |            |  |  |
|   | Atlantic Area (ACCOBAMS)                                          |            |                      |            |  |  |
| 4 | Agreement between the Ministry of Environment                     | 15.03.2005 | 12.11.2004           |            |  |  |
|   | and Water Management of Romania and Ministry of                   |            |                      |            |  |  |
|   | Environment and Water of the Republic of Bulgaria                 |            |                      |            |  |  |
|   | on Cooperation in the Field of Water Management                   |            |                      |            |  |  |
|   | signed at Bucharest on 12 November 2004                           |            |                      |            |  |  |

The Ministry of Environment and Water in Bulgaria has summarized its international and regional legal/policy obligations in two documents posted at:

http://www3.moew.government.bg/?show=80

http://www3.moew.government.bg/files/file/KVESMS/conventions resume/Bilateral Agreement En.pdf.

Other important documents at the regional level in relation to monitoring are the BS-ML-SAP (Strategic Action Plan for the Management and Abatement of Marine Litter in the Black Sea Region, http://www.blacksea-commission.org/\_publ-ML.asp) and the Plan for Cetaceans conservation<sup>16</sup>,

Sustainable use of commercial fish stocks and other marine living resources. Restore/rehabilitate stocks of commercial marine living resources.

#### Conservation of Black Sea Biodiversity and Habitats through:

Reduce the risk of extinction of threatened species. Conserve coastal and marine habitats and landscapes. Reduce and manage human mediated species introductions

#### • Reduce eutrophication through:

Reduce nutrients originating from land based sources, including atmospheric emissions.

Ensure Good Water Quality for Human Health, Recreational Use and Aquatic Biota through:

Reduce pollutants originating from land based sources, including atmospheric emissions. Reduce pollutants originating from shipping activities and offshore installations

<sup>15</sup> The Danube River Protection Convention is the legal instrument for co-operation and transboundary water management in the Danube River Basin, signed by eleven of the Danube Riparian States and the EC, including three Black Sea states: Bulgaria, Romania and Ukraine. The International Commission for the Protection of the Danube River (ICPDR) is the implementing body under the Convention on Cooperation for the Protection and Sustainable Use of the Danube River. (Danube River Protection Convention, DRPC) and serves as the platform for coordination to develop and establish the Danube River Basin Management Plan (DRBMP). The Danube River Basin District has been defined in the frame of the work of the ICPDR. It covers 1) the Danube River Basin, 2) the Black Sea coastal catchments on Romanian territory, and 3) the Black Sea coastal waters along the Romanian and partly the Ukrainian coast.

<sup>16</sup> Conservation Plan for Black Sea Cetaceans. prepared under the auspices of the ACCOBAMS and BSC Secretariats by international group of experts (2005). It was considered and supported by the Round Table on Conservation of Black Sea Cetaceans (May 2006), commended by the ACCOBAMS Scientific Committee (SC4) and the 15th Meeting of the Black Sea Commission (November 2006). The Plan was adopted by the ACCOBAMS Meeting of Parties (MoP3, Res. 3.11, October 2007). Later it was partly incorporated into the Strategic Action Plan for the Environmental Protection and Rehabilitation of the Black Sea (adopted in April 2009).

<sup>&</sup>lt;sup>13</sup> The Bucharest Convention sets out the overall objectives and obligations of the contracting Parties (Bulgaria, Georgia, Romania, Russian Federation, Turkey and Ukraine), the actual implementation of each of these is to be ensured through more detailed and specific protocols. To date, the Black Sea States have ratified the following implementing protocols:

Protocol on Protection of the Black Sea Marine Environment against Pollution from Land-based Sources (the revised Protocol has been signed in 2009, however, not yet ratified)

Protocol on Cooperation in Combating Pollution of the Black Sea marine Environment by Oil and Other Harmful Substances in Emergency Situations

Protocol on the Protection of the Black Sea marine Environment against Pollution by Dumping

Protocol on the Black Sea Biodiversity and Landscape Conservation (signed in 2003 and enforced in 2011).

<sup>&</sup>lt;sup>14</sup> Strategic Action Plan for the Rehabilitation and Protection of the Black Sea, signed in 1996 by all Black Sea states, amended and re-signed on 17th of April 20009. The SAP recognizes the same environment threats as those identified by the MSFD (loss/degradation of biodiversity/habitats, contamination by dangerous substances/nutrients and impacts of climate change), however, sets no environment targets, but only operational according to four Ecosystem Quality Objectives formulated as follow:

<sup>•</sup> Preserve commercial marine living resources through:

unfortunately both documents stay in draft and pending for adoption by the BSC. The draft Action Plan for the implementation of the Biodiversity Protocol to the Bucharest Convention contains provisions for monitoring and data collection, however, it is in need for a serious revision and thereafter adoption by the BSC.

#### **NATIONAL**

Environmental legislation is fully harmonized with the EU acquis, however, the actual implementation is yet far from satisfactory.

Table 7. Inventory of monitoring-related national legal/policy documents in Bulgaria

| N   | Title of National Legal Act/Policy                                                                                                                                                                                                                                       | dd.mm.yy                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 1.  | National Law for the biological diversity                                                                                                                                                                                                                                | 24.04.2012 (last update)                  |
| 2.  | Act for protection of biodiversity                                                                                                                                                                                                                                       | 09.08.2002 /last<br>amendment 24.04.2012/ |
| 3.  | National Law for the protected areas                                                                                                                                                                                                                                     |                                           |
| 4.  | Protection Areas Act (http://www3.moew.government.bg/files/file/PNOOP/Acts_in_English/Protected_Areas_Act.pdf)                                                                                                                                                           | 11.11.1998 /last<br>amendment 08.03.2011  |
| 5.  | Ordinance for elaboration of management plans for protected areas                                                                                                                                                                                                        | 15.02.2000                                |
| 6.  | National Water Act                                                                                                                                                                                                                                                       | 11.08.2006/21.11.2012                     |
| 7.  | Fisheries and Aquaculture Act                                                                                                                                                                                                                                            | 24.04.2001 /last<br>amendment 08.03.2011/ |
| 8.  | Bulgarian national programme for collection, management and use of fisheries data (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:060:0001:0012:EN:PDF)                                                                                                 | 2011-2013                                 |
| 9.  | Environmental protection act (http://www3.moew.government.bg/files/file/PNOOP/Acts_in_English/Environmental_Protection_Act.pdf)                                                                                                                                          | 25.09.2002 /last<br>amendment 24.04.2012/ |
| 10  | On EIA in transboundary aspect (http://www3.moew.government.bg/files/file/Industry/EIA/KONVENCIQ_za_ocenka_na_vyzdejst vieto_vyrhu_okolnata_sreda_v_transgranicen_kontekst.pdf)                                                                                          |                                           |
| 11. | http://www3.moew.government.bg/files/file/Industry/Legislation/Naredbi/NAREDBA_KR.pdf                                                                                                                                                                                    |                                           |
| 12. | On the rules for ecological assessments of plans and programmes (http://www3.moew.government.bg/files/file/Legislation/Naredbi/NAREDBA_za_usloviqta_i_red a_za_izvyrsvane_na_ekologicna_ocenka_na_planove_i_programi_Zagl_izm_DV_brpdf)                                  |                                           |
| 13. | On EIA (http://www3.moew.government.bg/files/file/Legislation/Naredbi/NAREDBA_za_usloviqta_i_red a_za_izvyrsvane_na_ocenka_na_vyzdejstvieto_vyrhu_okolnata_sreda_Zagl_izm_D.pdf)                                                                                         |                                           |
| 14. | Water Act (http://www3.moew.government.bg/files/file/PNOOP/Acts_in_English/Water_Act.pdf)                                                                                                                                                                                | 28.01.2000 /last<br>amendment 01.01.2011/ |
| 15. | Ordinance N 1 for water monitoring /repealing Order N 5 for monitoring of water/ (http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N1_monitvodi.pdf)                                                                                                   | 11.04.2011                                |
| 16. | Ordinance N 2 for protection of water from pollution from agricultural sources /repealing Order N 2 for protection of water from pollution from agricultural sources since 16/10/2000 /http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N2_nitrati.pdf | 13/09/2007                                |
| 17. | http://www3.moew.government.bg/files/file/Water/Legislation/Naredbi/vodi/NAREDBA_2.pdf                                                                                                                                                                                   |                                           |
| 18. | http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N3_SOZ.pdf                                                                                                                                                                                            |                                           |
| 19. | http://www3.moew.government.bg/files/file/Water/Legislation/Naredbi/vodi/N-3predost_informaciq_naucni.pdf                                                                                                                                                                |                                           |
| 20. | http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N4_organizmi.pdf                                                                                                                                                                                      |                                           |
| 21. | Ordinance N 5 for management of bathing water quality http://www3.moew.government.bg/file/Legislation/Naredbi/vodi/N5_uprkypane.pdf                                                                                                                                      | 10/06/2008                                |
| 22. | http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N6 opasni v-va.pdf                                                                                                                                                                                    |                                           |
| 23. | Ordinance Nº 8, Quality of Marine Coastal Waters  Ministry of Environment and Waters, Ministry of Health, Ministry of Regional Development  (http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N8_kraibrvodi.pdf)                                       | 02/02/2001                                |
| 24. | Ordinance for ecological quality standards for priority substances and some other pollutants (http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N_standarti_priorit_ve6t _zamyrsiteli.pdf)                                                              | 09/11/2010                                |
| 25. | http://www3.moew.government.bg/files/file/Legislation/Naredbi/vodi/N_morskite_vodi.pdf                                                                                                                                                                                   |                                           |
| 26. | http://www3.moew.government.bg/files/file/PNOOP/Acts_in_English/Clean_Ambient_Air_Act.pdf                                                                                                                                                                                |                                           |

| N   | Title of National Legal Act/Policy                                                                                                                                                    | dd.mm.yy     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 27. | http://www3.moew.government.bg/files/file/PNOOP/Acts_in_English/Soils_Act.pdf                                                                                                         |              |
| 28. | Ordinance N 11 for the quality of bathing water                                                                                                                                       | 25/02/2002   |
| 29. | Ordinance/Ministerial order No 273 for protection of the environment in marine water and implementation of MSFD http://www.ciela.net/freestategazette/OpenDocument.aspx?id=2135707230 | 30.11.2010   |
| 30. | Ordinance N 13 for the characterisation of surface water                                                                                                                              | 08/05/2007   |
| 31. | Ministerial ordinance N 321 for establishment of priority and priority dangerous substances in water area                                                                             | 05/06/2007   |
| 32. | Ministerial order N 715                                                                                                                                                               | 02. 08. 2010 |
| 33. | Plan for the water management in the Black Sea Region (Basin), Directive 2000/60/EC                                                                                                   | 22.03.2010   |

#### **ROMANIA**

In Romania, the environmental legislation is fully harmonized with the EU acquis, the actual implementation is reflected in numerous measures taken to improve the environment and various types of monitoring organized to provide the decision-makers with data/information needed for science-based management of environmental protection.

Table 8. Inventory of monitoring-related national legal/policy documents in Romania

| N   | Title of National Legal Act/Policy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dd.mm.yy    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.  | Law no. 98/1992 ratifying the Convention on the Protection of Black Sea Against Pollution,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.09.1992  |
| 2.  | Law no 6 / 1993 ratifying the International Convention for the Prevention of Pollution from Ship from 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08.03.1993  |
| 3.  | Law No. 82/1993 on the Constitution of the Biosphere Reserve "Danube Delta"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.11.1993  |
| 4.  | Law no. 30/1995 ratifying the Convention on the Protection and Use of Transboundary Watercourses and<br>International Lakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03.05.1995  |
| 5.  | Law No. 137/1995 on Environmental Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.12.1995  |
| 6.  | Law no. 107/ 1996 (* updated * in 1 January, 2012) WATERS LAW Updated form of that legislation until 1 January 2012 to include all changes and additions made by: JUDGMENT no. 83 of March 15, 1997 repealed by Decision no. 948 of November 15, 1999, Law no. 192 of April 19, 2001, Emergency Ordinance no. 107 of September 5, 2002, Law no. 404 of October 7, 2003, Law no. 310 of June 28, 2004, Law no. 112 of May 4, 2006, Emergency Ordinance no. 12 of 28 February 2007, Emergency Ordinance no. 130 of November 12, 2007, Emergency Ordinance no. 3 of 5 February 2010, Law no. 146 of July 12, 2010, Emergency Ordinance no. 64 of 29 June 2011, Emergency Ordinance no. 71 of 31 August 2011. | 08.10.1996  |
| 7.  | Law no. 160 / 2000 approving Government Ordinance no. 14/2000 ratifying the Convention preparedness, response and cooperation in case of oil pollution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03.10.2000  |
| 8.  | H.G. 472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.06.2000  |
| 9.  | O.U.G. 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.11.2000  |
| 10. | Law 462/2001 on the EC Habitats Directive transposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2001        |
| 11. | Order No. 179/2001 regarding the Registering and transmission of the data related with the marine fishing activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01.06.2001  |
| 12. | Technological Development and Innovation (2001-2005) approved by the Government Decision no. 556/2001. Government Decision no. 556/2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.06.2001  |
| 13. | Order No. 262/2001 regarding the Preparation of the Directory of Vessels and Fishing boats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.07.2001  |
| 14. | Order no. 422/2001 for approval of the Regulation on the conditions for development of the commercial fishing activities in the Black Sea waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.10.2001  |
| 15. | Law no. 746/2001 ratifying the Agreement on privileges and immunities of the Marine Environment Protection Committee of the Black Sea, signed in Istanbul on April 28, 2000 - Official Gazette no. 842/28.12.2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.12.2001  |
| 16. | NTPA001 - Norms for setting charging with pollutants of industrial and urban waste from disposal in natural receivers (Regulatory limits on pollutants discharges)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.02.2002  |
| 17. | NTPA002 - Norms for wastewater discharge conditions in the local sewerage networks and treatment plants directly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28 .02.2002 |
| 18. | H.G. No. 459 from 16 May 2002 regarding the approval of quality norms for waters in natural areas arranged for bathing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.05.2002  |
| 19. | GD No 352/2005 (OJ 398, 11.05.2005) amending GD No 188/2002 (OJ 187, 20.03.2002) for the approval of norms concerning the conditions of discharging the wastewater into the aquatic environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.05.2005  |
| 20. | O.M. 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.06.2002  |
| 21. | Law no. 148/2002 on water quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 08.07.2002  |
| 22. | H.G. 856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.08.2002  |
| 23. | Law no. 17/1990 on the legal status of marine waters of the territorial sea and contiguous zone of Romania, supplemented and amended by Law 36/2002 and republished - Official Gazette no. 775/21.10.2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.10.2002  |

| N          | Title of National Legal Act/Policy                                                                                                                                                                                                | dd.mm.yy                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 24.        | Emergency Ordinance no. 202/2002 on integrated coastal zone management, with subsequent amendments                                                                                                                                | In the Official<br>Gazette<br>published:<br>12.28.2002                         |
| 25.        | H.G. 1593 (Government Decision no. 1593/2002 on National Plan preparation, response and cooperation in case of marine pollution by oil and other harmful substances, with subsequent amendments)                                  | 18.12.2002 (In<br>Official<br>Gazette<br>published:<br>02.01.2003)             |
| 26.        | Law 271/2003 for ratifying the protocols of the Convention on Long-range Transboundary Air Pollution (CLRTAP)                                                                                                                     | 2003                                                                           |
| 27.        | Law no. 280/2003 approving Government Emergency Ordinance no. 202/2002 on integrated management of coastal areas - Official Gazette no. 454/26.06.2003                                                                            | 26.06.2003                                                                     |
| 28.        | Order no. 818/2003 Procedure for issuance of integrated environmental permit                                                                                                                                                      | 13.11.2003                                                                     |
| 29.        | H.G. No. 88 from 29 January 2004 regarding the approval of norms for surveillance, sanitary inspection and control of natural areas used for bathing                                                                              | 29.01.2004                                                                     |
| 30.        | 5                                                                                                                                                                                                                                 | 12.11.2004                                                                     |
| 31.        | Emergency Ordinance no. 152/2005 concerning integrated pollution prevention and control  Government Emergency Ordinance 195/2005 approved by Law 265/2006 on environmental protection, with subsequent amendments and completions | 30.11.2005<br>22.12.2005<br>(Official<br>Gazette<br>(published:<br>30/12/2005) |
| 33.        | Governmental Decision H.G no. 1856/2005 (MOf.23/11.01.2006) on the national allowable emissions limits for specific atmospheric pollutants                                                                                        | 11.01.2006                                                                     |
| 34.        | Order no 31 for the approval of the Manual (Handbook) of the Modernization and Development of the Integrated Monitoring System of Waters in Romania (SMIAR)                                                                       | 13.01.2006                                                                     |
| 35.        | Order No. 161/2006 for the approval of the Normative for the classification of the quality of surface waters in order to establish the ecological status of water bodies                                                          | 16.02.2006                                                                     |
| 36.        | Order No. 161 for the approval of the Normative for the classification of the quality of surface waters in order to establish the ecological status of water bodies                                                               | 16.02.2006                                                                     |
| 37.        | Law /2006 for approving Government Emergency Ordinance no. 152/2005 concerning integrated pollution prevention and control                                                                                                        | 11.04.2006                                                                     |
| 38.        | Order no. 262/2006 regarding conservation of the sturgeon populations from natural waters                                                                                                                                         | 18.04.2006                                                                     |
| 39.        | Law 111/1996 republished in 2006, on the safe deployment, settlement, authorization and control of nuclear activities with subsequent amendments and completions                                                                  | 27.06.2006                                                                     |
| 40.        | O.M. 661                                                                                                                                                                                                                          | 28.06.2006                                                                     |
| 41.        | O.M. 662 /2006 regarding the approval procedure and the powers to issue permits and licenses for water management)                                                                                                                | 28.06.2006                                                                     |
| 42.        | Law no. 265 approving Government Emergency Ordinance no. 195/2005 on environmental protection                                                                                                                                     | 29.06.2006                                                                     |
| 43.        | Law no. 27 approving Government Emergency Ordinance no. 61/2006 amending and completing Government<br>Emergency Ordinance no. 78/2000 on waste                                                                                    | 15.01.2007                                                                     |
| 44.<br>45. | Law No 310/2004 (OJ 584, 30.06.2004) amending Law No 107/1996 (OJ 244, 08.10.1996) (Water Law) O.M. 448                                                                                                                           | 28.06.2004<br>21.03.2007                                                       |
| 46.        | O.U.G. 68                                                                                                                                                                                                                         | 28.06.2007                                                                     |
| 47.        | Emergency Ordinance no. 57 of 20 June 2007 on the regime of protected natural habitats, flora and fauna                                                                                                                           | 29.06.2007                                                                     |
| 48.        | H.G. 568/2001 Decision establishing technical requirements for limiting volatile organic compounds resulting from the storage, handling and distribution of petrol at terminals and service stations                              | 29.08.2007                                                                     |
| 49.        | Decision no. 1284 of October 24, 2007<br>the declaration of Special Protection Areas as part of the European ecological network Natura 2000 in<br>Romania                                                                         | 31.10. 2007                                                                    |
| 50.        | O.M. 1798 /2007 Procedure for issuing the environmental permit)                                                                                                                                                                   | 19.11.2007                                                                     |
| 51.        | Order No. 1888 for the approval of the list of organohalogenate substances and heavy metals, and the maximum admissible limits of the organohalogenate and heavy metals in water and sediments                                    | 28.11.2007                                                                     |
| 52.        | Government Emergency Ordinance No. 23 /2008 on Fishing Fund, Fishery and Aquaculture                                                                                                                                              | 05.03.2008                                                                     |
| 53.        | Order no. 342/2008 on minimal size of the aquatic living resources  H.G. No. 546 from 21 May 2008 regarding the                                                                                                                   | 12.03.2008                                                                     |
| 54.<br>55. | management of bathing water  Order no. 344/2008 for approval of the operational and functional manner of fishing vessel and boats file                                                                                            | 21.05.2008<br>29.05.2008                                                       |
| 56.        | Order nr. 449/2008 on technical characteristics and practice conditions for fishing gears used in the commercial fishing                                                                                                          | 11.08.2008                                                                     |
| 57.        | H.G. 445                                                                                                                                                                                                                          | 08.04.2009                                                                     |
| 58.        | Law 317/2009 approving Government Emergency Ordinance OUG 23/2008 on fishing and aquaculture                                                                                                                                      | 13.10.2009                                                                     |
| 59.        | The Emergency Ordinance no. 71 (OUG 71/2010) for the establishment of the marine strategy                                                                                                                                         | 02.07.2010                                                                     |
| 60.        | Law 146                                                                                                                                                                                                                           | 19.07.2010                                                                     |
| 61.        | O.M. 135  LAW. 205 of November 11, 2010, approving Government Emergency Ordinance no. 40/2010 for the                                                                                                                             | 10.02.2010                                                                     |
| 62.        | amendment the Government Emergency Ordinance no. 152/2005 concerning integrated pollution prevention and control                                                                                                                  | 16.11.2010                                                                     |
|            | Ministry of Environment Order 1978/2010 on approval of the organization and functioning of the National                                                                                                                           | <u> </u>                                                                       |
| 63.        | Network of Environmental Radioactivity Surveillance  Order No. 1591/1110 from 30 December 2010 regarding the approval for carrying out the national health                                                                        | 19.11.2010<br>30.12.2010                                                       |

| N   | Title of National Legal Act/Policy                                                                                                                                                                                                     | dd.mm.yy   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | programs for 2011 and 2012                                                                                                                                                                                                             |            |
| 65. | Order no. 183 of March 14, 2011 regarding the methodology for monitoring and evaluation of bathing areas                                                                                                                               | 14.03.2011 |
| 66. | Law no.6/2011 for the approval OUG 71/2011 for the establishment of the marine strategy                                                                                                                                                | 7.03.2011  |
| 67. | The Emergency Ordinance no. 57 for marine protected areas, natural habitats, and wild flora and fauna conservation, approved with changes and completions by Law no. 49/2011                                                           | 16.04.2011 |
| 68. | Emergency Ordinance no. 51 of June 8, 2011, amending and supplementing Law no. 17/1990 on the legal status of marine waters, territorial sea, the contiguous zone and exclusive economic zones of Romania                              | 08.06.2011 |
| 69. | Law 211/2011 on waste                                                                                                                                                                                                                  | 15.11.2011 |
| 70. | Law no.218/24 November 2011 for the ratification of the Protocol on preserving biodiversity and landscape in the Black Sea regarding the Convention on the Protection of Black Sea against pollution, signed in Sofia, in 14 June 2004 | 24.11.2011 |
| 71. | Norm on wastewater discharge conditions in the local sewerage network and sewage treatment plants directly approved by Government Decision no. 188/2002, amended by Government Decision no. 352/2005                                   | 20.03.2012 |
| 72. | Norm on wastewater discharge conditions in the local sewerage network and sewage treatment plants directly approved by Government Decision no. 188/2002, amended by Government Decision no. 352/2005                                   | 20.03.2012 |

There is a National Strategy for Fisheries and Aquaculture, which is not mentioned in the Table above. Romania together with Bulgaria started development and implementation of national data collection programs (EC 199/2008) for the same period: 2011-2013 (new programs). First program was initiated in 2008 for both BG and RO

#### **TURKEY**

#### Table 9. Inventory of monitoring-related national legal/policy documents in Turkey

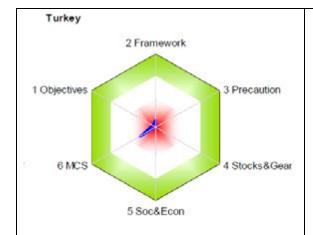
| N   | Title of National Legal Act/Policy                                                                                                                     | dd.mm.yy                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1.  | Fisheries Law 1380                                                                                                                                     | 22.03.1971/amended in 1983              |
| 2.  | National parks Law                                                                                                                                     | 1983                                    |
| 3.  | Water Law N 831                                                                                                                                        |                                         |
| 4.  | Environment Protection Law                                                                                                                             | 09.08.1983/amended in 2006 (26.04.2006) |
| 5.  | Building Law                                                                                                                                           | 03.05.1985                              |
| 6.  | Coastal Law                                                                                                                                            | 04.04.1990                              |
| 7.  | Regulation on Fisheries No.22223                                                                                                                       | 10.03.1995                              |
| 8.  | Regulation on Environmental Impact Assessment                                                                                                          | 16.12.2003                              |
| 9.  | Regulation on the protection of waters against pollution caused by nitrates from agricultural sources                                                  | 18.02.2004                              |
| 10. | Regulation on Aquaculture No.25507                                                                                                                     | 29.06.2004                              |
| 11. | Regulation on CITES                                                                                                                                    | 06.08.2004                              |
| 12. | Water Pollution Control Regulations                                                                                                                    | 31.12.2004/modified                     |
|     |                                                                                                                                                        | 13.02.2008                              |
| 13. | Law Pertaining to Principles of Emergency Response and Compensation for Damages in Pollution of Marine Environment by Oil and Other Harmful Substances | 11.03.2005                              |
| 14. | By-law of the Control of Hazardous Wastes                                                                                                              | 14.03.2005                              |
| 15. | By-law of the Control of the Pollution in Water and the Water Environment caused by Hazardous Substances                                               | 26.11.2005                              |
| 16. | Municipal Wastewater Treatment Policy (Regulation on the Urban Waste Water Treatment)                                                                  | 08.01.2006                              |
| 17. | Regulation of Bathing Water Directive                                                                                                                  | 09.01.2006                              |
| 18. | By-law on control of air pollution from industrial plants                                                                                              | 22.07.2006                              |
| 19. | Packing Waste Control Legislation                                                                                                                      | 24.06.2007                              |
| 20. | Sensitive and Less Sensitive Water Areas Communique Concerning urban Wastewater Treatment Regulation                                                   | 27.06.2009                              |
| 21. | Control of Air Pollution from Industry Legislation                                                                                                     | 03.07.2009                              |
| 22. | Sanitary Landfill of Waste Legislation                                                                                                                 | 26.03.2010                              |

#### Main achievements and gaps encountered at the legal/policy level

National policies of the beneficiary countries are based on the precautionary approach, use of low and non-waste technologies, integrated marine environmental protection with other areas of policy, development of economic incentives for environmentally-friendly industry and agriculture, as well as the polluter pays principle and user fees and application of environmental impact assessment procedures to all sectors.

Licensing-monitoring-enforcement-compliance mechanism is well developed in the beneficiary countries. Any water use is subject to authorisation in the form of a water management permit and water management license. Consequently the legal basis for compliance monitoring is in place.

In Bulgaria, regulations for the organization of monitoring activities in the Black Sea coastal waters have been available since 1998 and modified with additional regulations in 2005 and 2006 to have a wider scope to include biological quality elements considering the WFD requirements. There is a National Plan having a long-term strategic aim for the protection, recovery and sustainable management of biodiversity in the country for optimal conditions, environment and perspectives for human life, though it is not specifically designed to address the biodiversity decline in the Black Sea. The overall strategy is based on ecosystem approach and requires relevant monitoring. The Plan has been operational since 2000. All conservation measures and necessary actions for species, habitats and landscapes are considered within the Plan. Measures for protection of cetaceans, expansion of conservation areas etc. were also integrated in this Plan. The European Habitat directive have been implemented under NATURA2000, however, habitats monitoring is poorly regulated in practice. The EU Common Fishery Policy (CFP) is implemented and EUROSTAT methods in the area of fisheries statistics are used. In the field of inspection and control, resource and fleet management, the Bulgarian Fisheries and Aquaculture Act of 2001 was amended in 2005 and 2006 to provide the legal basis for granting fishing licenses and for the development of a vessel monitoring system (satellitebased fishing vessel monitoring is already in place). The EU legal requirements for catch and landings registration and for keeping logbooks at vessels have been transposed and are enforced. The main strategic targets (but not environmental) for the Bulgarian fishery have been developed in the National Strategic Plan for Fisheries and Aquaculture for the period 2007-2013.


In **Romania**, Black Sea Monitoring System, including land-based point sources discharges, is legally regulated and organised since the early 1980s. The system was improved considering the WFD provisions since 2000. The National Strategy and Action Plan for the Biological Diversity Conservation and Sustainable Use of living resources in Romania (1996) are being implemented, and was improved in 2010. There is also a National Plan on protection of marine mammals (2004). NATURA 2000 and Emerald Site Networks are developed. National Black Sea Strategic Action Plan has been prepared but is not yet adopted by any national law. The Common Fisheries Policy (CFP) is implemented, national policies regulate the fishery inspections. National Strategic Plan (NSP) for Fisheries and Aquaculture in Romania was prepared according art. 15 of Council Regulation (EC) nr.1198/2006 of 27 July 2006 on European Fisheries Fund and Law. 192/2001 on fish, fisheries and aquaculture. Order no 31 for the approval of the Manual (Handbook) of the Modernization and Development of the Integrated Monitoring System of Waters in Romania (SMIAR, 2006) has been an important milestone paving improvements in the Romanian monitoring programmes.

In **Turkey** the EU Directives governing environment protection have been considered to a possible extent. The Constitution together with various laws, by-laws and international conventions regarding nature conservation makes up the legal framework for the conservation and sustainability of biodiversity in Turkey.

The NAP named Black Sea National Action Plan for land based pollutants has been approved in 2003. The river basin protection plans prepared (and some are still under preparation)<sup>17</sup> by TUBITAK for

<sup>&</sup>lt;sup>17</sup> Action plans for 11 river basins, including Yeşilırmak and Kızılırmak, have been completed among the intended action plans for 25 basins in Turkey and action plans for the remaining river basins will be accomplished in 2013.

the Ministry of Environment may be considered as further work complementing the NAP (2003) for the Black Sea. Major gaps are still present in the field of fishery and habitats protection, however, monitoring, control and surveillance are well advanced, as demonstrated for the fishery sector below.



- 1. Objectives: Management objectives
- 2. **Framework**: Regulatory framework
- 3. Precaution: Precautionary approach
- 4. **Stocks&Gear**: Regulation of stocks, fleets and fishing gears
- 5. Soc&Econ: Social and economic factors
- 6. MCS: Monitoring, control and surveillance

Compliance of TR with the FAO Code of Conduct for Responsible Fisheries (extracted from Pitcher et al., 2006, http://www.fisheries.ubc.ca/publications/evaluations-compliance-fao-un-code-conduct-responsible-fisheries).

The inspection and control of sources of pollution and in fishery are well developed. However, monitoring in the Black Sea is regulated by no specific policy. List of Black Sea-priority substances is not yet fully developed. Standards for BS water quality are in place.

All beneficiary countries are part of BSIMAP (Black Sea Integrated Monitoring and Assessment Programme, http://www.blacksea-commission.org/\_bsimap.asp), however, compliance with its requirements is not regulated in the national legislation.

There is a Joint **BG&RO Commission on Water Management**, which meets twice per year since 2004, when the Agreement was set (the last time on 20-21<sup>st</sup> Nov. 2012) and dealt with WFD, MSFD and Floods Directive implementation in a harmonized manner in Bulgaria and Romania. This Commission has approved a Joint Program for monitoring of coastal waters related to transboundary issues in the frames of the WFD. The sampling stations included are at Krapetz and Shabla in Bulgaria, and at Vama Veche in Romania<sup>18</sup>. This Commission planned to support joint BG&RO work in relation to the MSFD as well, such as discussions on Initial Assessments and harmonised approach for definition of GES, and environmental targets. The factual implementation of the BG&RO Agreement covered until present:

- Inter-calibration in the frames of the WFD (GIG Black Sea);
- First meeting to dicuss MSFD approach and harmonisation activities (20-21.11.2012).

Both parties (BG and RO) have agreed on exchanging information regarding the sampling and analysis methods as well as for the equipments used for general indicators, specific pollutants and priority substances analysis. The parties agreed to expand the assessment of biological quality elements from the coastal waters to marine waters.

<sup>&</sup>lt;sup>18</sup> The following parameters have been identified for 4 times a tear sampling: pH, T °C, Seccki depth, Salinity, O2, oxygen saturayion, BOD5, ammonia, nitrates, nitrites, phosphates, Ntotal, Ptotal, Silicate, TOC. Among priority substances: Anthracene, Cadmium, Lead, Mercury, Nickel, PAHs, Naphthalane, Flouranthene, Hexachlorobenzene (sampled 2 times a year). Specific chemical parameters (sampled 2 times a year): polychlorinated bithenyles, DDD, Zink, Copper; BiologyL phytoplankton (taxonomy, Chl, biomass, seasonal), Macroinvertebrates (one a year for calculation of AMBI, M-AMBI and Diversity index H (bits/ind)).

## To conclude on the major gaps of the legal/policy framework in relation to monitoring. In existing national legislation/policy there are:

- 1. No specific Action Plan for the Black Sea EEZ with clear operational targets<sup>19</sup>;
- 2. No environment targets for pressures, state and impact which would allow designing a full-body monitoring program in line with the requirements of the MSFD (though they are in process of development in relation with the obligations stemming from the MSFD);
- 3. No regulations for monitoring NIS<sup>20</sup> and ballast water;
- 4. No Code of Practice to reduce fishing litter or any other litter on coast and in the Sea and monitor efficiency of measures;
- 5. No environment targets for control on the level of underwater noise<sup>21</sup>;
- 6. No specific regulations for the development of operational monitoring to support environment protection and its integration into national monitoring programmes;
- 7. No regulations for coordinated and regular monitoring of pressures/impacts;
- 8. No regulations for inter-sectoral cooperation in monitoring and data management;
- 9. No regulations for exchange of data between sectors<sup>22</sup>.

<sup>19</sup> For instance, the Bulgarian Plan for the Black Sea Basin covers only territorial waters of the Black Sea in line with the WFD obligations.

<sup>&</sup>lt;sup>20</sup> The Ballast Water Convention 2004 has not been signed by BG, RO and TR.

<sup>&</sup>lt;sup>21</sup> In TR there is a Regulation on management and assessment of environmental noise (published on 04.06.2010 dated and 27601 numbered Official Gazette), however, it does not deal specifically with underwater noise which environmental impact is not well know, in general, not only in the Black Sea region.

<sup>&</sup>lt;sup>22</sup> Actually, in TR there is such a regulation stating that all marine data should be delivered to the National Data Oceanographic Center (Office of Navigation, Hydrography and Oceanography, http://www.shodb.gov.tr/osinografi/data\_center.htm), however, in practice little is achieved in compliance with it

# 2. Responsible organizations (those which provide the budget for monitoring and approve of the programs)

The inventory of responsible organizations in the field of monitoring management, provided below, does not mean that all of them are involved by a single uniform inter-departmental and approved monitoring program in a network, which would institutionally frame the integrated monitoring (arrange its institutional organization, in other words), including distribution of responsibilities and arrangements for data exchange.

In the beneficiary countries the national funding for the routine monitoring in the Black Sea itself (without bathing water compliance) does not exceed annually 300 000 Euro per beneficiary country, on the average. In all countries, funding needs to be substantially increased to cover the requirements of the MSFD. Besides, the funding should be ensured in time on an annual basis (often funding is provided with delay, if any).

#### **BULGARIA**

The list of responsible organizations is long, which does not mean that the monitoring required under the MSFD implementation has been funded in time to provide well for the Initial Assessment of the state of Bulgarian Black Sea waters. Besides, in the near past there was a general overlap between the monitoring activities in the Black Sea financed by the Ministry of Environment and Ministry of Agriculture. The poor coordination between these two ministries was leading to duplication of efforts of two scientific institutions – IFR, Varna and IO-BAS, Varna, which carried out observations in the same areas habitually and often at the same time. The expensive ship time was therefore not efficiently governed, as well as the existing capacity to improve monitoring in geographical coverage and frequency of observation was not properly managed. Presently, fisheries statistics collation is not sufficiently coordinated

Table 10. Organizations providing funding for monitoring in Bulgaria

| Name of organization              | Postal address/webpage                                                      | Contact person (address, tel/fax, e-mail)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ministry of Environment and Water | 22 Maria-Louisa Blvd.q 1000 Sofia, Bulgaria http://www3.moew.government.bg/ | Ivelina Vassileva, Deputy minister Tel: 00359 2/ 940 61 81 E-mail: ivvasileva@moew.government.bg  Dipl. eng. Asen Lichev – Director of "Water management" Directorate 22 "Maria Louiza" bvd. http://www3.moew.government.bg phone: + 359 2 940 65 50  Neli Mutafova – "International cooperation department" /for Bucharest Convention, Bonn Convention/ 67 "William Gladstone" str., Sofia, 1000 phone: + 359 940 62 58 fax: +359 987 38 67 n.mutafova@moew.government.bg Kalina Stoianova – "National Service for the protection of the environment"/for CBD/ Sofia 1000, 22 "Maria Louiza" bvd. phone: +359 2 940 61 13 fax: +359 2 940 61 27 nnps@moew.government.bg |
|                                   |                                                                             | Irina Ivanova  "International cooperation department" /for CBD, Bern Convention, / 67 "William Gladstone" str., Sofia, 1000 phone: + 359 940 62 58 fax: + 359 987 38 67 itsivanova@moew.government.bg                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Name of                 | Postal address/webpage                              | Contact person (address, tel/fax, e-mail)               |
|-------------------------|-----------------------------------------------------|---------------------------------------------------------|
| organization            |                                                     |                                                         |
|                         |                                                     | Raina Hardalova "National Service for the protection    |
|                         |                                                     | of the environment", /for Bern Convention/              |
|                         |                                                     | phone: +359 2 940 61 63                                 |
|                         |                                                     | fax: +359 2 981 61 27                                   |
|                         |                                                     | hardalovar@moew.government.bg                           |
|                         |                                                     | Ruslan Serbezov "National Service for the protection    |
|                         |                                                     | of the environment", /for Bonn Convention/              |
|                         |                                                     | phone: +359 2 940 61 29                                 |
|                         |                                                     | fax: +359 2 988 59 13                                   |
|                         |                                                     | serbezov@moew.government.bg                             |
|                         |                                                     | Marinka Bogdanova -chief expert MSFD                    |
|                         |                                                     | 00359 /2/ 940 61 81                                     |
|                         |                                                     | bogdanovam@moew.government.bg                           |
| Black sea Basin         | Varna 9000                                          | dipl. eng. <b>Ventsislav Nikolov</b> – Director         |
| Directorate             | 33 "Alexander Diakovitch" str.                      | 33 "Alexander Diakovitch" str.                          |
| Directorate             | http://www.bsbd.org/v2/                             | http://www.bsbd.org/v2/                                 |
|                         | 11ctp.// www.b3bd.org/ v2/                          | e-mail: bdvarna@bsbd.org                                |
|                         |                                                     | phone: +359 52 631 447                                  |
|                         |                                                     | Monitoring experts:                                     |
|                         |                                                     | Phone: + 359 52 687 438                                 |
| Agricultural            | Sofia, 1373, Str. Suhodolska, 30                    | Prof. Slaveykov                                         |
| Academy/Ministry of     |                                                     | ,                                                       |
| Agriculture and Forest  |                                                     |                                                         |
| National Agency for     | Sofia 1606, Hristo Botev 17                         | office@iara.government.bg / tel. 00359 2/80 51 666 or + |
| Fisheries and           | www.iara.government.bg                              | 359 2 80 51 663, fax. 02/ 80 51 686                     |
| Aquaculture (NAFA),     |                                                     | Dr. Dragomir Gospodinov – executive director            |
| Bulgaria                |                                                     | 17 Hristo Botev Blvd, 1606 Sofia                        |
| Bulgarian Academy of    | Sofia,1040,1 15th November "Str.,                   | President: Acad.Stefan Vodenicharov                     |
| Science                 | 02/979 53 33; 02/979 52 23                          | Tel: (359 2) 981-66-22                                  |
| Selence                 | 02/01/01/01/01/01/01/01/01                          | presidentbas@cu.bas.bg                                  |
| Ministry of Education,  | http://www.mon.bg, http://www.bulfund.com/          | Minister: corr.member Nikolay Miloshev                  |
| Youth and Science       | http://www.minedu.government.bg/left_menu/ministry/ | ,                                                       |
| (Project Development    | Sofia 1000                                          |                                                         |
| Fund)                   | 2A Kniaz Dondukov Blvd                              |                                                         |
| Ministry of Health      | 5, Sveta Nedelja Square BG-1000 Sofia Bulgaria      | Minister:Desislava Atanasova                            |
|                         | http://www.mh.government.bg                         | 9301-239/101                                            |
|                         |                                                     | minister@mh.government.bg                               |
| European Commission     | J99- 05/1s, B-1049 Brussels                         | Antonio Cervantes                                       |
| DG Maritime Affairs and | 111 11, 11, 5 10 10 5. 0000.0                       | Antonio.cervantes@ec.europa.eu                          |
| Fisheries               |                                                     |                                                         |

Note: Some of the contact persons were recently changed, as the government of the political Party 'Gerb' was suspended, extraordinary elections will take place in May 2013.

There was a proposal to include into this table additional column, where the responsibilities of the organizations, including coordination, against the different MSFD descriptors to be identified. This will be done for all beneficiary countries in a special position paper of the MISIS project on the institutional framework of monitoring, its weaknesses and strengths, as well as on the options of further development.

#### **ROMANIA**

Funding in Romania for monitoring activities is provided, in general, on a regular basis, though sometimes with delays, which hampers the sustainability of the observations in terms of frequency per year. Certain overlaps are also encountered, which could be avoided through improved cooperation between the Ministry of Environment, Ministry of Education and Dobrogea Littoral Water Basin Administration.

Table 11. Organizations providing funding for monitoring in Romania

| Name of organization                              | Postal address/webpage                        | Contact person (address, tel/fax, e-mail)                |
|---------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| Ministry of Environment                           | Avenue Libertății 12, Sector5, Bucharest      | Otilia Mihail, Avenue Libertății 12, Sector 5, Bucharest |
| and Forests                                       | Web: http://www.mmediu.ro                     | Phone: +40 21 4089641                                    |
|                                                   |                                               | Email: otilia.mihail@mmediu.ro                           |
| Ministry of Health                                | Intr. Cristian Popişteanu, No. 1-3, Sector 1, | Dr. <b>Adriana Cârlan</b>                                |
|                                                   | Cod 010024, Bucharest                         | Email: adriana.carlan@ms.ro                              |
|                                                   | Web: http://www.ms.gov.ro                     |                                                          |
| Ministry of Education,                            | Str. Mendeleev, no. 21-25, cod 010362,        | Viorel Vulturescu                                        |
| Research, Youth and Sports                        | Sector 1, Bucharest                           | Tel: +40-21-319.23.26 / +40-21-319.23.27 / +40-21-       |
| /National Authority for                           | Web: http://www.ancs.ro                       | 319.23.28; Fax: +40-21-312.66.17                         |
| Scientific Research                               |                                               | viorel.vulturescu@ancs.ro; media@ancs.ro                 |
| National Environmental                            | Splaiul Independentei Bd. No. 294, Sector 6,  |                                                          |
| Protection Agency                                 | Bucharest, code 060031                        |                                                          |
|                                                   | Web: http://www.anpm.ro                       |                                                          |
| National Administration                           | Str. Edgar Quinet no. 6, Sector 1, Code       | Elena Tuchiu                                             |
| "Romanian Waters"                                 | 010018, Bucharest                             | +4021 3110146 / +4021 3122174                            |
| Bucharest                                         | Web: www.rowater.ro                           |                                                          |
| National Administration                           | Bd. Mircea Cel Batran no. 127 Constanta       | Camelia Pulbere                                          |
| "Dobrogea Littoral" Water<br>Basin Administration | Web: www.waterct.ro                           | +40241 673036 / +40241 673025                            |
| Ministry of Transport and                         | Bd. Dinicu Golescu no. 38                     | Olea Viorel Ion                                          |
| Infrastructure (for ports                         | Sector 1, Code 010873                         | Naval Direction                                          |
| areas sampling?)                                  | Bucharest                                     | +40 21 319 61 24                                         |
|                                                   | Web: http://www.mt.ro                         |                                                          |
| Romanian Academy of                               |                                               |                                                          |
| Science                                           |                                               |                                                          |
| Ministry of Environment                           | Str Transilvaniei, no.2, Sector 1, Bucharest  | Constantin Stroe                                         |
| and Climatic Change                               | Web: http://www.anpa.ro                       | +40 21 634 44 29,                                        |
| through National Agency for                       |                                               | constantin.stroe@anpa.ro                                 |
| Fisheries and Aquaculture                         |                                               |                                                          |
| (NAFA) – 50%                                      |                                               |                                                          |
| DG MARE – European                                | http://ec.europa.eu/dgs/maritimeaffairs_      | Antonio Cervantes                                        |
| Commission – 50%                                  | fisheries/index_en.htm                        | Antonio.cervantes@ec.europa.eu                           |

In Romania, fishery monitoring is financed by the National Agency for Fishery and Aquaculture and through projects. Between 2008-2012 fishery monitoring was financed by the Ministry of Agriculture through NAFA, from 2013 it will be financed by the Ministry of Environment and Climate Change through NAFA again. NAFA is presently under the Ministry of Environment and Climate Change, not under the Ministry of Agriculture

Some of the stakeholders contacted did not specify the sources of funding for their monitoring activities. Therefore, the list provided in Table 12 is not full and insufficiently reflects the financial mechanism in Turkey. The Ministry of Environment and Urban Planning (Urbanization) and the Ministry of Food, Agriculture and Livestock are the main funding organizations of monitoring. Funding is not always provided on a regular basis and is not sufficient to conduct an integrated monitoring with a required frequency (e.g. seasonal for standard hydrochemistry, biological quality parameters, etc.).

Table 12. Organizations providing funding for monitoring in Turkey

| Name of orga                                         | nization                                                                       | Postal address/webpage                                                                                                         | Contact person (address, tel/fax, e-mail)                                                                                     |
|------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Ministry of<br>Food,<br>Agriculture and<br>Livestock | od, Research and Policy P.K.51, 06171 Yenimahalle/ANK Tel:+90(312) 315 76 23   |                                                                                                                                | Erdinc VESKE, Technical Coordinator Tel: +90 312 343 20 59 /+90 312 315 76 23 – 237 erdincveske@gmail.com eveske@tagem.gov.tr |
|                                                      | DG Fisheries and<br>Aquaculture                                                | Balıkçılık ve Su Ürünleri Genel<br>Müdürlüğü Eskişehir Yolu 9. km<br>Lodumlu /ANKARA<br>Tel: 0312 287 33 60<br>www.bsgm.gov.tr | Erdinç GÜNEŞ Head of Department Tel: +90 312 286 4901 /3018 erdinc.gunes@tarim.gov.tr                                         |
| Ministry of<br>Environment<br>and<br>Urbanization    | DG, Environmental<br>Impact Assessment,<br>Permits and<br>Auditing/Inspections | Haymana Yolu 5. Km.<br>Gölbaşı/Ankara<br>www.lab-cevreorman.gov.tr;<br>http://www.csb.gov.tr/gm/ced/                           | Mr. Bilat Dikmen (Head of department)<br>+90 312 498 21 50/ 1335,<br>hselamoglu.caglayan@csb.gov.tr                           |
|                                                      | DG Environmental<br>Management                                                 | http://www.csb.gov.tr/gm/cygm/in<br>dex.php                                                                                    | Mr. Murat Turan, murat.turan@csb.gov.tr<br>huri.eyuboglu@csb.gov.tr                                                           |
| Ministry of<br>Forest and<br>Water<br>Management     |                                                                                | http://www.ormansu.gov.tr/                                                                                                     |                                                                                                                               |

Note: Research/monitoring is often funded by projects, where these projects might be financed by different ministries, private sector, EU, and by different countries. None of the universities or their overarching organizations (such as the Ministry of Science and Technology, Council of Science and Technology and the Council of High Education) provide funds for routine monitoring, but only limited funds for field surveys for research.

## To conclude on deficiencies in financing of monitoring.

In all beneficiary countries the financial mechanism, sustaining environmental monitoring programmes, is in need for improvement. In the case of Turkey and Bulgaria, financing for the implementation of monitoring programs is through competitive bidding, and usually for short periods of time which hampers the long-term development of the networks and investments in capacity building, as there are no long-term guarantees.

# 3. Type of monitoring, geographical scope, stations, parameters, frequency



In the beneficiary countries there is no common understanding of the different types of monitoring. For the purposes of this report the following explanations were given in the Questionnaire distributed to the Stakeholders:

- Environment routine complex monitoring;
- Ecotoxicological monitoring;
- Surveillance monitoring it is usually the environment monitoring for trends (complex and routine monitoring);
- Compliance monitoring it is the one checking the relevance of water quality and level of discharges against certain norms (governmentally established);
- Operational monitoring real time (satellites, radars, any automatic devices working for real-time collection of data).

The 'Diagnostic Report' of the BSC (named here the Diagnostic Report I) has briefly discussed the monitoring systems in BG, RO and TR until 2009. A lot of changes were expected to happen in relation with the WFD and MSFD implementation in the years to come. Major targets enlisted were:

- Maintain frequency of observations in line with WFD and MSFD (usually insufficiently attended);
- Ensure proper geographical coverage include open sea (usually missing in observations;
- Sustain stations and transects with long-term observations (and create network of Reference stations);
- Cover mandatory parameters and improve:
  - 1. Fish and other marine living resources stock assessments;
  - 2. Cetaceans surveys;
  - 3. Marine Litter in the sea;
  - 4. Contamination of sediments and biota;
  - 5. Habitats mapping, biodiversity assessments, etc.
- **Provide for harmonization** inter-comparison exercises, further development of guidelines, common understanding of GES, indicators, etc.;
- **Keep quality control and assurance** sustainable mode of implementation for monitoring and data management.

In the Diagnostic Report I, better coordination between authorities involved, less complicated organization and availability of a strategy for integrated monitoring were the main improvements recommended for the national level. The financial assistance provided in a sustainable way was reminded as vital to better coordinate and plan activities in monitoring and reporting.

#### Supporting activities mentioned to be taken into consideration were:

- Utilization of the **capacities of all Institutes** dealing with monitoring in the country (not only of those officially nominated by the Ministries of Environment or others to implement National Programmes).
- Avoiding overlapping of activities and efforts often two or more Institutes undertake observations in the same area without proper coordination.
- Capacity building regular trainings, bringing best available practices to the country, strengthening the collaboration between different authorities engaged in monitoring, further development of inter-ministerial mechanism, etc.

Further this Report describes the monitoring status quo as per 2012, reflecting the changes which happened compared to the time when the Diagnostic Report I was published (in 2010). It deals mainly with the first 4 categories of monitoring mentioned above (environment routine, ecotoxicological, surveillance and compliance monitoring). The operational monitoring development has been poorly described by the contacted stakeholders, it is dealt with in separate at the end of the Chapter.

#### **BULGARIA**

Environment (including compliance) monitoring and fisheries-related monitoring are under the responsibility of two different Ministries – Ministry of Environment and Water, and Ministry of Agriculture and Forests, respectively. The Ministry of Environment has no scientific institution affiliated and for the Black Sea monitoring (WFD and MSFD implementation) used to appoint responsible organizations through tenders. Since 2011, IO-BAS is officially appointed through a Ministerial order as the responsible organization for MSFD and WFD monitoring (www.stz.riew.e-gov.bg/files/file/.../NAREDBA\_1\_ot\_11042011.doc: Ordinance No.1/11.04.2011 of the Minister of Environment and water, Bulgaria; Ordinance / Ministerial order No 273 for protection of the environment in marine water and implementation of MSFD, 30.11.2010).

The pollution monitoring (in the sea) *sensu* MSFD is under the responsibility of IO-BAS, according to the Ministerial order No 273, mentioned above, and the hydrophysical parameters are officially responsibility of NIMH (National Institute for Hydrometeorology), including atmospheric pollution and sea level.

The compliance monitoring for various sources of land-based pollution is conducted by the Environmental Agencies of the Ministry of Environment (namely, Regional Inspectorates of Environment and Waters in Varna and Bourgas, as the Black Sea Basin Directorate in Varna is the main responsible body for the consequent data management). The Ministry of Agriculture through the Agricultural Academy directs the work of many scientific institutions, *inter alia* of the Institute of Fisheries in Varna (IFR). However, fisheries research is conducted not only by IFR-Varna, but also by the Institute of Oceanology (IO-BAS, Varna) since 2010, which is a Bulgarian Academy of Science (BAS)-subordinated organization. The Ministry of Agriculture also manages monitoring through tenders, which are often won by IO-BAS. Bathing water monitoring is under the responsibility of the Ministry of Health, and is implemented by its regional inspections.

There is no permanently established National Monitoring Program which would encompass the obligations under the WFD<sup>23</sup>, Habitat Directive and MSFD in an integrated manner, on an annual basis and would also specify the provisions of its regular implementation. IO-BAS was recently appointed as the main implementing organization of MSFD-related monitoring (Ref. to Ordinance 1/11.04.2011, MOEW), a Program was developed (sampling stations, parameters, frequency) and its implementation started in 2012, when the Ministry of Environment for the first time provided funding. For the WFD-related monitoring, IFR and IO-BAS participate. For the Habitat Directives, IBER-BAS is also involved (e.g. it has participated in a NATURE2000 national Project: "Extension of Natura 2000 Marine protected areas").

Map of the BG EEZ (meant to be covered by the MSFD) is given in Fig. 2. For the first time in 2012, the geographical coverage of the IO-BAS monitoring allowed for inclusion of stations beyond the area 30-40-miles offshore (which otherwise has been monitored since 1953 on a regular basis) so that to study BG waters in the whole EEZ. All other organizations, involved in a routine Black Sea environment monitoring, cover basically coastal waters only, or in rare cases the 30-miles zone (e.g. IFR, Varna, however, their observations are not regular during the last 10 years, as they used to be in 1953-2002.

01

<sup>&</sup>lt;sup>23</sup> The monitoring *sensu* WFD has started in 2006 with the first phase ended in 2011. Since 2012, the second cycle/phase has begun and a national Monitoring is well established at present (20 stations, 13 water bodies). The second cycle is designed to fill in the gaps in the parameters observed (mandatory but not monitored during the first cycle), and to comply with the frequency of sampling required by the WFD.

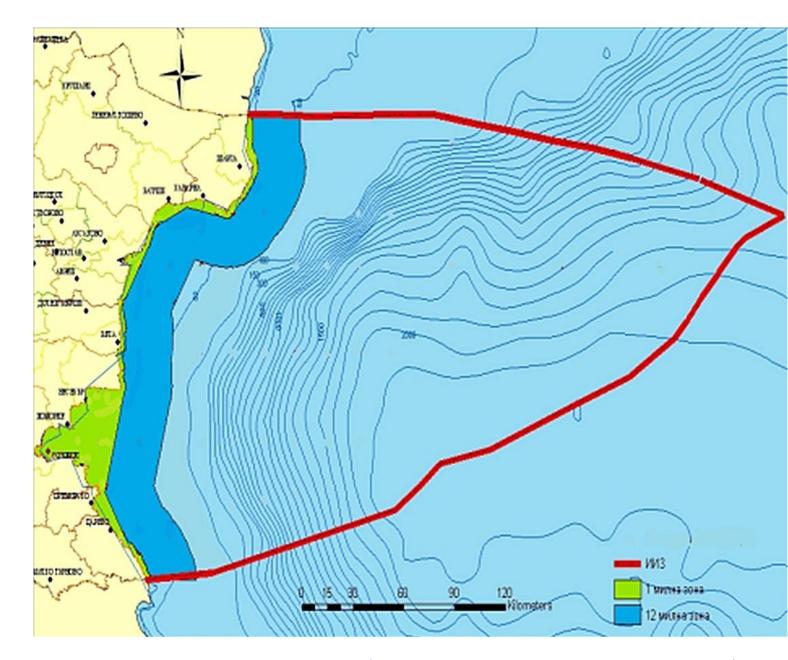



Figure 2. Bulgarian Black Sea waters (green - 1 mile zone, dark blue - 12 miles zone, red line - EEZ).

Table 13. Information on different types of Black Sea-related monitoring in Bulgaria

| Responsible org                                                                                             | nsible organization Ty                          |                                                                                       | Geographical Number of                                                              |                                         | Parameters                                                                                                                                                                          | Period                                                       | Related to human activity                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                                                                                                        | National<br>Monitoring<br>Program <sup>24</sup> | monitoring                                                                            | scope                                                                               | stations                                |                                                                                                                                                                                     | Frequency                                                    |                                                                                                                                                                                                                                      |
| Ministry of<br>Environment<br>and Water<br>(MoEW) <sup>25</sup>                                             | Yes <sup>26</sup>                               | Environment<br>al routine<br>and<br>Compliance<br>monitoring                          | Bulgarian,<br>surface, ground<br>and Black Sea<br>waters                            |                                         |                                                                                                                                                                                     |                                                              | Public health, Coastal and urban development, marine and riverine traffic, fishery and aquaculture, tourism and recreation, offshore gas and oil exploitation, agriculture and farming, various branches of industries <sup>27</sup> |
| National Agency<br>for Fishery and<br>Aquaculture<br>(NAFA) <sup>28</sup>                                   | No <sup>29</sup>                                | Surveillance<br>monitoring /<br>demersal<br>surveys and<br>hydroacousti<br>c survey / | Bulgarian Black<br>Sea                                                              |                                         | Fishery                                                                                                                                                                             | VMS – real time                                              | Fishery and agriculture                                                                                                                                                                                                              |
| Institute of Fishing Resources (IFR- Varna, NCAS) <sup>30</sup>                                             | Yes                                             | Environment<br>al routine<br>monitoring<br>Trawl                                      | Western Black<br>Sea<br>Western Black                                               | 15-35 (see<br>Table 14, Fig.<br>3)      | 5-31 (see Table 15,<br>16)                                                                                                                                                          | 1954-up to now<br>(Seasonally,<br>monthly)<br>1980-2009 (1-2 | Fishery and agriculture                                                                                                                                                                                                              |
| , , , , , , , , , , , , , , , , , , ,                                                                       | 163                                             | surveys                                                                               | Sea                                                                                 | 30                                      | 4 0                                                                                                                                                                                 | times per year) <sup>31</sup>                                |                                                                                                                                                                                                                                      |
| Institute of Biodiversity and Ecosystem Research-BAS, Laboratory of Marine Ecology (IBER-BAS) <sup>32</sup> | No                                              | Surveillance<br>monitoring<br>(see Table<br>17)                                       | South Bulgarian<br>Black Sea<br>(Bourgas Bay,<br>Cape Maslen<br>and Sozopol<br>Bay) | 1-10 (see<br>Table 18, Fig.<br>4)       | 6-11 (see Table 19,<br>20)                                                                                                                                                          | Since 1983 (May-<br>August basically)<br>(see Table 19)      | Public health, Coastal and urban<br>development, marine and riverine<br>traffic, fishery and aquaculture,<br>tourism and recreation, agriculture<br>and farming, various branches of<br>industries                                   |
| Institute of<br>Oceanology-BAS<br>(IO-BAS) <sup>33</sup>                                                    | Yes <sup>34</sup>                               | Environment routine complex monitoring                                                | Bulgarian Black<br>Sea area (<br>coastal, EEZ,<br>open sea)                         | 69 +18 (see<br>Table 21, 22,<br>Fig. 5) | 28 (see Table 23, 24)                                                                                                                                                               | irregular                                                    | Public health, Coastal and urban<br>development, marine and riverine<br>traffic, fishery and aquaculture,<br>tourism and recreation, agriculture                                                                                     |
|                                                                                                             |                                                 | Surveillance<br>monitoring<br>Operational                                             | Bulgarian Black<br>Sea area<br>Bulgarian Black                                      | 45 (Fig. 6, 7)<br>1 + satellite         | 3                                                                                                                                                                                   | irregular                                                    | and farming                                                                                                                                                                                                                          |
| National<br>Institute of<br>Meteorology                                                                     | Yes                                             | monitoring Environment routine                                                        | Sea area Bulgarian Black Sea area                                                   | 2 climatic<br>coastal<br>stations       | Wind and other<br>meteorological<br>measurements                                                                                                                                    | Since 1997                                                   | Various                                                                                                                                                                                                                              |
| and Hydrology,<br>BAS (NIMH) <sup>35</sup>                                                                  |                                                 | Environment routine                                                                   | Black Sea <sup>36</sup>                                                             | 300000                                  | Wind stress and<br>shear; Salinity and<br>temperature of the<br>water column; Heat<br>fluxes between the<br>water column and<br>the atmosphere;<br>Precipitation and<br>evaporation | Since 1991                                                   |                                                                                                                                                                                                                                      |
| Regional Health<br>Inspectorate <sup>37</sup>                                                               | Yes                                             | Compliance                                                                            | BG Black Sea<br>coastal area                                                        | 129                                     | microbiology,<br>hydrochemistry                                                                                                                                                     | Annually from May to September                               | Tourism and recreation                                                                                                                                                                                                               |

...

<sup>&</sup>lt;sup>24</sup> Is the organization part of a National Monitoring Program?

<sup>&</sup>lt;sup>25</sup> Governmental. Postal address: 22 Maria-Louisa Blvd.q 1000 Sofia , Bulgaria; http://www3.moew.government.bg/. Contact person: Ivelina Vassileva, Deputy minister, Tel: 00359 2/ 940 61 81; E-mail: ivvasileva@moew.government.bg

<sup>&</sup>lt;sup>26</sup> The Ministry participates at the management level. It is responsible for the overall planning, operation, financing, IT assurance and methodological supervision of the National System for Environmental monitoring.

<sup>&</sup>lt;sup>27</sup> Additionally: all human activities, where the EIA, SEA, IPPC permits and assessments according to Bird Directive and Habitats Directive are required.

<sup>&</sup>lt;sup>28</sup> Governmental. National Agency for Fishery and Aquaculture. Postal address: Sofia, 1606, ul. Hristo Botev, 17; www.iara.government.bg; e-mail: office@iara.government.bg; Tel: 00359 2 80 51 666; Fax: 00359 2 80 51 686.

<sup>&</sup>lt;sup>29</sup> The organization itself is not performing the monitoring, but financing and supervising the results, using them for decision-making. The policy document for the surveillance monitoring organised by NAFA is: Bulgarian national programme for collection, management and use of fisheries data. For the surveys, tenders are announced and they are carried out by different scientific institutions. Vessel Monitoring automated System (Fishing Vessel Monitoring System) is functional for vessels over 15 m overall length (Remark: in compliance with the EU legislation, all EU vessels with 12 m overall length or more should have installed on board equipment for VMS not later than 1st of January 2012). To serve the needs of management, NAFA has established and manages Information Statistics System (ISS).

<sup>&</sup>lt;sup>30</sup> Governmental. Institute of Fishing Resources (subordinated to the National Center of Agricultural Sciences (NCAS), former Agricultural Academy of Science (AAS), which is affiliated to the Ministry of Agriculture and Forestry). Postal address: Bul. Primorksy, 4, PO Box. 72. Contact person: Vesselina Mihneva, e-mail: vvmihneva@yahoo.com

<sup>31</sup> Twice per year fisheries surveys since 2006-2010 under DCR (199/2008). Before that irregularly. Market sampling programs since 50s.

<sup>&</sup>lt;sup>32</sup> Governmental. Subordinated to Bulgarian Academy of Science (BAS). Postal address: Ž, Gagarin Str, 1113 Sofia, Bulgaria www.iber.bas.bg; Contact person: Dr Ventzislav Karamfilov; 2, Gagarin Str, 1113 Sofia, Bulgaria; Tel: +359 888514110; Fax: +359 2 8705498; E: karamfilov.v@gmail.com

<sup>33</sup> Governmental. Subordinated to Bulgarian Academy of Science (BAS). Postal address: Parvi Mai str.No 40, P.O. Box 152, 9000 Varna, Bulgaria; Contact person: Prof. Snejana Moncheva, Tel/fax: +359 52 370485; e-mail: snejanam@abv.bg

<sup>34</sup> Monitoring under WFD and MSFD.

<sup>&</sup>lt;sup>35</sup> Governmental, subordinated to BAS. Postal address; 68, Tsarigradsko schausse, Sofia 1784. Contact person: Prawda Dimitrova, tel: 00359 2 462 46 10, e-mail: prawda.dimitrova@meteeo.bg. The Varna branch is with address: Sv.Nikola, No 10; 9005, Varna; Contact person: Ivan Ivanov (Director), Tel: +359 52 302 256; e-mail: ivan.ivanov@meteo.bg

<sup>&</sup>lt;sup>36</sup> In NIMH, the Black Sea climatological data are compiled using almost all available data sources together with some model simulations. The grid is 1/9 deg.(zonal) x 1/12 deg.(meridional) degree - 133 x 76 grid points for 12 months. Start point (1,1) has coordinates 27.38E, 40.45N

The IFR, Varna, Bulgaria monitoring is described in detail below.

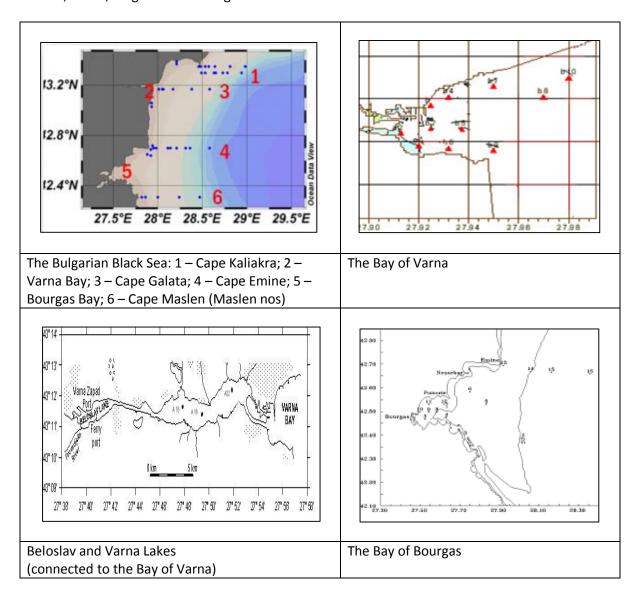



Figure 3. Maps of sampling stations monitored by IFR-Varna, Bulgaria

<sup>&</sup>lt;sup>37</sup> Subordinated to the Ministry of Health. Postal address: 9000, Varna, Bregalnitza 3 RZI, Bulgaria; webpage: www.rzi-varna.com; Contact person: Bozhanka Georgieva MD, Chief of Inspectorate; Tel/fax 00359 52 634019; 00359 52 634 648

Table 14. List of coordinates of stations monitored by IFR-Varna, Bulgaria

| N of station | Coordi    | nates     | Area/name of transect* | Type of station** |
|--------------|-----------|-----------|------------------------|-------------------|
| K1           | 43° 21.00 | 28° 29.00 | Kaliakra transect      | Marine waters     |
| K3           | 43° 19.60 | 28° 31.20 | Kaliakra transect      | Marine waters     |
| K10          | 43° 15.00 | 28° 38.20 | Kaliakra transect      | Marine waters     |
| K20          | 43° 08.60 | 28° 48.40 | Kaliakra transect      | Marine waters     |
| K30          | 43° 02.00 | 28° 59.00 | Kaliakra transect      | Marine waters     |
| G1           | 43° 10.00 | 27° 59.50 | Galata transect        | Marine waters     |
| G3           | 43° 09.40 | 28° 01.00 | Galata transect        | Marine waters     |
| G10          | 43° 07.50 | 28° 10.00 | Galata transect        | Marine waters     |
| G20          | 43° 03.50 | 28° 22.60 | Galata transect        | Marine waters     |
| G30          | 43° 00.00 | 28° 35.00 | Galata transect        | Marine waters     |
| E1           | 42° 42.20 | 27° 55.50 | Emine transect         | Marine waters     |
| E3           | 42° 42.20 | 27° 58.00 | Emine transect         | Marine waters     |
| E10          | 42° 42.20 | 28° 08.00 | Emine transect         | Marine waters     |
| E20          | 42° 42.20 | 28° 21.50 | Emine transect         | Marine waters     |
| E30          | 42° 42.20 | 28° 35.00 | Emine transect         | Marine waters     |
| M1           | 42° 12.20 | 27° 45.50 | Maslen nos transect    | Marine waters     |
| M3           | 42° 12.20 | 27° 48.00 | Maslen nos transect    | Marine waters     |
| M10          | 42° 12.20 | 27° 58.00 | Maslen nos transect    | Marine waters     |
| M20          | 42° 12.20 | 28° 11.50 | Maslen nos transect    | Marine waters     |
| M30          | 42° 12.20 | 28° 25.00 | Maslen nos transect    | Marine waters     |
| V1           | 42° 12.84 | 27° 56.14 | Varna Bay              | Coastal waters    |
| V2           | 42° 10.47 | 27° 53.12 | Varna Bay              | Coastal waters    |
| V3           | 43° 11.28 | 27° 56.08 | Varna Bay              | Coastal waters    |
| V4           | 43° 12.33 | 27° 56.28 | Varna Bay              | Coastal waters    |
| V5           | 42° 12.23 | 27° 56.41 | Varna Bay              | Coastal waters    |
| V6           | 43° 11.16 | 27° 37.03 | Varna Bay              | Coastal waters    |
| V7           | 43° 12.13 | 27° 56.81 | Varna Bay              | Coastal waters    |
| V8           | 43° 11.89 | 27° 56.98 | Varna Bay              | Coastal waters    |
| V9           | 43° 12.43 | 27° 55.91 | Varna Bay              | Coastal waters    |
| B1           | 42°37.16  | 27°53.43  | Bourgas Bay            | Coastal waters    |
| B2           | 42°34.41  | 27°51.38  | Bourgas Bay            | Coastal waters    |
| B3           | 42°24.94  | 27°45.85  | Bourgas Bay            | Coastal waters    |
| B4           | 42°29.05  | 27°38.86  | Bourgas Bay            | Coastal waters    |
| B5           | 42°30.03  | 27°33.59  | Bourgas Bay            | Coastal waters    |
| B6           | 42°34.90  | 27°45.01  | Bourgas Bay            | Coastal waters    |
| B7           | 42°23.74  | 27°50.31  | Bourgas Bay            | Coastal waters    |
| B8           | 42°29.20  | 27°46.44  | Bourgas Bay            | Coastal waters    |
| B9           | 42°28.10  | 27°26.17  | Bourgas Bay            | Coastal waters    |
| B10          | 42°31.01  | 27°43.78  | Bourgas Bay            | Coastal waters    |

<sup>\*</sup>e.g. Varna Bay, or Constanta / Mamaia transect, etc. 
\*\*transitional, coastal or marine waters;
Note: There are no Reference stations specified.

Table 15. List of parameters monitored by IFR-Varna, Bulgaria

|                           | Analytical       | Frequency                     |     |     |          |  |
|---------------------------|------------------|-------------------------------|-----|-----|----------|--|
| Parameter                 | Method*          | Water (specify Sediment Biota |     |     | On-Coast |  |
|                           | Wicthou          | Surface/Depth/Layer**)        |     |     | On Coast |  |
| Temperature (sea water)   |                  | Seasonally and monthly        | N/A | N/A | N        |  |
| Salinity                  |                  | Seasonally and monthly        | N/A | N/A | N/A      |  |
| Density                   |                  | Seasonally and monthly        | N   | N/A | N/A      |  |
| Oxygen                    |                  | Seasonally and monthly        | N   | N/A | N        |  |
| Chlorophyll-a             |                  | Seasonally and monthly        | N/A | N/A | N/A      |  |
| Nitrite                   |                  | Seasonally and monthly        | N   | N   | N        |  |
| Nitrate                   |                  | Seasonally and monthly        | N   | N   | N        |  |
| Phosphate                 |                  | Seasonally and monthly        | N   | N   | N        |  |
| Silicate                  |                  | Seasonally and monthly        | N   | N   | N        |  |
| Ammonia                   |                  | Seasonally and monthly        | N   | N   | N        |  |
| Total nitrogen            |                  | Seasonally and monthly        | N   | N   | N        |  |
| Total phosphorus          |                  | Seasonally and monthly        | N   | N   | N        |  |
| Suspended and             |                  | Seasonally and monthly        | N   | N/A | N        |  |
| organic matter            |                  |                               |     |     |          |  |
| Transparency              | Secchi Disk      | Seasonally and monthly        | N/A | N/A | N/A      |  |
| Bacterioplankton          |                  | Seasonally and monthly        | N   | N/A | N/A      |  |
| density                   |                  |                               |     |     |          |  |
| Bacterioplankton          |                  | Seasonally and monthly        | N   | N/A | N/A      |  |
| biomass                   |                  |                               |     |     |          |  |
| Phytoplankton species     | Moncheva 2010    | Seasonally and monthly        | N   | N/A | N/A      |  |
| composition               |                  |                               |     |     |          |  |
| Phytoplankton density     | Moncheva 2010    | Seasonally and monthly        | N   | N/A | N/A      |  |
| Zooplankton species       | Korshenko &      | Seasonally and monthly        | N/A | N/A | N/A      |  |
| composition               | Aleksandrov 2009 |                               |     |     |          |  |
| Zooplankton density       | Korshenko &      | Seasonally and monthly        | N/A | N/A | N/A      |  |
|                           | Aleksandrov 2009 |                               |     |     |          |  |
| Zooplankton biomass       | Korshenko &      | Seasonally and monthly        | N/A | N/A | N/A      |  |
|                           | Aleksandrov 2009 |                               |     |     |          |  |
| Benthic macrofauna        | Konsulova &      | Seasonally and monthly        | Υ   | N/A | N/A      |  |
| diversity and abundance   | Todorova 2005    |                               |     |     |          |  |
| Benthic macrofauna wet    | Konsulova &      | Seasonally and monthly        | Υ   | N/A | N/A      |  |
| weight biomass            | Todorova 2005    |                               |     |     |          |  |
| Planktonic larval fish    |                  | Seasonally and monthly        | N/A | N/A | N/A      |  |
| Fisheries investigations: |                  | Trawl surveys                 | N/A | N/A | N/A      |  |
| Fish age, length          |                  | (1-2 times per year)          |     |     |          |  |
| (biological specimen      |                  | and monthly samples           |     |     |          |  |
| length), Weight,          |                  |                               |     |     |          |  |
| Abundance, Fish stock     |                  |                               |     |     |          |  |
| density (some from        |                  |                               |     |     |          |  |
| acoustic records), Sex,   |                  |                               |     |     |          |  |
| Maturity, Growth,         |                  |                               |     |     |          |  |
| Recruitment.              |                  |                               |     |     |          |  |
| Biochemical and genetic   |                  |                               |     |     |          |  |
| analyses, Statistics for  |                  |                               |     |     |          |  |
| catches                   |                  |                               |     |     |          |  |
| Marine mammals –          |                  | Seasonally and monthly        | N/A | N/A | N/A      |  |
| sightings, stranding,     |                  |                               |     |     |          |  |
| anatomy, pathology,       |                  |                               |     |     |          |  |
| ecology                   |                  |                               |     |     |          |  |

<sup>\*</sup>Analytical methods are described in detail on the web page of the project UpGrade Black Sea Scene: www. blackseascene.net \*\* The observations in the water column are performed at standard depths: 0, 10, 25, 50, 75, 100 and 150 m.

The time-series data of IFR-Varna provide for long-term trends specified as follow:

Table 16. Time series data of IFR-Varna (Bulgaria) providing for trends

|                            | Trend (Yes/No)                      |          |       |          |  |  |
|----------------------------|-------------------------------------|----------|-------|----------|--|--|
| Parameter                  | Water (specify Surface/Depth/Layer) | Sediment | Biota | On-Coast |  |  |
| Temperature                | Layers/Whole water column           | N/A      | N/A   | N        |  |  |
| Salinity                   | Layers/Whole water column           | N/A      | N/A   | N/A      |  |  |
| Nitrite                    | Layers/Whole water column           | N        | N     | N        |  |  |
| Nitrate                    | Layers/Whole water column           | N        | N     | N        |  |  |
| Oxygen                     | Layers/Whole water column           | N        | N/A   | N        |  |  |
| Phytoplankton              | Layers/Whole water column           | N        | N/A   | N/A      |  |  |
| Zooplankton                | Layers/Whole water column           | N/A      | N/A   | N/A      |  |  |
| Zoobenthos                 | Υ                                   | Υ        | N/A   | N/A      |  |  |
| Fish population parameters | Υ                                   | N/A      | N/A   | N/A      |  |  |

<sup>\*</sup>on coast: monitoring at land-based point sources like at waste water discharges or at rivers

In 2011, part of the monitoring under the WFD was carried out by IFR-Varna. Cruises have been organised in July and August in the 1-miles zone along the Bulgarian Black Sea coast (Shabla to Koketraiz, coordinates are given below). The investigated parameters included — temperature, salinity, water transparency, oxygen concentration and saturation, nutrients — (N- and P- species), chl a, phytoplankton and benthos abundance and biomass.

- Albena 43o21,9' N; 028o07,1'E
- Balchik -43o23,1' N; 028o08,7'E
- Cape Kaliakra -43o20,9' N; 028o27,5'E
- Ilandjik -43003,4' N; 027056,0'E
- Kamchia (river) -43o01,9' N; 027o54,7'E
- Dvoinica -42o43,3' N; 027o54,6'E
- Cape Emine -42041,3' N; 027055,0'E
- Nessebar -42o38,5' N; 027o44,0'E
- Koketrais -42o38,7' N; 027o52,9'E

The IBER-BAS, Bulgaria monitoring is described in detail below.

Table 17. Information on the surveillance monitoring carried out by IBER-BAS, Bulgaria

| Type of monitoring* | Geographical scope | Time period<br>(from-to) | Frequency<br>(from-to) | Number of stations | Number of parameters |
|---------------------|--------------------|--------------------------|------------------------|--------------------|----------------------|
| Surveillance        | Sozopol Bay        | 1984-1997                | May 1984 -             | 4                  | 9                    |
| monitoring          | 3020por buy        | 1304 1337                | August 1997            |                    |                      |
| Surveillance        | Sozopol Bay        | 2000-2001                | May 2000 -             | 5                  | 11                   |
| monitoring          |                    |                          | August 2001            |                    |                      |
| Surveillance        | Sozopol Bay        | 2004-2005                | May 2004 -             | 8                  | 11                   |
| monitoring          |                    |                          | December 2005          |                    |                      |
| Surveillance        | Bourgas Bay        | 2009-2011                | June 2009 -            | 10                 | 9                    |
| monitoring          |                    |                          | June 2011              |                    |                      |
| Surveillance        | Bourgas- Cape      | 05.2009-                 |                        | 7                  | 6                    |
| monitoring          | Maslen Nos         | 09.2011                  |                        |                    |                      |

<sup>\*</sup>Environment routine complex monitoring; Ecotoxicological monitoring; Surveillance monitoring; Compliance monitoring; Operational monitoring (based on real-time observations

Figure 4. Map of sampling stations of IBER-BAS

left – Bourgas Bay; right - Sozopol Bay.

Note: both Bays are in the South Bulgarian Black Sea

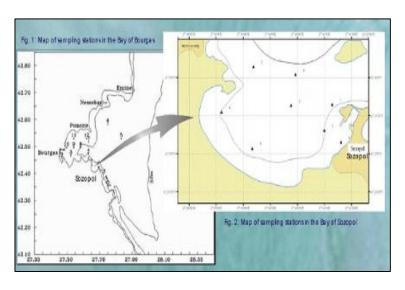



Table 18. Coordinates of stations of IBER-BAS. Bulgaria

| N of station | Coordinates         | Area/name of transect*       | Type of station**          |
|--------------|---------------------|------------------------------|----------------------------|
| Sozopol01_1  | 42.423"N 27.699"E   | Sozopol Bay                  | Coastal waters             |
| Sozopol01_2  | 42.427"N 27.706"E   | Sozopol Bay                  | Coastal waters             |
| Sozopol01_3  | 42.434"N 27.721"E   | Sozopol Bay                  | Coastal waters             |
| Sozopol01_4  | 42.442"N 27.740"E   | Sozopol Bay                  | Coastal waters             |
| Sozopol02_1  | 42.423"N 27.699"E   | Sozopol Bay                  | Coastal waters             |
| Sozopol03_0  | 42.419"N 27.688"E   | Sozopol Bay/Zl.ribka         | Sewage waters              |
| Sozopol03_1  | 42.422"N 27.683"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol03_2  | 42.427"N 27.673"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol03_3  | 42.426"N 27.652"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol03_4  | 42.418"N 27.661"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol04_0  | 42.419"N 27.688"E   | Sozopol Bay/Zl.ribka         | Coastal                    |
|              |                     |                              | (nearby sewage disposal)   |
| Sozopol04_1  | 42.422"N 27.683"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol04_2  | 42.427"N 27.673"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol04_3  | 42.427"N 27.686"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol04_4  | 42.434"N 27.674"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol04_5  | 42.436"N 27.661"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol04_6  | 42.426"N 27.652"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol04_7  | 42.418"N 27.661"E   | Sozopol Bay/Zl.ribka         | Coastal waters             |
| Sozopol05_1  | 42.443"N 27.49"E    | Bourgas Bay/Kraimorie        | Coastal waters             |
| Sozopol05_2  | 42.455"N 27.543"E   | Bourgas Bay/Chukalq          | Coastal waters             |
| Sozopol05_3  | 42.459"N 27.595"E   | Bourgas Bay/Atia             | Coastal waters             |
| Sozopol05_4  | 42.456"N 27.625"E   | Bourgas Bay/Akin             | Coastal waters             |
| Sozopol05_5  | 42.424"N 27.703"E   | Bourgas Bay/cape Sozopol nos | Coastal waters             |
| Sozopol06_6  | 42.374"N 27.725E    | Bourgas Bay/Agalina          | Coastal waters             |
| Sozopol05_7  | 42.306"N 27.79"E    | Bourgas Bay/cape Maslen nos  | Coastal, reference station |
| Sozopol05_8  | 42.409"N 27.675"E   | Bourgas Bay/Zl.ribka         | Coastal waters             |
| Sozopol05_9  | 42.407"N 27.682"E   | Bourgas Bay/Zl.ribka         | Coastal waters             |
| Sozopol05_10 | 42.427"N 27.687"E   | Bourgas Bay/Zl.ribka         | Sewage waters              |
| 1            | N42.44401 E27.49830 | Kraimorie                    | Coastal waters             |
| 2            | N42.46203 E27.58741 | Atia                         | Coastal waters             |
| 3            | N42.42664 E27.69944 | Sozopol N                    | Coastal waters             |
| 4            | N42.42443 E27.69858 | Sozopol S                    | Coastal waters             |
| 5            | N42.37196 E27.71556 | Agalina                      | Coastal, reference station |
| 6            | N42.31334 E27.78456 | Maslen Nos N                 | Coastal, reference station |
| 7            | N42.30624 E27.79076 | Maslen Nos S                 | Coastal, reference station |

<sup>\*</sup>e.g. Varna Bay, or Constanta / Mamaia transect, etc. \*\*transitional, coastal or marine waters.

Table 19. List of parameters with frequency of observations carried out by IBER-BAS, Bulgaria

|                                                                          | Amakatiaal             | Frequency                |          |       |       |
|--------------------------------------------------------------------------|------------------------|--------------------------|----------|-------|-------|
| Parameter                                                                | Analytical<br>Method   | Water (specify           | Sediment | Biota | On-   |
|                                                                          | Wicthou                | Surface/Depth/Layer)     | Scannenc | Diota | Coast |
| Nutrients (NH <sub>4</sub> <sup>+</sup> , NO <sub>3</sub> <sup>-</sup> , | Standard               | 0; 3; 9 m (depth in the  |          |       |       |
| $NO_2^-$ , N tot, $PO_4^{3+}$ )                                          | colorimetric analyses  | water column)/Monthly    |          |       |       |
| Chlorophyll a                                                            | Extraction method      | 0; 3; 9 m (depth in the  |          |       |       |
|                                                                          |                        | water column)/Monthly    |          |       |       |
| Suspended matter                                                         | Gravimetric method     | 0;3;9 m (depth in the    |          |       |       |
|                                                                          |                        | water column)/Monthly    |          |       |       |
| Primary production                                                       | <sup>14</sup> C method | 0 ;5 ;10 m (depth in the |          |       |       |
|                                                                          |                        | water column)/Monthly    |          |       |       |
| Transparency                                                             | Secchi depth           | Monthly                  |          |       |       |
|                                                                          | Underwater solar       |                          |          |       |       |
|                                                                          | radiance-PAR           |                          |          |       |       |
| Temperature                                                              |                        | 0; 3; 9 m/Monthly        |          |       |       |
| Salinity                                                                 |                        | 0; 3; 9 m/Monthly        |          |       |       |
| Dry Biomass of                                                           | (Littler&Littler,1980) | 0-12 m (bottom           |          |       |       |
| Chlorophyta,                                                             |                        | depth)/once during       |          |       |       |
| Rhodophyta,                                                              |                        | summer                   |          |       |       |
| Phaeophyta                                                               |                        |                          |          |       |       |
| Wet biomass of                                                           | (Kalugina-Gutnik,      | 0-12 m (bottom           |          |       |       |
| Chlorophyta,                                                             | 1977)                  | depth)/once during       |          |       |       |
| Rhodophyta,                                                              |                        | summer                   |          |       |       |
| Phaeophyta                                                               |                        |                          |          |       |       |
| Horizontal projected                                                     | (Ballesteros, 1992)    | 0-12 m (bottom           |          |       |       |
| cover of                                                                 |                        | depth)/once during       |          |       |       |
| Chlorophyta,                                                             |                        | summer                   |          |       |       |
| Rhodophyta,                                                              |                        |                          |          |       |       |
| Phaeophyta                                                               |                        |                          |          |       |       |
| Surface to Weight                                                        | Minicheva et al., 2003 | 0-12 m (bottom           |          |       |       |
| index of                                                                 |                        | depth)/once during       |          |       |       |
| Chlorophyta,                                                             |                        | summer                   |          |       |       |
| Rhodophyta,                                                              |                        |                          |          |       |       |
| Phaeophyta                                                               |                        |                          |          |       |       |
| Ecological Evaluation                                                    | Panayotidis et al.,    | 0-12 m (bottom           |          |       |       |
| Index of                                                                 | 2004                   | depth)/once during       |          |       |       |
| Chlorophyta,                                                             |                        | summer                   |          |       |       |
| Rhodophyta,                                                              |                        |                          |          |       |       |
| Phaeophyta                                                               |                        |                          |          |       |       |
| Ecological Evaluation                                                    | Orfanidis et al. 2011  | 0-12 m/once during       |          |       |       |
| Index - Continuous                                                       |                        | summer                   |          |       |       |

Table 20. Time series data of IBER-BAS (Bulgaria) providing for trends

|                     | Trend (Yes/No)                      |          |       |              |  |  |
|---------------------|-------------------------------------|----------|-------|--------------|--|--|
| Parameter           | Water (specify Surface/Depth/Layer) | Sediment | Biota | On-<br>Coast |  |  |
| Nutrients           | 0; 3; 9 m                           |          |       |              |  |  |
| Chl-A               | 0; 3; 9 m                           |          |       |              |  |  |
| Temperature (water) | 0; 3; 9 m                           |          |       |              |  |  |
| Primary production  | 0; 3; 9 m                           |          |       |              |  |  |

#### IO-BAS, Varna, Bulgaria monitoring is described in detail below:

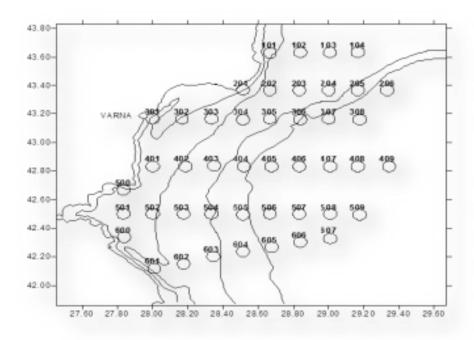



Figure 5. Map of IO-BAS, Varna, Bulgaria monitoring sampling stations (routine environment monitoring)

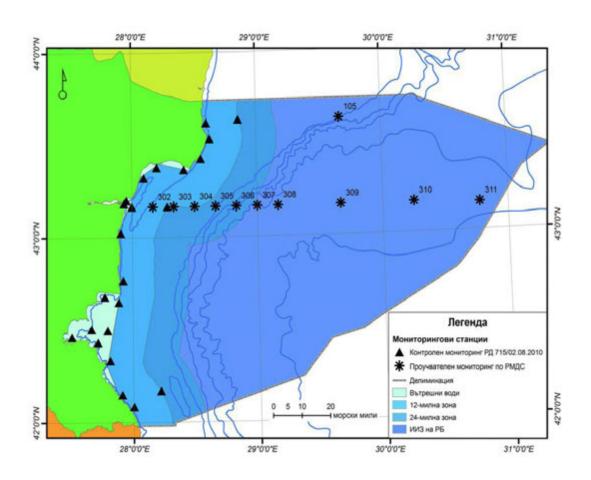



Figure 6. Map of coastal stations monitored for WFD and Galata transect stations monitored for MSFD in 2012 by IO-BAS, Varna, Bulgaria

Note: The coastal monitoring (WFD) is conducted starting 2006, 2008, 2010, 2011 and 2012.

Table 21. Coordinates of stations monitored by IO-BAS, Varna, Bulgaria under the MSFD (initiated in 2012)

| No of station   | Coordinates                  | Area/name of transect* | Type of station** |
|-----------------|------------------------------|------------------------|-------------------|
| 101             | 28° 40.00' E, 43° 38.00' N   | Krapetz                | coastal           |
| 102             | 28° 50.000' E, 43° 38.000' N | Krapetz                | marine            |
| 103             | 29° 00' E, 43° 38' N         | Krapetz                | marine            |
| 104             | 29° 10' E, 43° 38' N         | Krapetz                | marine            |
| 105             | 29° 40.000' E, 43° 38.000' N | Krapetz                | marine            |
| 201             | 28° 30.000' E, 43° 22.000' N | Kaliakra               | coastal           |
| 202             | 28° 40.000' E, 43° 22.000' N | Kaliakra               | marine            |
| 203             | 28° 50.00' E, 43° 22.00' N   | Kaliakra               | marine            |
| 204             | 29° 00' E, 43° 22' N         | Kaliakra               | marine            |
| 205             | 29° 10' E, 43° 22.00'N       | Kaliakra               | marine            |
| 206             | 29° 20' E, 43° 22.00'N       | Kaliakra               | marine            |
| 301             | 28° 00.000' E; 43° 10.000' N | Galata                 | coastal           |
| 302             | 28° 10.000' E; 43° 10.000' N | Galata                 | marine            |
| 303             | 28° 20.000' E; 43° 10.000' N | Galata                 | marine            |
| 304             | 28° 30.000' E; 43° 10.000' N | Galata                 | marine            |
| 305             | 28° 40.000' E; 43° 10.000' N | Galata                 | marine            |
| 306             | 28° 50.000' E; 43° 10.000' N | Galata                 | marine            |
| 307             | 29° 00.000' E; 43° 10.000' N | Galata                 | marine            |
| 308             | 29° 10.000' E; 43° 10.000' N | Galata                 | marine            |
| 309             | 29° 40.000' E; 43° 10.000' N | Galata                 | marine            |
| 310             | 30° 15.000' E; 43° 10.000' N | Galata                 | marine            |
| 311             | 30° 46.424' E; 43° 09.081' N | Galata                 | marine            |
| 401             | 28° 00' E; 42° 50.00' N      | Emine                  | coastal           |
| 402             | 28° 10' E; 42° 50.00' N      | Emine                  | marine            |
| 403             | 28° 20' E; 42° 50' N         | Emine                  | marine            |
| 404             | 28° 30' E; 42° 50' N         | Emine                  | marine            |
| 405             | 028° 40' E; 42° 50' N        | Emine                  | marine            |
| 406             | 28° 50′ E; 42° 50′ N         | Emine                  | marine            |
| 407             | 29° 00' E; 42° 50' N         | Emine                  | marine            |
| 408             | 29° 10′ E; 42° 50′ N         | Emine                  | marine            |
| 409             | 29° 20' E; 42° 50' N         | Emine                  | marine            |
| 501             | 27° 50' E; 42° 30' N         | Bourgas Bay            | coastal           |
| 502             | 28° 00' E; 42° 30' N         | Bourgas Bay            | marine            |
| 503             | 28° 10' E; 42° 30' N         | Bourgas Bay            | marine            |
| 504             | 28° 20' E; 42° 30' N         | Bourgas Bay            | marine            |
| 505             | 28° 30' E; 42° 30' N         | Bourgas Bay            | marine            |
| 506             | 28° 40' E; 42° 30' N         | Bourgas Bay            | marine            |
| 507             | 28° 50' E; 42° 30' N         | Bourgas Bay            | marine            |
| 508             | 29° 00' E; 42° 30' N         | Bourgas Bay            | marine            |
| 509             | 29° 10' E; 42° 30' N         | Bourgas Bay            | marine            |
| 600             | 27° 50′ E; 42° 20′ N         | Maslen nos             | coastal           |
| 601             | 28° 00' E; 42° 07' N         | Achtopol               | marine            |
| 602             | 28° 10' E; 42° 09' N         | Achtopol               | marine            |
| 603             | 28° 20' E; 42° 12' N         | Achtopol               | marine            |
| 604             | 28° 30' E; 42° 14' N         | Achtopol               | marine            |
| 605             | 28° 40' E; 42° 16' N         | Achtopol               | marine            |
| 606             | 28° 50' E; 42° 18' N         | Achtopol               | marine            |
| 607             | 29° 00' E; 42° 20' N         | Achtopol               | marine            |
| BG2BS00000MS001 | 28°35.50'; 43°35.25          | Krapetz                | coastal           |
| BG2BS00000MS001 |                              | Krapetz'               | coastal           |
| BG2BS00000MS102 | 28°36.40; 43°32.00           | Shabla                 | coastal           |
|                 | 28°33.202; 43°25.46          | Rusalka                | _                 |
| BG2BS00000MS002 | · ·                          |                        | coastal           |
| BG2BS00000MS003 | 28°25.00; 43°22.00           | Kaliakra               | coastal           |

| No of station   | Coordinates         | Area/name of transect* | Type of station** |
|-----------------|---------------------|------------------------|-------------------|
| BG2BS00000MS104 | 28°12.00; 43°22.75  | Balchik                | coastal           |
| BG2BS00000MS105 | 28°05.8; 43°19.50   | Albena                 | coastal           |
| BG2BS00000MS004 | 28°00; 43°10        | Galata                 | coastal           |
| BG2BS00000MS005 | 27°57.3; 43°12.10   | Varna Bay - north      | coastal           |
| BG2BS00000MS006 | 27°56.2; 43°11.10   | Varna Bay-South        | coastal           |
| BG2BS00000MS007 | 27°54.55; 43°01.50  | Kamchia                | coastal           |
| BG2BS00000MS008 | 27°55.56; 42°46.10  | Dvoinica               | coastal           |
| BG2BS00000MS009 | 27°46.7; 42°40.8    | Nesebar                | coastal           |
| BG2BS00000MS011 | 27°31.00; 42°27.8   | Rosenec                | coastal           |
| BG2BS00000MS010 | 27°40.33; 42°30.38  | Sarafovo               | coastal           |
| BG2BS00000MS109 | 27°53.20; 42°38.8   | Koketrais              | coastal           |
| BG2BS00000MS012 | 27°48.00; 42°30.019 | Bourgas 2              | coastal           |
| BG2BS00000MS111 | 27°43.35; 42°26.00  | Sozopol                | coastal           |
| BG2BS00000MS110 | 27°49.15; 42°20.17  | Maslen nos             | coastal           |
| BG2BS00000MS112 | 27°54.75; 42°09.00  | Varvara                | coastal           |
| BG2BS00000MS013 | 28°00.0; 42°05.00   | Veleka                 | coastal           |

 $^{\star}\text{e.g.}$  Varna Bay, or Constanta / Mamaia transect, etc.  $^{\star\star}\text{transitional},$  coastal or marine waters; Note: No Reference stations are specified.

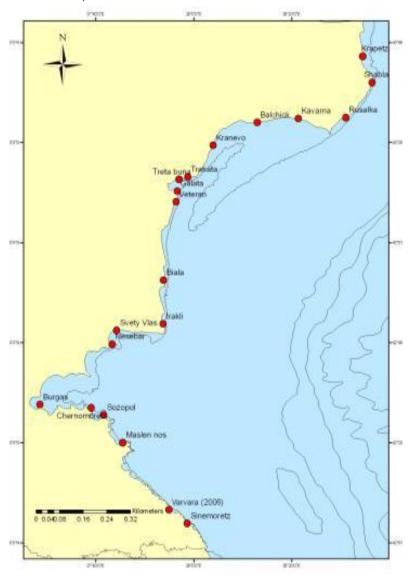



Figure 7. Map of coastal stations monitored for macrophytobenthos (WFD) by IO-BAS, Varna, Bulgaria

Table 22. Coordinates of stations monitored for macrophytobenthos (WFD) by IO-BAS, Varna, Bulgaria

| N of transect | Coordinates                           | Area name of transect* | Type of transect** |
|---------------|---------------------------------------|------------------------|--------------------|
| 1.            | 43.638656°N; 28.578322°E              | Krapetz                | coastal waters     |
| 2.            | 43°37' 15,84" N; 28°34' 21,48"E       | Shabla                 | coastal            |
| 3.            | 43°24'58,74"N; 28°30'58,44"E          | Rusalka                | coastal            |
| 4.            | 43°24'47,16"N; 28°21'14,22"E          | Kavarna                | coastal            |
| 5.            | 43°24'09,6" N; 28°10'16,98 <b>"</b> E | Balchik                | coastal            |
| 6.            | 43°19'23,28"N; 28°03'59,52"E          | Kranevo                | coastal            |
| 7.            | 43°10'15,24"N; 27°56'36,42"E          | Galata                 | coastal            |
| 8.            | 43°07'47,52"N; 27°56'49,56" E         | Veteran                | coastal            |
| 9.            | 43°13'06,22"N; 27°58'47,84"E          | Trakata                | coastal            |
| 10.           | 43°12'41,26"N; 27°57'29,52"E          | Treta buna             | coastal            |
| 11.           | 42°52'28,4"N; 27°53'51,36"E           | Biala                  | coastal            |
| 12.           | 42°43'45,11"N, 27°54'4,94 <b>"</b> E  | Irakly                 | coastal            |
| 13.           | 42°39'27,24"N; 27°43'54,6"E           | Nesebar                | coastal            |
| 14.           | 42°27'14,16"N; 27°29'03,06"E          | Bourgas                | coastal            |
| 15.           | 42°25'33,6"N; 27°41'40,86"E           | Sozopol                | coastal            |
| 16.           | 42°19'58,2"N; 27°45'33,96 <b>"</b> E  | Maslen nos             | Coastal, reference |
| 17.           | 42°03'47,28"N; 27°59'21,36"E          | Varvara                | Coastal, reference |
| 18.           |                                       | Sinemoretz             | coastal, reference |

Table 23. List of parameters with frequency of observations carried out by IO-BAS, Varna, Bulgaria

|                                                                                                   | Analytical                                                                                                                                                    | Fre                                                                                                                                                                                       | quency   |       |              |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------------|
| Parameter                                                                                         | Analytical<br>Method                                                                                                                                          | Water (specify Surface/Depth/Layer)                                                                                                                                                       | Sediment | Biota | On-<br>Coast |
| Phytoplankton Biodiversity Abundance [cells/l] Biomass[ mg/m3] Chlorophyll a [mg/m3]              | Moncheva, Parr<br>(2010)                                                                                                                                      | Frequency: irregular<br>Depths: surface,<br>thermocline, chl.a<br>maximum, 90m                                                                                                            |          |       |              |
| Zooplankton<br>Biodiversity<br>Abundance [ind/m3]<br>Biomass[ mg/m3]                              | Alexandrov,<br>Korshenko, (2006)                                                                                                                              | Frequency: irregular Depths: upper mixed layer (UML), layer of thermocline, Cold Intermediate layer (CIL), deeper layer from the depth of sigma theta = 16.2 to the lower boundary of CIL |          |       |              |
| Macrophytobenthos Biodiversity Biomass  Ratio of tolerant and sensitive species; Ecological index | Kalugina-Gutnik,<br>1975; Minicheva-<br>Algae manual<br>http://www.blacksea-<br>commission.org/l<br>Orfanidis et al.<br>2001,2011.Dencheva<br>2012 (in print) | Bottom/ Once per year                                                                                                                                                                     |          |       |              |

|                                                                                                                                                                 | A call it cal                                                                                                                                                                                                                                   | Fre                                                                                                                                       | quency                                          |       |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|--------------|
| Parameter                                                                                                                                                       | Analytical<br>Method                                                                                                                                                                                                                            | Water (specify<br>Surface/Depth/Layer)                                                                                                    | Sediment                                        | Biota | On-<br>Coast |
| Macrozoobenthos Biodiversity Abundance [ind/m2] Biomass[ g/m2]                                                                                                  | Todorova, Konsulova,<br>2005                                                                                                                                                                                                                    | Down to 100 m depth,<br>once per year                                                                                                     |                                                 |       |              |
| Fish Stock abundance and biomass, CPUA; CPUE; MSY, TAC; Fopt Length, weight growth and age                                                                      | Swept area method<br>Beverton&Holt<br>(1957); Prodanov,<br>1989<br>Spare et al., 1989;<br>Hilborn&Waters, 1992                                                                                                                                  | Twice per year                                                                                                                            |                                                 |       |              |
| Mammals                                                                                                                                                         | Standard counting method                                                                                                                                                                                                                        | irregular                                                                                                                                 |                                                 |       |              |
| Chemistry (pH, DO, OS, N-NH <sub>4</sub> , N-NO <sub>3</sub> , N-NO <sub>2</sub> , TN, P-PO <sub>4</sub> , TP, Si, BOD <sub>5</sub> , Fe, Mn, Suspended matter) | pH-meters; DO-<br>Winkler method;<br>Nutrients -Methods of<br>Seawater Analysis, ed.<br>by K. Grasshoff (1983)<br>Organic carbon in<br>sediments – Methods<br>for analysis of the<br>organic matter in the<br>ocean ed by<br>Romankevich (1980) | Frequency: irregular<br>Standard depths:- 0, 10,<br>25, 50, 75, 100, 150,<br>200m; Thermocline;<br>Sigma theta - 15.4-16.2<br>(2008-2010) | Frequency:<br>irregular<br>Surface<br>sediments |       |              |

Table 24. Time series data of IO-BAS, Varna, Bulgaria providing for trends

| Parameter         | Trend (Yes/No)                         |          |       |          |  |  |  |  |  |
|-------------------|----------------------------------------|----------|-------|----------|--|--|--|--|--|
| Parameter         | Water (specify Surface/Depth/Layer)    | Sediment | Biota | On-Coast |  |  |  |  |  |
| Phytoplankton     | Surface/Depths/Integrated water column |          |       |          |  |  |  |  |  |
| Zooplankton       | Layers/Integrated water column         |          |       |          |  |  |  |  |  |
| Macrozoobenthos   |                                        |          |       |          |  |  |  |  |  |
| Macrophytobenthos |                                        |          |       |          |  |  |  |  |  |
| Chemistry         | Surface/Depths/Integrated water column |          |       |          |  |  |  |  |  |

<sup>\*</sup>on coast: monitoring at land-based point sources like at waste water discharges or at rivers

The Black Sea NGO Network<sup>38</sup> has specified collection of socio-economic data, the sources have not been specified.

In Bulgaria the Environment Protection Agencies of the Ministry of Environment have not been contacted, the same stands for the NGOs implementing monitoring in relation to Cetaceans strandings, Habitats and Birds Directives (e.g. NGO Green Balkans, http://greenbalkans.org/index.php?language=en\_EN). The information further provided was extracted from EEA, BSBD (Black Sea Basin Directorate, Varna, Bulgaria) and other reports, or personal communications.

The Regional Laboratories (Varna and Bourgas)<sup>39</sup> of the Executive Agency (EA) for Environment (in BG – RIOSV) conduct irregular hydrochemical monitoring in the 1-miles zone (Shabla, Varna Bay, Obzor, Bourgas, Achtopol) and also regularly trace land-based sources of pollution (compliance

<sup>38</sup> Non-governmental. Not part of national monitoring network. Postal address: No 2 D-r L. Zamenhof Str., Varna 9000, Bulgaria; Contact person: Emma Gileva. Tel: +359 52 615856/602047, e-mail: bsnn@bsnn.org. or emma gileva@abv.bg

Gileva, Tel: +359 52 615856/602047, e-mail: bsnn@bsnn.org, or emma\_gileva@abv.bg

39 Governmental. In Varna: ul. lan Palah, 4, Varna, Bulgaria, phone +359 52 678 848; +359 52 678 888; In Bourgas: phone +359 56 813 205; fax: +359 56 813 200; e-mail: riosvbs@unacs.bg.

monitoring). Hot spots monitoring is well developed in Bulgaria for point sources (municipal, industrial and rivers). Diffuse sources of pollution are poorly known as they are not adequately monitored.

For emmissions there are two types of monitoring in Bulgaria – state and self-monitoring sustained by the private sector/industry. The state monitoring for private industrial sources is conducted twice a year (diurnal stations, or more often two samples in the course of 2 hours)<sup>40</sup>, the self-monitoring in industry – regularly, and the latter is used to calculate loads. The parameters observed are regulated in relevant policy documents (see Chapter 1.1. on Legislation/policy of Bularia, e.g. Ordinance 6/9 of Nov. 2000<sup>41</sup>).

#### **Data Collection Framework for the Common Fisheries Policy**

The first Bulgarian National data collection programme developed in relation with the Council Regulation (EC) No 199/2008 corresponding to the rules of the Commission Decision 2008/XXX/EC covered the period of 2009-2010. The National programme aimed to give an overview of the current state of the Bulgarian fisheries sector (fisheries, aquaculture and processing industry) and apart of that the recreational and commercial fishing in inland waters. The overall coordination of the implementation of the Programme was ensured by the National Agency of Fisheries and Aquaculture (NAFA<sup>42</sup>) of the Ministry of Agriculture and Food of the Republic of Bulgaria. Two scientific institutes have implemented the Program - IO-BAS and IFR-Varna. Coordination with Romania has been ensured. The area investigated is presented in Figure 8.

The Program included surveys (4, acoustic investigations and bottom, and pelagic trawl surveys, Fig. 9) and data collection (economic data – fleet, fishing enterprises, gross value of landings, logbooks data, various costs, etc.). An information collection network was created in various fishing ports. The species investigated were: sprat, - and turbot. In acoustic and pelagic surveys together with sprat, whiting (M.merlangius) abundance, biomass and biological parameters have been investigated and reported. Market sampling program include sprat, turbot, anchovy, horse mackerel and whiting<sup>43</sup>. There was a proposal to include ichthyoplankton studies, Rapa whelk, piked dogfish and gobies<sup>44</sup> as well, but they are not yet approved and funded accordingly.

Biological sampling included many different parameters (mainly from land), for instance:

| Species          |               | Area  | Gro    | wth    | Matu   | Maturity |        | dity | Sex Ratio |          |
|------------------|---------------|-------|--------|--------|--------|----------|--------|------|-----------|----------|
|                  |               | Alea  | Length | Weight | Length | Age      | Length | Age  | Length    | Age      |
| European sprat   | Sprattus      | Black | v      | Y      | Y      | Υ        | No     | No   | Υ         | v        |
| Lui opeaii spiat | sprattus      | Sea   | Υ      | Y      | I      | ,        | NO     | NO   | ,         | <i>'</i> |
| Hanas mashanal   | Trachurus     | Black | Y Y    | V      | Υ      | Υ        | No     | Ma   | Υ         | v        |
| Horse mackerel   | mediterraneus | Sea   |        | , r    | , r    | , r      | No     | No   | Y         | ľ        |
| Anchous          | Engraulis     | Black | v      | V      | γ      | Υ        | Ma     | Ma   | Υ         | v        |
| Anchovy          | encrasicolus  | Sea   | , r    | , r    | , r    | , r      | No     | No   | Y         | ľ        |
| Turbot           | Psetta maxima | Black | v      | γ      | γ      | V        | No     | Ma   | V         | v        |
| Turbot           |               | Sea   | r      | , r    | r      | Y        | No     | No   | Υ         | r        |

Legend: Y – yearly; No – surveys won't be undertaken as part of this program

<sup>&</sup>lt;sup>40</sup> Twice a year RIOSV (the Regional Inspections of the EA for Environment) carries out control sampling and if individual emissions/discharges are found higher than the standards established in regulations, and then sanctions are imposed. In separate, for any discharge permission is required (Ordinance 10 of 3.07.2001) and in these permissions the required frequency of control sampling for the self-monitoring is identified. For instance, for large WWTP the frequency should be monthly at least, for small WWTP - less frequent. Additionally, there are complex permissions, issued by EA and controlled by its local laboratories (RIOSV) for those sources, which produce various kinds of pollution.

<sup>41</sup> The Ordinance regulates the emission standards (norms) on the permissible level of harmful and toxic substances in discharges entering different water bodies, the list of those substances which should be monitored is given for each kind of human activity related.

<sup>&</sup>lt;sup>42</sup> One of NAFA's main activities is research of sustainable catch levels and determination of the national quotas of commercially important species. The agency is financially involved in trawl survey projects and in data processing. The FMC (fishery monitoring center) provides information stored in the FVMS (fishery vessel monitoring system) to support the surveys' reports preparation.

<sup>&</sup>lt;sup>43</sup> Targeted fish stocks are also piked dogfish and Rapa.

<sup>44</sup> The 2 of these species (Rapa and gobbies) are object of evaluation of the EWG STECF (working group of the Scientific, Technical and Economic Committee for Fisheries, EC) for the Black Sea assessements since 2011.

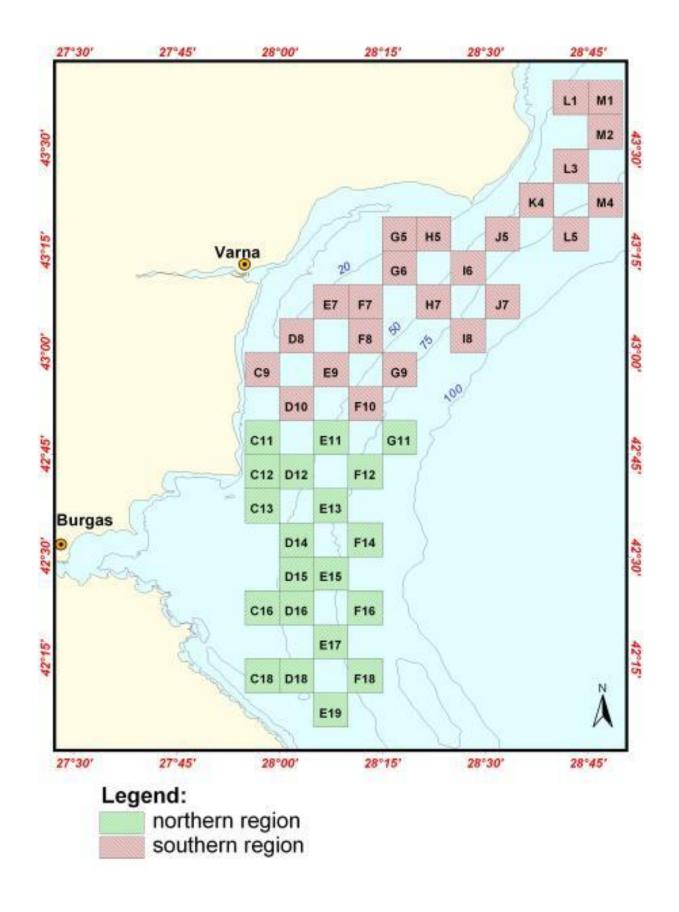



Figure 8. Fisheries research area in the Bulgarian Black Sea

Note: This is a map of a single survey, the areas are different each year depending on the fish species.

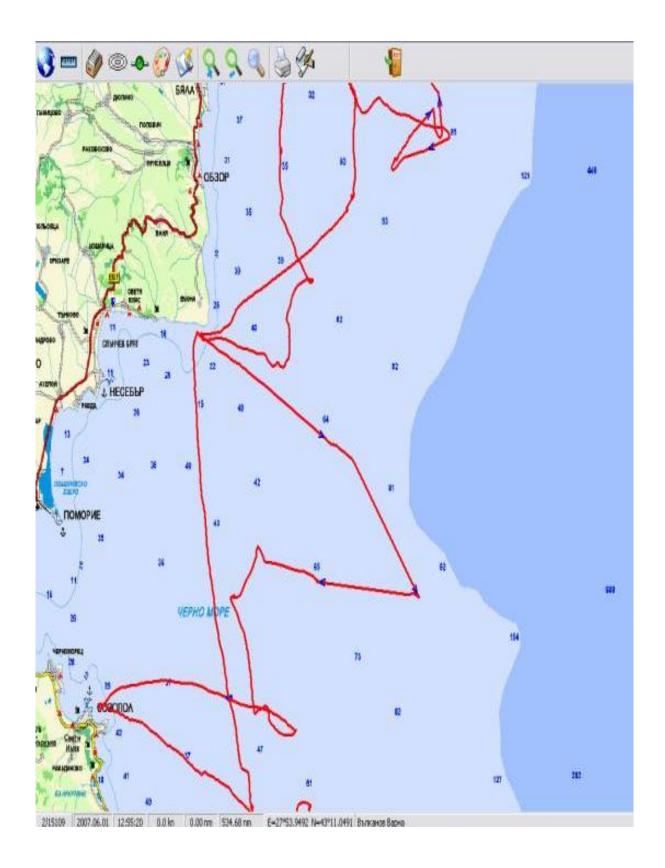



Figure 9. Example of a trawl survey in the Bulgarian Black Sea. Data from research survey in the Bulgarian BS marine area (tracks/trackpoints) from the VMS center of NAFA for observation and surveillance, Varna branch (WebOverMap module).

Note: IFR and IO-BAS have participated in the trawl surveys in 2007-2012, as the IFR data for sprat covers 2007-2009, IO-BAS – for 2010-2012; for turbot the IFR data are till 2010, then IO-BAS provided for the data collections.

#### Monitoring related to the Habitats and Birds Directives

Along the Bulgarian coast systematic surveys for habitat mapping are still lacking, some preliminary studies have been performed under the BBI MATRA Project 2006/031<sup>45</sup> and within a national NATURA 2000 Project 'Extension of Natura 2000 Marine protected areas" (Todorova *et al.*, 2012<sup>46</sup>). Within these projects Todorova *et al.* 

(2012, and http://www3.moew.government.bg/?show=top&cid=530) conducted studies and prepared inventory of Black Sea marine habitat subtypes in Bulgarian waters. They proved the boundaries of the currently existing sites under NATURE2000 should be redefined to encompass the habitat types of Annex I and Annex II species occurring in the Bulgarian Black Sea. Extension of the existing sites was proposed, details are provided in the MISIS MPAs report, prepared under PA4 (Ref: Conservation and Protection of the Black Sea Biodiversity, lead by GeoEcoMar, http://sharepoint.misisproject.eu/sharepoint).

The Common Bird Monitoring (CBM) scheme in Bulgaria started in 2004, following closely the methodology of Breeding Bird Survey in UK. It is the first nationwide program for assessing the condition of biodiversity in main habitat types across the country, including the BS coast. The scheme is based on a broad network of volunteers organized by the Bulgarian Society for the Protection of Birds (BSPB), the partner of BirdLife International in Bulgaria. The CBM scheme is part of the National System for Monitoring of Biodiversity, managed by the Executive Environmental Agency, Ministry of Environment and Water of Bulgaria. The CBM scheme in Bulgaria is funded by the Royal Society for the Protection of Birds (RSPB) and is part of the Pan-European Common Bird Monitoring Scheme (PECBMS). Information on the monitoring methodology applied, habitats investigated and data collected can be found at http://www.bspb.org/monitoring/ (in Bulgarian mainly).

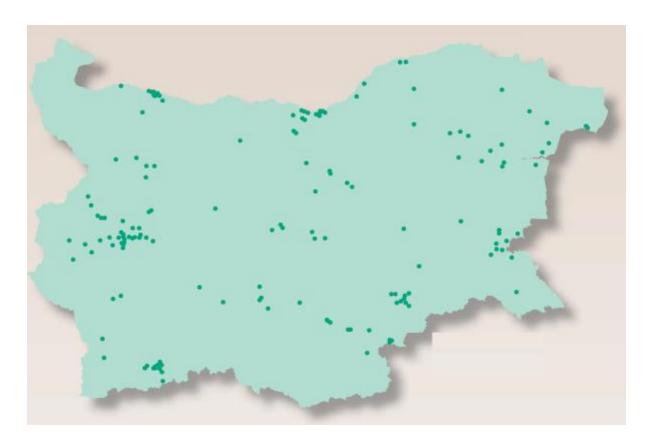



Figure 10. Map of sampling sites for birds monitoring in Bulgaria

<sup>&</sup>lt;sup>45</sup> See: www.eucc.nl/en/completed\_projects/mpas.pdf, "The development of an indicative, ecologically coherent network of sub-tidal Marine Protected Areas (MPAs) in Bulgaria and Romania", Project implemented in 2006-2008 by the EUCC-The Coastal Union, IO-BAS, Bulgaria and NIMRD, Romania. BBI MATRA funding programme of the Ministry of Agriculture, Nature and Food Quality and the Ministry of Foreign Affairs of the Netherlands.

<sup>&</sup>lt;sup>46</sup> See: http://www3.moew.government.bg/?show=top&cid=530, general for NATURE2000: http://natura2000bg.org/natura/bg/index1.php (habitats) and http://natura2000bg.org/natura/bg/birds\_map.php (birds).

#### **Bathing water**

The Regional Inspection for Protection and Control of Public Health (RIPCPH) traces the quality of bathing waters in the BG Black Sea (Figure 11).

- For Varna region samples are taken from 22 places, including 16 approved bathing areas and 1 unacknowledged bathing area.
- For Dobrich region, 18 bathing areas have been specified; these areas include 39 sea beaches.
- For Bourgas region, there are 39 bathing areas specified. Available are 68 sea beaches out of which 23 beaches labelled as "other places used for bathing in which bathing is not expressly prohibited".

The parameters observed were:

- Microbiological indicators: number of coliform bacteria, faecal colibacteria, Salmonella and faecal streptococci.
- **Physical-chemical indicators**: pH, colour, mineral oils, SAS (Surface-active substances reacting with methylene blue), phenols, transparency, dissolved oxygen, standing or swimming objects, ammonic ions, cadmium, lead, nitrates, phosphates.

Under Directive 76/160/EEC, the parameters taken into account in assessments are reduced in number. They are: are microbiological (Total coliforms and Faecal coliforms) and physico-chemical (Mineral oils, SAS and Phenols). In 2012, the monitoring strategy has been upgraded with the introduction of Beach passports for every beach.



Figure 11. Map of bathing water monitoring areas in BG (example for the Northern part of the BG coast).

In Romania, the Ministry of Environment and Forests had previously an affiliated scientific Institute, which dealt with the monitoring under the country obligations related to the WFD and MSFD implementation – it was NIMRD (National Institute for Marine Research and Development 'Grigore Antipa', Constanta. However, the institutional framework of monitoring has been modified during the last year. The Ministry of Environment changed its name as well as functions. The new name is Ministry of Environment and Climate Change. NIMRD is presently affiliated to the Ministry of Education, and NAFA is not anymore under the Ministry of Agriculture (as mentioned already), but under the Ministry of Environment.

WFD monitoring is also conducted by Dobrogea Littoral Water Basin Administration, Constanta being affiliated to the Ministry of Water and Forests. Compliance monitoring for sources of pollution is also under the Ministry of Environment and is conducted by its Environmental Agencies (EPA, ANAR trace waste water discharges of municipal and industrial sources, NIMRD also monitors the Danube River discharges<sup>47</sup>). Bathing water monitoring is under the Ministry of Health, conducted by its regional inspections in Constanta and Tulcea. Fisheries monitoring was previously under the Ministry of Agriculture, since 2013 it will be under the Ministry of Environment and Climate Change.

**NMA Meteo** in Romania - National Meteorological Adminsitration has information stored in the National Fund of Meteorological Data as follows: direct sunlight and ultraviolet, opacity of the atmosphere, carbon dioxide, ozone, nitrogen dioxide, rainfalls and precipitation acidity (pH), atmospheric electricity, the total amount of ozone, frequency of monthly and annual wind directions and atmospheric calm. NMA Meteo provides real-time data for wind and feeds the circulation models in the region.

The Tulcea division of EPA conducts no monitoring in the Black Sea, but in the Danube Delta. Coast guard (border police) is also not involved in environment monitoring but supports the control on illegal fishing and illegal discharges from ships. The **Border Police General Inspectorate** informed on the availability of surveillance/tracking systems, such as **SCOMAR**, **BLUE BORDER MARGOT 8000**, where vessels are monitored<sup>48</sup>, however, it is also possible to trace pollution sources located in the Romanian territorial sea and contiguous zone of Romania. SCOMAR (Complex System for Observance, Surveillance and Control of the Traffic at the Black Sea) is an operative surveillance system allowing early detection, pursuit, recognition and identification of ships which are carrying out illegal traffic activities at the Black Sea

(http://www.politiadefrontiera.ro/securizare/scomar en.php)

<sup>&</sup>lt;sup>47</sup> Main responsible organizations for the control on land-based sources of pollution in Romania:

Ministry of Environment and Forests;

<sup>·</sup> Ministry of Transports;

<sup>•</sup> Ministry of Agriculture and Rural Development;

National Administration "Romanian Waters";

<sup>·</sup> Environmental Protection Agency (EPA);

National Environment Guard;

<sup>•</sup> National Institute for Marine Research and Development (NIMRD).

<sup>&</sup>lt;sup>48</sup> Systems used for maritime safety and security, protection of the marine environment, fisheries control, control of external borders and other law enforcement activities

The map of Romanian waters (EEZ) is presented in Figure 12. The present geographical coverage of the monitoring system in RO does not cover the whole area of interest sensu the MSFD.

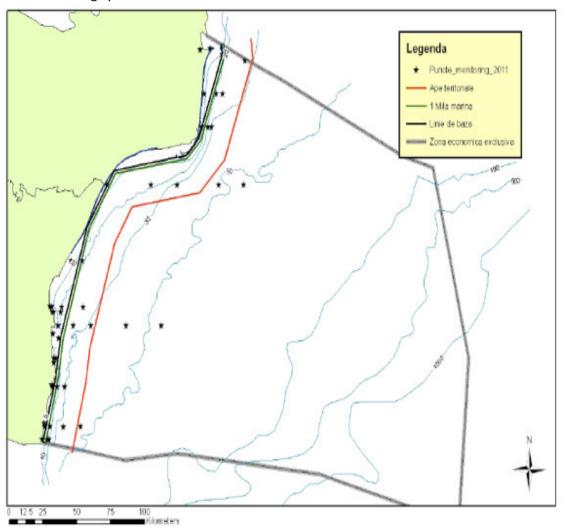



Figure 12. The Romanian EEZ (the contour in gray; the lines nearby the coast show baseline.

Note: the red line - territorial waters (12 NM), the stars are the stations covered by the National Monitoring System supervised by the Ministry of Environment and Forests).

Table 25. Information on different types of Black Sea-related monitoring in Romania

| Responsible orga                                                                           | nization                       | Type of                                                                   | Geographical | Number of                       | Parameters                                                                                                            | Period/                                 | Related to                                  |
|--------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|
| Name                                                                                       | National<br>M.P. <sup>50</sup> | monitoring 49                                                             | scope        | stations                        |                                                                                                                       | Frequency                               | human<br>activity                           |
| Constanta City Hall <sup>51</sup> (Data received from Water Supply Company RAJA Constanta) | Yes                            | Compliance<br>monitoring                                                  |              |                                 | Waste waters discharge according to HG 188 for approval of rules on discharge conditions into the aquatic environment |                                         |                                             |
| Constanta<br>County<br>Department of<br>Public Health <sup>52</sup>                        | Yes (see<br>Footnote<br>14)    | Surveillance<br>monitoring<br>(Bathing<br>water<br>quality) <sup>53</sup> |              | 48 (see<br>Table 26,<br>Fig 13) | 4 bacteriological<br>7 chemistry<br>(seeTable 27)                                                                     | Twice a month in the period 14.05-10.09 | Public Health,<br>Tourism and<br>recreation |

<sup>&</sup>lt;sup>49</sup> The Questionnaire asked for identification of the type of monitoring carried out by the contacted organization/stakeholder

<sup>50</sup> Is the organization part of a National Monitoring Program?

<sup>51</sup> Public Administration. Postal address: Bd. TOMIS No. 51, Constanta; Contact person: Octavia Pardasu, Phone: 0040241/488 132 Mobile: 0040721/488 146;

<sup>52</sup> Governmental. Subordinated to Ministry of Health. Postal address: St. Lăcrămioarei No.1, Constanta; Web: www.dspct.ro; Contact person: Dr. Luiza Caruceru, Phone: 00 40 241 480939, Fax: 00 40 241 480946, Mobile: 00 40 728111983, E-mail: secretariat@dspct.ro igiena\_mediului\_cta@yahoo.com
53 II. NATIONAL PROGRAM FOR MONITORING THE DETERMINANT FACTORS IN LIVING AND WORKING ENVIRONMENT

| Responsible orga                                                                                             | nization                       | Type of                                                                   | Geographical                                      | Number of                                 | Parameters                                                                                                                                                              | Period/                                              | Related to                                                          |
|--------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------|
| Name                                                                                                         | National<br>M.P. <sup>50</sup> | monitoring<br>49                                                          | scope                                             | stations                                  |                                                                                                                                                                         | Frequency                                            | human<br>activity                                                   |
| Tulcea County<br>Department of<br>Public Health <sup>54</sup>                                                | Yes (see<br>Footnote<br>16)    | Surveillance<br>monitoring<br>(Bathing<br>water<br>quality) <sup>55</sup> | Freshwater,<br>coastal and<br>marine<br>waters    | 6                                         | 4 bacteriological<br>7 chemistry (see<br>Table 27)                                                                                                                      | Twice a month in the period 01.06-15.09              | Public Health,<br>Tourism and<br>recreation                         |
| Environmental<br>Protection<br>Agency<br>Constanta <sup>56</sup>                                             | Yes <sup>57</sup>              | Surveillance<br>monitoring                                                | Seaside area<br>city of<br>Constanta<br>(coastal) | 1 (44° 13′<br>03.89″N<br>28°<br>38′44.05″ | 31 (see Table 28)                                                                                                                                                       | weekly                                               | Public health                                                       |
| ExxonMobil<br>Exploration &<br>Production<br>Romania<br>Limited <sup>58</sup>                                | No                             | Compliance<br>monitoring<br>(during and<br>after drilling<br>operations)  | Offshore<br>Black Sea                             | 4                                         | 17 (see Table 29)                                                                                                                                                       | Monthly<br>(December<br>2011-<br>March<br>2012)      | Offshore gas<br>and oil<br>exploitation                             |
| S.C. Thermo-<br>electric factory<br>Midia S.A.<br>(S.C. Uzina<br>Termoelectrică<br>Midia S.A.) <sup>59</sup> | No                             |                                                                           | Midia                                             |                                           | Those identified by<br>HG 188/2002 and<br>NTPA - 001/2002 (T,<br>pH, CBO5,CCOCr,<br>NH4, Pt, Pb, Cd, Cr,<br>Cu, Ni, Zn, Mn, Cl2,<br>SOx, phenols,<br>suspended matters) | Daily and<br>monthly                                 | Authorization of discharges                                         |
| National<br>Institute for<br>Research and<br>Development in<br>Tourism <sup>60</sup>                         | No<br>(Project<br>based)       | Socio-<br>economy                                                         |                                                   |                                           | 3 (details on<br>indicators derived<br>are given in Chapter<br>III.2)                                                                                                   | Since 2012,<br>annual                                | Tourism and recreation                                              |
| National<br>Company<br>Maritime Ports<br>Administration                                                      | Yes                            | Compliance<br>monitoring                                                  | Constanta<br>Port Area***                         |                                           | 24 (see Table.30)                                                                                                                                                       | Monthly or<br>every six<br>months                    | Marine<br>traffic, port<br>activities                               |
| Mare Nostrum<br>NGO <sup>62</sup>                                                                            | No<br>(Project                 | Environmen<br>t routine                                                   | Cap Midia-<br>Vama Veche                          | 30                                        | 5 (Litter), (see Table 31)                                                                                                                                              | Annual<br>(1-31 Oct.)                                | Coastal and urban                                                   |
|                                                                                                              | based)                         | monitoring<br>(not<br>complex)                                            | (coastal area)                                    | 30                                        | 1 (dolphins)                                                                                                                                                            | Twice a month (1.05-31.10)                           | development                                                         |
| National<br>Research and<br>Development<br>Institute for<br>Marine Geology                                   | No                             | Surveillance                                                              | NW Black Sea                                      | 45 ( see<br>Table 32)                     | 48 (see Table 33)                                                                                                                                                       | 1-2/year<br>(in<br>1995,1997,<br>1998,<br>2003, 2006 | Public health,<br>Coastal and<br>urban<br>development,<br>Shipping, |

55 II. NATIONAL PROGRAM FOR MONITORING THE DETERMINANT FACTORS IN LIVING AND WORKING ENVIRONMENT

2. Bathing water quality assessment (monitoring, laboratory tests).

58 Private company. Postal address: St. Floreasca 169 A, Building A, 4th floor, sector 1, Bucharest

Web: www.exxonmobil.com; Contact person: Alin Stirbu, Email: alin.stirbu@exxonmobil.com

60 INCDT Webpage: office@incdt.ro; Contact person: Teodorescu Ovidiu; Phone: 00 40 21 3162565; Fax: 00 40 21 3162535

62 NGO. Postal address: Bd. 1 Decembrie 1918, No. 3, Bl. F17, Sc. A, Ap. 3, Constanta

Web: www.marenostrum.ro; Contact person: Mihaela Candea., 0241.612422 / 0341.407432; Phone: 00 40 241 612422; Fax: 00 40 341 407432; Mobile: 00 40 723 710692; Email: office@marenostrum.ro; mihaela\_candea@marenostrum.ro

<sup>1.</sup> Subprogram on protecting public health by preventing diseases associated with risk factors of living and working environment Objective 1. Protecting health and preventing diseases associated with risk factors of living environment; 2. Bathing water quality assessment (monitoring, laboratory tests). (based on HG 88/2004 for approving the surveillance, sanitary inspection and control of natural areas used for bathing modified and completed by HG 836/2007)

<sup>&</sup>lt;sup>54</sup> Governmental. Subordinated to Ministry of Health. Postal address: St. Viitorului, No. 50, Tulcea, http://www.dspjtulcea.ro; Contact person: GHIGU GIORGIANA MARIA, Phone: 0040240 / 534134, Fax: 0040240 / 534290, Mobile: 0040755078540, Email: dspj.tulcea@x3m.ro / giaa\_2004@yahoo.com

Subprogram on protecting public health by preventing diseases associated with risk factors of living and working environment Objective 1. Protecting health and preventing diseases associated with risk factors of living environment

<sup>&</sup>lt;sup>56</sup> Governmental. Postal address: St. Unirii, No. 23, Code 900532, Constanta; http://apmct.anpm.ro; Contact person: Daniela Serban - St. Unirii, No. 23, Code 900532, Constanta, Phone: 0040241546596, Fax: 0040241 546696, Mobile: 0040746248525

National Network of Environmental Radioactivity Surveillance (RNSRM); National Network Monitoring on Air Quality (RNMCA)

<sup>&</sup>lt;sup>59</sup> Governmental. Postal address: Năvodari, B-dul Năvodari no. 9A, Constanța, www.utmidia.ro; Contact person: Eng. Dana Răşică, Inspector of Environmental Protection, Phone: 0040729994230, 0040241486235, Fax: 0040241486204 0040241694439; e-mail: cetmidia@utmidia.ro; dana.rasica@utmidia.ro;

<sup>&</sup>lt;sup>61</sup> Governmental. National Company "Maritime Ports Administration" SA Constantza is a joint stock company assigned by the Ministry of Transports and Infrastructure to develop activities of national public interest in its capacity of port administration. Postal address: Constanta, Port, Maritime station; Contact person: Paul lonescu; Tel: 0241601624; E-mail: pioncescu@constantza-port.ro

| Responsible organ                                                                                         | nization           | Type of                                                           | Geographical                           | Number of                                                                                                                         | Parameters                                                                                                                                                                  | Period/                                                                                                                     | Related to                                                                                             |
|-----------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Name                                                                                                      | National           | monitoring                                                        | scope                                  | stations                                                                                                                          |                                                                                                                                                                             | Frequency                                                                                                                   | human                                                                                                  |
| and Geoecology<br>(GeoEcoMar) <sup>63</sup>                                                               | M.P. <sup>50</sup> |                                                                   |                                        |                                                                                                                                   |                                                                                                                                                                             | -2012                                                                                                                       | Fishery and aquaculture, Tourism and recreation,                                                       |
| National                                                                                                  | Yes <sup>65</sup>  | Environmen                                                        | Transitional,                          | 45 (see Fig                                                                                                                       | 20;                                                                                                                                                                         | 2-4                                                                                                                         | Offshore gas<br>and oil<br>exploitation<br>Public health,                                              |
| Institute for Research and Development in Environmental Protection subunit: National Institute for Marine | res                | t routine<br>complex<br>monitoring;<br>Surveillance<br>monitoring | coastal and<br>marine<br>waters        | 14. and<br>Table 34)                                                                                                              | -General physico-<br>chemical indicators;<br>Eutrophication<br>indicators;<br>Contaminants;<br>Biological indicators<br>(Macrozoobenthos,<br>Phytoplankton,<br>Zooplankton) | times/year<br>(2 times<br>per year<br>since 2010)                                                                           | Coastal and urban development, Shipping, Fishery and aquaculture, Tourism and recreation, Offshore gas |
| Research and<br>Development<br>"Grigore<br>Antipa",                                                       |                    | Compliance monitoring                                             |                                        | 25                                                                                                                                | 3                                                                                                                                                                           | March –<br>October<br>(1997-<br>2011)                                                                                       | and oil<br>exploitation                                                                                |
| Constanta<br>(NIMRD) <sup>64</sup>                                                                        |                    | Surveillance<br>monitoring                                        | Coastal<br>waters                      | 12 (see Fig<br>15)                                                                                                                | Macroalgae                                                                                                                                                                  | 1-2 per<br>month in<br>summer<br>time<br>(Annually<br>since 2010)                                                           |                                                                                                        |
|                                                                                                           |                    | Surveillance<br>monitoring                                        |                                        | 40                                                                                                                                | Fishes                                                                                                                                                                      | Twice a<br>year<br>(Annually<br>April – May<br>and<br>September<br>– October<br>for sprat<br>and turbot)<br>(Since<br>2008) |                                                                                                        |
|                                                                                                           |                    | Surveillance<br>monitoring                                        |                                        | 12                                                                                                                                | Fishes                                                                                                                                                                      | Twice a year (May - October for trap nets fish)                                                                             |                                                                                                        |
|                                                                                                           |                    | Surveillance<br>monitoring                                        |                                        | 3                                                                                                                                 | Erosion/accretion                                                                                                                                                           | Every year,<br>seasonal<br>(since<br>2008-<br>present)                                                                      |                                                                                                        |
|                                                                                                           |                    | Surveillance<br>monitoring                                        |                                        | In the early<br>stages they<br>were about<br>75<br>landmarks<br>which<br>declined<br>over the<br>time to<br>about 60<br>landmarks | Shoreline changes                                                                                                                                                           | Annual/sea<br>sonal<br>(1980-<br>2007)                                                                                      |                                                                                                        |
| Dobrogea<br>Littoral Water<br>Basin                                                                       | Yes                | Surveillance<br>and<br>compliance                                 | Black Sea<br>(coastal,<br>transitional | 35 (29<br>sections in<br>coastal                                                                                                  | Field of investigation-water: Physico-chemical                                                                                                                              | 4 times a year (since 2010 – 2                                                                                              | No relevance<br>to human<br>activity has                                                               |

<sup>63</sup> Governmental. Subordinated to Romanian Academy of Science. Postal address: 23-25 Dimitrie Onciul Street, RO-024053, Bucharest, ROMANIA; email: headquarter@geoecomar.ro; webpage: www.geoecomar.ro; Contact person in the Constanta branch: Tatiana BEGUN; 304 Mamaia Blv., RO-

mail: headquarter@geoecomar.ro; webpage: www.geoecomar.ro; Contact person in the Constanta branch: Tatiana BEGUN; 304 Mamaia BIV., RO-900581, Constanta, Romania; Tel./Fax: +40 241 548420; e-mail: tatianabegun@yahoo.com, tbegun@geoecomar.ro

64 Governmental. It was previously subordinated to Ministry of Environment and Forest. Presently the Institute is under the Ministry of Education. Postal address: 300 Mamaia BIvd., Constanta, Romania; Tel: +40 241/543 288; Fax: +40 241/831 274; E-mail: office@alpha.rmri.ro; Web: www.mri.ro; Contact person: Dr. Simion Nicolaev; Tel: 00 40 241 540870; Email: snicolaev@alpha.rmri.ro

65 Integrated monitoring of the Black Sea ecosystem (annual) – Objective: assessment of marine environment status through investigations of physico-physical and biological personators availation under the influence of authenorogical and natural programs.

chemical and biological parameters evolution under the influence of anthropogenic and natural pressures; The National Fishery Data Collection Program.

| Responsible orga                                                   | nization                       | Type of                                                                                       | Geographical                                                                                | Number of                                                                          | Parameters                                                                                                                 | Period/                         | Related to                                                                                               |
|--------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------|
| Name                                                               | National<br>M.P. <sup>50</sup> | monitoring                                                                                    | scope                                                                                       | stations                                                                           |                                                                                                                            | Frequency                       | human<br>activity                                                                                        |
| Administration<br>66                                               |                                | monitoring <sup>67</sup>                                                                      | waters)                                                                                     | waters, 6<br>sections in<br>marine<br>transitional<br>waters)<br>(see Table<br>36) | indicators = 63 Biological Indicators = 4 Field of investigation- sediment: Physico-chemical indicators = 8 (see Table 37) | times per<br>year)              | been<br>specified                                                                                        |
| SC AQUASERV<br>SA <sup>68</sup>                                    | Yes                            | Water<br>quality<br>control,<br>discharges<br>of waste<br>water<br>(Compliance<br>monitoring) | Danube (Y=<br>797214,17;<br>X=<br>415918,58)                                                |                                                                                    | 14 (see Table 38)                                                                                                          | Daily to<br>monthly             | Public health,<br>Coastal and<br>urban<br>development,<br>Offshore gas<br>and oil<br>exploitation        |
| Romanian<br>Space Agency <sup>69</sup>                             | No                             | Operational                                                                                   |                                                                                             |                                                                                    |                                                                                                                            |                                 | Coastal and urban development, Marine and riverine traffic, Agriculture and farming, Military activities |
| OMV Petrom SA - X Petromar constant production area <sup>70</sup>  | No                             | Compliance<br>monitoring                                                                      | Continental<br>shelf of the<br>Black Sea - oil<br>exploitation<br>perimeter<br>Istria XVIII | 7 (see<br>Table 39)                                                                | 7 (see Table 40)                                                                                                           | 1st Jan-31<br>Dec/quarte<br>rly | Offshore gas<br>and oil<br>exploitation                                                                  |
| Constanta<br>Maritime<br>Hydrographic<br>Directorate <sup>71</sup> | No                             |                                                                                               | Coast<br>(Conatsnta<br>and Midia)                                                           | 4 in<br>Constanta<br>and 6 in<br>Midia<br>(coastal)                                | Noise level and<br>salinity (0-50 m<br>depth)                                                                              |                                 | Military<br>activity                                                                                     |

<sup>\*\*\*</sup> In the Questionnaire of the Port Administration it is written that the observations on different chemical parameters are carried out on-coast. To be checked what parameters on coast – discharges of something else. No observations in the water of the Port area have been mentioned.

Climate-related monitoring (precipitation, wind, etc.) is under the NMA Meteo of Romania - National Meteorological Administration

The Naval Academy has been contacted but it did not specify any type of Black Sea-related monitoring to conduct. They have well responded to the Questionnaire Part II and this is further reflected in the report (see Chapters IV-VI).

68 State enterprise. Postal address: REZERVORULUI 2, TULCEA

<sup>66</sup> Public institution with its own funds. It is under the Minsitry of Water and Forests. Postal address: Bd. Mircea Cel Batran no. 127 Constanta, www.waterct.ro; Contact person: Camelia PULBERE – Manager RAPM (Str. Mircea cel Batran no. 127, Constanta, cod 900592, Tel: 0241 673036 / 0241 673025, e-mail: camelia.pulbere@dadl.rowater.ro

<sup>&</sup>lt;sup>67</sup> According to Order 31/2006 (SMIAR).

<sup>69</sup> Public administration. Postal address: Str. Mendeleev, no. 21-25, Bucuresti, Sector 1, 010362, Romania; http://www.rosa.ro; Contact person: Dr. Marius-Ioan Piso, ph. +40-21-3168722, fax +40-21-3128804, e-mail: marius-ioan.piso@rosa.ro

<sup>70</sup> Private. Postal address: Constanta, the Port - Dana 34; Contact person: Wolfgang Leeb, Tel: 0372824366; Fax: 0241585420; E-mail: wolfgang.leeb @ omy.com

<sup>71</sup> Governmental. Postal address: St. Fulgerului, no. 1, Constanta; Contact person: Adrian Filip, e-mail: hidro@dhmfn.ro

## **Bathing water**

Table 26. Bathing water quality monitoring: list of stations and coordinates (observed by the Constanta County Department of Public Health, Romania)

| N of    | Coordinates  |             | Area/name of transect*             | Type of station |
|---------|--------------|-------------|------------------------------------|-----------------|
| station | NORTH        | EAST        |                                    |                 |
| 1       | 44°18'59''   | 28°38'08''  | NĂVODARI I                         | Coastal waters  |
| 2       | 44°17'16''   | 28°37'27''  | NĂVODARI II                        | Coastal waters  |
| 3       | 44°17'13''   | 28°37'26''  | NĂVODARI III – AREA I              | Coastal waters  |
| 4       | 44°17'10''   | 28°37'26''  | NĂVODARI III – AREA II             | Coastal waters  |
| 5       | 44°16'48''   | 28°37'17''  | NĂVODARI IV– AREA I                | Coastal waters  |
| 6       | 44°16'27''   | 28°37'19''  | NĂVODARI IV– AREA II               | Coastal waters  |
| 7       | 44°16'03''   | 28°37'18''  | MAMAIA I - AREA 1                  | Coastal waters  |
| 8       | 44°15'57''   | 28°37'17''  | MAMAIA I - AREA 2                  | Coastal waters  |
| 9       | 44°15'46''   | 28°37'19''  | MAMAIA II                          | Coastal waters  |
| 10      | 44°15'25''   | 28°37'18''  | MAMAIA III                         | Coastal waters  |
| 11      | 44°14'56''   | 28°37'22''  | MAMAIA IV                          | Coastal waters  |
| 12      | 44°14'19''   | 28°37'33''  | MAMAIA V                           | Coastal waters  |
| 13      | 44°14'02''   | 28°37'41''  | MAMAIA VI                          | Coastal waters  |
| 14      | 44°13'25''   | 28°38'02''  | MAMAIA VII                         | Coastal waters  |
| 15      | 44°13'08''   | 28°38'17''  | MAMAIA VIII                        | Coastal waters  |
| 16      | 44°12'36''   | 28°39'06''  | CONSTANȚA I                        | Coastal waters  |
| 17      | 44°10'46''   | 28°39'31''  | CONSTANȚA II                       | Coastal waters  |
| 18      | 44°04'08''   | 28°38'21''  | EFORIE NORD I                      | Coastal waters  |
| 19      | 44°03'41"    | 28°38'29''  | EFORIE NORD II                     | Coastal waters  |
| 20      | 44°03'13''   | 28°38'37''  | CORDON EFORIE NORD-EFORIE SOUTH I  | Coastal waters  |
| 21      | 44°02'56''   | 28°38'43''  | CORDON EFORIE NORD-EFORIE SOUTH II | Coastal waters  |
| 22      | 44°02'07''   | 28°39'14''  | EFORIE SOUTH I                     | Coastal waters  |
| 23      | 44°01'42''   | 28°39'25''  | EFORIE SOUTH II                    | Coastal waters  |
| 24      | 43°57'03''   | 28°38'22''  | COSTINEȘTI I                       | Coastal waters  |
| 25      | 43°56'43''   | 28°38'17''  | COSTINEȘTI II                      | Coastal waters  |
| 26      | 43°53'54''   | 28°36'57''  | OLIMP I                            | Coastal waters  |
| 27      | 43°53'17''   | 28°36'37''  | OLIMP II-1                         | Coastal waters  |
| 28      | 43°53'04''   | 28°36'21"   | OLIMP II-2                         | Coastal waters  |
| 29      | 43°52'38"    | 28°36'21''  | NEPTUN I                           | Coastal waters  |
| 30      | 43°52'08''   | 28°36'21''  | NEPTUN II                          | Coastal waters  |
| 31      | 43°51'37''   | 28°36'26''  | JUPITER 1                          | Coastal waters  |
| 32      | 43°51'22,5'' | 28°36'26''  | JUPITER 2                          | Coastal waters  |
| 33      | 43°51'12''   | 28°36'30''  | JUPITER 3                          | Coastal waters  |
| 34      | 43°51'09,2'' | 28°36'30''  | JUPITER 4                          | Coastal waters  |
| 35      | 43°51'04,4'' | 28°36'30''  | CAP AURORA 1                       | Coastal waters  |
| 36      | 43°50'56,3"  | 28°36'12,3" | CAP AURORA 2                       | Coastal waters  |
| 37      | 43°50'52,5"  | 28°36'10''  | CAP AURORA 3                       | Coastal waters  |
| 38      | 43°50'35"    | 28°36'06,2" | VENUS I-1                          | Coastal waters  |
| 39      | 43°50'44,5"  | 28°36'02,9" | VENUS I-2                          | Coastal waters  |
| 40      | 43°50'35"    | 28°35'59''  | VENUS II                           | Coastal waters  |
| 41      | 43°50'27''   | 28°35'27''  | VENUS                              | Coastal waters  |
| 42      | 43°49'58''   | 28°35'19''  | CORDON VENUS-SATURN 1              | Coastal waters  |
| 43      | 43°49'48''   | 28°35'19''  | CORDON VENUS-SATURN 2              | Coastal waters  |
| 44      | 43°49'37''   | 28°35'28''  | SATURN I                           | Coastal waters  |
| 45      | 43°49'17''   | 28°35'03''  | SATURN II                          | Coastal waters  |
| 46      | 43°48'32"    | 28°35'01"   | MANGALIA                           | Coastal waters  |
| 47      | 43°47'08''   | 28°34'47''  | 2 MAI                              | Coastal waters  |
| 48      | 43°45'14''   | 28°34'27''  | VAMA -VECHE                        | Coastal waters  |

#### The Tulcea County department of Public Health observes the following areas:

- Sfantu Gheorghe (St. George)- 2 points of sampling beach East and West- St. George; Lat. -44 ° 8 N, Long. E-29 ° -5 '(about 2.5 km from the town of St. George); St. George beach length L total range = 21 km, bathing area length: L = 800 m;
- Sulina 2 point sampling Beach North and South Sulina; Lat. -45 ° -30 'N, Long. E-29 ° -11 '(about 2.5 km from Sulina) Length range: Sulina L total = 12 km beach, swimming area length: 800 m;
- Jurilovca holiday village Gura Portitei 2 point sampling Beach North and South; Length of beach: total L = 1.8 km beach, swimming area length: L = 275 m.

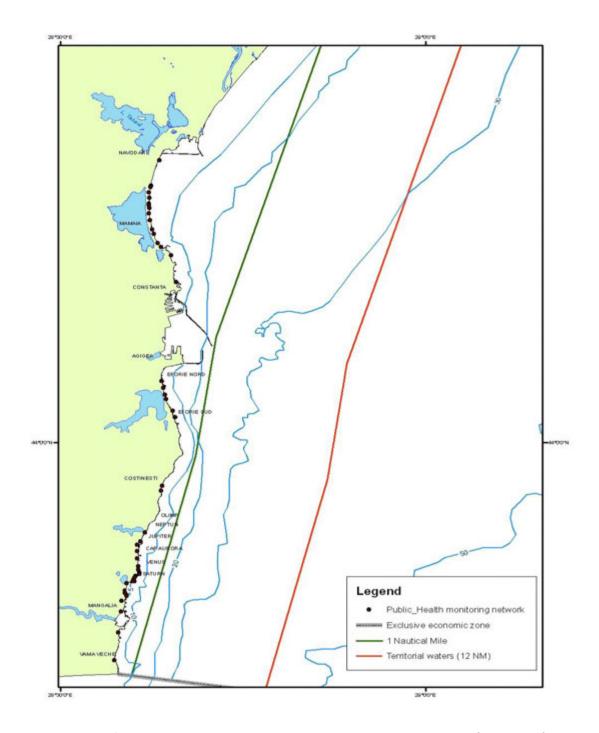



Figure 13. Map of the Romanian coast covered by bathing water monitoring (black dots).

Table 27. Bathing water monitoring: parameters observed by the Constanta and Tulcea County Departments of Public Health, Romania

| Parameter           | Analytical                                                                                    | Frequency      |                          |     |        |                     |    |          |
|---------------------|-----------------------------------------------------------------------------------------------|----------------|--------------------------|-----|--------|---------------------|----|----------|
|                     | Method                                                                                        | Water (specify |                          | Sec | liment | Bio                 | ta | On-Coast |
|                     |                                                                                               | Sur            | face/Depth/Layer)        |     |        |                     |    |          |
| Coliforms           | ISO 9308-1/ HG                                                                                | Twi            | ce a month <sup>73</sup> |     |        |                     |    |          |
|                     | 459/2002 <sup>72</sup>                                                                        |                |                          |     |        |                     |    |          |
| Escherichia coli    | ISO 9308-1                                                                                    |                | Twice a month            |     |        |                     |    |          |
| Enterococci         | ISO 7899-2                                                                                    | Twi            | ce a month               |     |        |                     |    |          |
| intestinal          |                                                                                               |                |                          |     |        |                     |    |          |
| Salmonella          | ISO 19250/ HG                                                                                 | Twi            | ce a month               |     |        |                     |    |          |
|                     | 459/2002                                                                                      |                |                          |     |        |                     |    |          |
| рH                  | SR ISO 10523:2009/                                                                            | Twi            | ce a month               |     |        |                     |    |          |
|                     | SR ISO 10523/1997                                                                             |                |                          |     |        |                     |    |          |
| Dissolved oxygen    | SR EN 25813:2000                                                                              |                | ce a month               |     |        |                     |    |          |
| Saturation level    | SR EN 25813:2000                                                                              | Twice a month  |                          |     |        |                     |    |          |
| in O <sub>2</sub> % |                                                                                               |                |                          |     |        |                     |    |          |
|                     | SR EN                                                                                         | Twi            | ce a month               |     |        |                     |    |          |
| BOD <sub>5</sub>    | 1899-2:2002/ SR ISO                                                                           |                |                          |     |        |                     |    |          |
|                     | 6060/1996                                                                                     | <b>T</b> :     |                          |     |        |                     |    |          |
|                     | SR ISO 6439 : 2001<br>SR ISO                                                                  | Twice a month  |                          |     |        |                     |    |          |
| Phenol              | 6439 :2001/C 91:                                                                              |                |                          |     |        |                     |    |          |
|                     | 2006                                                                                          |                |                          |     |        |                     |    |          |
| Mineral oils        | SR 7587 :1996                                                                                 | Twi            | ce a month               |     |        |                     |    |          |
|                     | SR EN 903 : 2003/ SR                                                                          |                | ce a month               |     |        |                     |    |          |
| Surfactants         | ISO 7875-1/1996                                                                               |                | ce a monen               |     |        |                     |    |          |
| Pathogenic          |                                                                                               |                |                          |     |        |                     |    | In sand  |
| bacteria,           |                                                                                               |                |                          |     |        |                     |    |          |
| candida,            |                                                                                               |                |                          |     |        |                     |    |          |
| intestinal          |                                                                                               |                |                          |     |        |                     |    |          |
| parasites           |                                                                                               |                |                          |     |        |                     |    |          |
| Additional parame   | Additional parameters observed by the Tulcea County Department of Public Health <sup>74</sup> |                |                          |     |        |                     |    |          |
| Ammonium            | SR ISO 7150-1/2001                                                                            | Twice a month  |                          |     |        |                     |    |          |
| Nitrates            | SR ISO 7890-3/2000                                                                            | Twice a month  |                          | -   |        |                     |    |          |
| colour              | SR EN ISO 7887/2002                                                                           |                | Twice a month            |     |        | 72002 Twice a month |    |          |

Note: to be checked whether Constanta and Tulcea use different analytical methods, as reported.

 $<sup>^{72}</sup>$  Note: different analytical methods are reported by Constanta and Tulcea.  $^{73}$  Samples collected from a depth of 30 cm under the surface water.  $^{74}$  Tulcea county does not observe phenols and mineral oils.

#### Water quality, biology, geology, coast - Black Sea

Table 28. Monitoring of radionuclides carried out by the Environmental Protection Agency of Constanta, Romania

| Parameter                     | Analytical | Frequency            |          |       |       |  |
|-------------------------------|------------|----------------------|----------|-------|-------|--|
|                               | Method     | Water (specify       | Sediment | Biota | On-   |  |
|                               |            | Surface/Depth/Layer) |          |       | Coast |  |
| Global beta specific activity | ISO        | Surface water /      |          |       |       |  |
|                               | 9697:2008  | weekly               |          |       |       |  |
| Specific activity of gamma    | ISO-       | Surface water /      |          |       |       |  |
| emitting radionuclides:       | 10703:     | weekly               |          |       |       |  |
|                               | 2007       |                      |          |       |       |  |
| Be-7, K-40, Pb-210, Bi-212,   |            |                      |          |       |       |  |
| Pb-212, Ac-228, Bi-214, Pb-   |            |                      |          |       |       |  |
| 214, Th-234, U-235, Mn-54,    |            |                      |          |       |       |  |
| Co-58, Fe-59, Co-60, Zn-65,   |            |                      |          |       |       |  |
| Nb-95, Zr-95, Ru-103, Ru-     |            |                      |          |       |       |  |
| 106, Sb-124, Sb-125, I-131,   |            |                      |          |       |       |  |
| Cs-134, Cs-137, Ce-139, Ce-   |            |                      |          |       |       |  |
| 141, Ce-144, Eu-152, Gd-      |            |                      |          |       |       |  |
| 153, Eu-154,Eu-155            |            |                      |          |       |       |  |

Note: the available data provides for long-term trends.

The Environmental Protection Agency stated: The questionnaire is completed only from the point of view of Black Sea radioactivity monitoring; that is the only activity developed by EPA Constanta that is relevant for the "Marine Strategy". The Air quality monitoring should be also considered as the atmosphere is a serious source of pollution to the Black Sea.

Table 29. Monitoring related to drilling operations (ExxonMobil, Romania (no trends are mentioned to be derived from data collected)

| Parameter            | Analytical | Frequency                |          |       |          |  |
|----------------------|------------|--------------------------|----------|-------|----------|--|
| Method Water (sp     |            | Water (specify           | Sediment | Biota | On-Coast |  |
|                      |            | Surface/Depth/Layer)     |          |       |          |  |
| Temperature          | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Salinity             | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| рН                   | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Dissolved oxygen     | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Oxidability          | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Total suspensions    | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Chlorophyll a        | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Total hydrocarbons   | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
| content              |            | North, south, east, west |          |       |          |  |
| Polynuclear aromatic | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
| hydrocarbons content |            | North, south, east, west |          |       |          |  |
| Cu                   | NIMRD      | 0, 10, 25, 50, 100 m /   | No No    |       | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Cd                   | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Pb                   | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Ni                   | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Cr                   | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Ba                   | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Phytoplankton        | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |
| Zooplankton          | NIMRD      | 0, 10, 25, 50, 100 m /   | No       | No    | No       |  |
|                      |            | North, south, east, west |          |       |          |  |

Note: NIMRD undertakes all sampling and processing based on the methodologies applied in the Institute, see for details Table 35.

Table 30. Monitoring related to Port Operations (National Company Maritime Ports Administration, Romania, no trends are mentioned to be monitored)

| Parameter                                                                                                                                      | Analytical | Frequency                                     |          |       |          |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|----------|-------|----------|
|                                                                                                                                                | Method     | Water<br>(specify<br>Surface/De<br>pth/Layer) | Sediment | Biota | On-Coast |
| pH, BOD <sub>5</sub> , CCO – Cr, MTS, total<br>nitrogen, NH4+,nitrate, nitrite,<br>SET, detergents, oil products,<br>phenols, total phosphorus |            |                                               |          |       | monthly  |

| Parameter                                                  | Analytical | Frequency                                     | Frequency |       |                     |
|------------------------------------------------------------|------------|-----------------------------------------------|-----------|-------|---------------------|
|                                                            | Method     | Water<br>(specify<br>Surface/De<br>pth/Layer) | Sediment  | Biota | On-Coast            |
| Sulphide, H₂S, cyanide, Cd, Cr, Ni, Pb, Zn, Fe, As, Cu, Hg |            |                                               |           |       | Every six<br>months |

Note: The organization is monitoring discharges into the harbour waters.

Table 31. Monitoring carried out by Mare Nostrum, Romania (marine litter, marine mammals)

| Parameter                                                               | Analytical        | Frequency                            |          |       |          |  |
|-------------------------------------------------------------------------|-------------------|--------------------------------------|----------|-------|----------|--|
|                                                                         | Method            | Water (specify Surface/Depth/ Layer) | Sediment | Biota | On-Coast |  |
| Waste -glass                                                            | Coastwatch method |                                      |          |       | Х        |  |
| Waste-metal                                                             | Coastwatch method |                                      |          |       | Х        |  |
| Waste -Paper / Cardboard                                                | Coastwatch method |                                      |          |       | Х        |  |
| Waste - plastic                                                         | Coastwatch method |                                      |          |       | Х        |  |
| Biodiversity-dolphins<br>(especially stranded<br>dolphins on the beach) |                   |                                      |          |       | X        |  |

Table 32. Coordinates of stations monitored by GeoEcoMar, Romania

| N of station | Coordinates |           | Area/name of          | Type of station     |  |
|--------------|-------------|-----------|-----------------------|---------------------|--|
|              | Latitude    | Longitude | transect*             |                     |  |
| SU015        | 45,07361    | 29,73472  | Sulina transect       | Transitional waters |  |
| SU025        | 45,06666    | 29,80861  | Sulina transect       | Transitional waters |  |
| SU035        | 45,03861    | 30,07250  | Sulina transect       | Transitional waters |  |
| SU045        | 44,95166    | 30,26805  | Sulina transect       | Marine waters       |  |
| SU065        | 44,82083    | 30,64972  | Sulina transect       | Marine waters       |  |
| SU090        | 44,68527    | 31,02277  | Sulina transect       | Marine waters       |  |
| SU120        | 44,49611    | 30,99722  | Sulina transect       | Marine waters       |  |
| SG01         | 44,83880    | 29,66083  | Sf. Gheorghe transect | Transitional waters |  |
| SG02         | 44,82669    | 29,66315  | Sf. Gheorghe transect | Transitional waters |  |
| SG03         | 44,82431    | 29,67627  | Sf. Gheorghe transect | Transitional waters |  |
| SG04         | 44,66944    | 29,81558  | Sf. Gheorghe transect | Marine waters       |  |
| SG05         | 44,58860    | 30,10161  | Sf. Gheorghe transect | Marine waters       |  |
| SG14         | 44,46496    | 30,31187  | Sf. Gheorghe transect | Marine waters       |  |
| SG06         | 44,33969    | 30,52811  | Sf. Gheorghe transect | Marine waters       |  |
| SG07         | 44,29327    | 30,61033  | Sf. Gheorghe transect | Marine waters       |  |
| SG08         | 44,25697    | 30,62161  | Sf. Gheorghe transect | Marine waters       |  |
| SG09         | 44,14572    | 30,78819  | Sf. Gheorghe transect | Marine waters       |  |
| SG10         | 44,13166    | 30,80083  | Sf. Gheorghe transect | Marine waters       |  |
| SG11         | 44,12500    | 30,79777  | Sf. Gheorghe transect | Marine waters       |  |

| N of station | Coordinate | es       | Area/name of          | Type of station     |
|--------------|------------|----------|-----------------------|---------------------|
| SG12         | 44,12416   | 30,79222 | Sf. Gheorghe transect | Marine waters       |
| SG13         | 44,12233   | 30,80241 | Sf. Gheorghe transect | Marine waters       |
| PO01         | 44,66297   | 29,02731 | Portita transect      | Transitional waters |
| PO02         | 44,62103   | 29,13093 | Portita transect      | Transitional waters |
| PO03         | 44,58816   | 29,22166 | Portita transect      | Transitional waters |
| PO05         | 44,57734   | 29,24366 | Portita transect      | Transitional waters |
| PO04         | 44,50945   | 29,37534 | Portita transect      | Marine waters       |
| CT01         | 44,15244   | 28,70266 | Constanta transect    | Coastal waters      |
| CT02         | 44,15250   | 28,72166 | Constanta transect    | Coastal waters      |
| CT03         | 44,13972   | 28,77305 | Constanta transect    | Marine waters       |
| CT04         | 44,08352   | 29,03361 | Constanta transect    | Marine waters       |
| CT05         | 43,97449   | 29,51093 | Constanta transect    | Marine waters       |
| CT09         | 43,90888   | 29,68222 | Constanta transect    | Marine waters       |
| CT06         | 43,79916   | 30,00722 | Constanta transect    | Marine waters       |
| CT07         | 43,77383   | 30,07713 | Constanta transect    | Marine waters       |
| CT08         | 43,75583   | 30,13230 | Constanta transect    | Marine waters       |
| MA05         | 43,77475   | 28,60385 | Mangalia transect     | Coastal waters      |
| MA06         | 43,77220   | 28,63898 | Mangalia transect     | Coastal waters      |
| MA07         | 43,77297   | 28,65816 | Mangalia transect     | Marine waters       |
| MA08         | 43,77415   | 28,73375 | Mangalia transect     | Marine waters       |
| MA04         | 43,76602   | 29,40017 | Mangalia transect     | Marine waters       |
| MA03         | 43,75594   | 29,96708 | Mangalia transect     | Marine waters       |
| MA02         | 43,74836   | 30,02083 | Mangalia transect     | Marine waters       |
| MA01         | 43,75802   | 30,13488 | Mangalia transect     | Marine waters       |
| MA09         | 43,73516   | 30,16081 | Mangalia transect     | Marine waters       |
| MA10         | 43,73814   | 30,18911 | Mangalia transect     | Marine waters       |

The **GeoEcoMar** Institute performs investigations in Romanian waters, marine geology and sedimentology, geo-ecology, bio-chemistry, physics, and others. Detail information is provided further.

Table 33. Monitored parameters by GeoEcoMar, Romania

| Parameter                                       | Analytical        | Frequency            |          |       |       |
|-------------------------------------------------|-------------------|----------------------|----------|-------|-------|
|                                                 | Method            | Water (specify       | Sediment | Biota | On-   |
|                                                 |                   | Surface/Depth/Layer) |          |       | Coast |
| Pressure/depth                                  | CTD               | 1-2/ year (within    |          |       |       |
| temperature,                                    | sensors/rosette   | water column)        |          |       |       |
| conductivity/salinity,                          | sampler (Note:    |                      |          |       |       |
| sigma theta, dissolved                          | Trends can be     |                      |          |       |       |
| oxygen/oxygen                                   | derived)          |                      |          |       |       |
| saturation, pH, Eh, light                       |                   |                      |          |       |       |
| transmission/absorptio                          |                   |                      |          |       |       |
| n, fluorescence                                 |                   |                      |          |       |       |
| (chlorophyll a),                                |                   |                      |          |       |       |
| turbidity                                       |                   |                      |          |       |       |
| Nutrients (PO <sub>4</sub> , SiO <sub>2</sub> , | Spectrophotome    | 1-2/year (within the |          |       |       |
| NO <sub>3</sub> , NO <sub>2</sub> )             | ter (Note: Trends | water column and     |          |       |       |
|                                                 | can be derived)   | sediment/water       |          |       |       |
|                                                 |                   | interface)           |          |       |       |

| Parameter                                                                                                       | Analytical                                                                                           | Frequency                                                                 |          |       |       |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|-------|-------|
|                                                                                                                 | Method                                                                                               | Water (specify                                                            | Sediment | Biota | On-   |
|                                                                                                                 |                                                                                                      | Surface/Depth/Layer)                                                      |          |       | Coast |
| H <sub>2</sub> S                                                                                                | Spectrophotome<br>ter (Note: Trends<br>can be derived)                                               | 1-2/year<br>(sediment/water<br>interface, anoxic<br>water column)         |          |       |       |
| Chlorophyll <i>a</i> , b, c                                                                                     | spectrophotomet<br>er, Jeffrey –<br>Humphrey<br>(1975) equations<br>(Note: Trends<br>can be derived) | 1-2/year (within the water column)                                        |          |       |       |
| Greenhouse gases (CO <sub>2</sub> , NH <sub>4</sub> , N <sub>2</sub> O)                                         | Infrared photoacoustic method (Note: Trends can be derived)                                          | 1-2/years (air-water interface)                                           |          |       |       |
| Phytoplankton<br>N.sp, Density (cel.l <sup>-1</sup> ),<br>Biomass (mg.l <sup>-1</sup> )                         |                                                                                                      | 1-2/year (within the water column)                                        |          |       |       |
| Zooplankton<br>N.sp, Density (cel.m <sup>-3</sup> ),<br>Biomass (mg.m <sup>-3</sup> )                           |                                                                                                      | 1-2/year (10-0m, 25-<br>10m, 50-25m, 100-<br>50m, 150-100m, 200-<br>150m) |          |       |       |
| Macrobenthos<br>N.sp, Density (ind.m <sup>-2</sup> ),<br>Biomass (g.m <sup>-2</sup> )                           |                                                                                                      | 1-2/year                                                                  |          |       |       |
| Meiobenthos<br>N.sp, Density (ind.m <sup>-2</sup> ),<br>Biomass (g.m <sup>-2</sup> )                            |                                                                                                      | 1-2/year                                                                  |          |       |       |
| Non-indigenous species                                                                                          |                                                                                                      | 1-2/year                                                                  |          |       |       |
| Gran size composition of sediments                                                                              | Sieving and settling tubes, laser diffraction                                                        |                                                                           | 1-2/year |       |       |
| Major and minor components (CaCO <sub>3</sub> , Fe <sub>2</sub> O <sub>3</sub> – total, TiO <sub>2</sub> , MnO) | Volumetric<br>(Black, 1965),<br>XRF<br>spectrometry                                                  |                                                                           | 1-2/year |       |       |
| Trace elements (Ba, Sr,<br>Rb, Zr, Co, Ni, Cr, V, Cu,<br>Pb, Zn, Cd)                                            | XRF spectrometry, FAAS – Co, Ni, Cu, Pb, Zn and GFAAS – Cd (Secrieru and Secrieru, 2002)             |                                                                           | 1-2/year |       |       |

Note: From coast, reference station/s are sampled for various parameters (Pressure/depth temperature, conductivity/salinity, sigma theta, dissolved oxygen/oxygen saturation, pH, Eh, light transmission/absorption, fluorescence (chlorophyll a), turbidity; Nutrients (PO<sub>4</sub>, SiO<sub>2</sub>, NO<sub>3</sub>, NO<sub>2</sub>);  $H_2S$ ; Chlorophyll a, b, c; Phytoplankton, N.sp, Density (cel.I-¹), Biomass (mg.I-¹); Zooplankton, N.sp, Density (cel.m-³), Biomass (mg.m-³); Macrobenthos and Meiobenthos, N.sp, Density (ind.m-²), Biomass (g.m-²); and Non-natives.

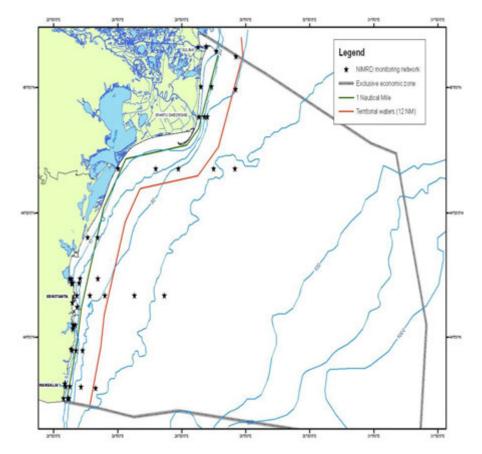



Figure 14. Map of sampling stations (45 in total) of the environment routine monitoring carried out by NIMRD, Romania

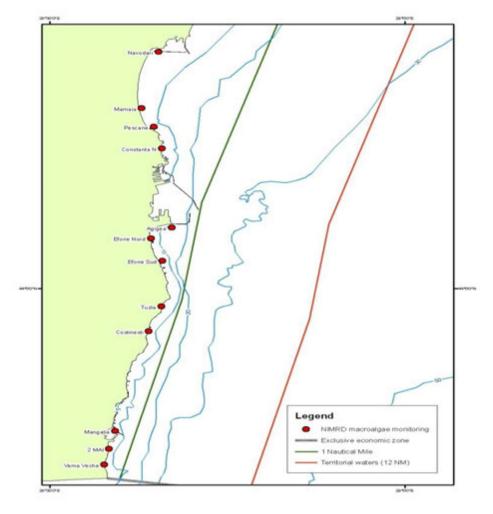



Figure 15. Map of macroalgae sampling stations of NIMRD, Romania

Table 34. Coordinates of sampling stations of NIMRD, Romania

| Nonitoring network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nr.      | N of station             | Depth<br>(m) | Latitude | Longitude                               | Area/name of transect*   | Type of station <sup>75</sup> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|--------------|----------|-----------------------------------------|--------------------------|-------------------------------|
| 1         Sulina         10         45,1422         29,7744         Sulina         T           2         Sulina         20         45,1333         29,8050         Sulina         T           3         Sulina         30         45,1228         29,9242         Sulina         M           4         Mila 9         5         45,0033         29,6517         Mila 9         T           5         Mila 9         30         45,0033         29,7750         Mila 9         M           7         Sf. Gheorghe         5         44,8336         29,6364         Sf. Gheorghe         T           8         Sf. Gheorghe         20         44,8336         29,6783         Sf. Gheorghe         T           9         Sf. Gheorghe         30         44,8366         29,7018         Sf. Gheorghe         T           10         Portita         5         44,6767         29,00067         Portita         T           11         Portita         5         44,6767         29,0992         Portita         T           12         Portita         5         44,6767         29,99167         Portita         M           13         Portita         5                                                                                                                                              |          | Monitoring               |              |          |                                         |                          |                               |
| 2         Sulina         20         45,1333         29,8050         Sulina         T           3         Sulina         30         45,1228         29,9242         Sulina         M           4         Mila 9         5         45,0033         29,7333         Mila 9         T           5         Mila 9         30         45,0033         29,7750         Mila 9         M           6         Mila 9         30         45,0033         29,7750         Mila 9         M           7         Sf. Gheorghe         5         44,8836         29,6783         Sf. Gheorghe         T           8         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         T           9         Sf. Gheorghe         30         44,6767         29,9067         Portita         T           10         Portita         5         44,6767         29,9092         Portita         T           11         Portita         50         44,6767         29,9167         Portita         M           12         Portita         50         44,6767         29,9167         Portita         M           13         Portita         50                                                                                                                                                  |          |                          |              |          |                                         |                          |                               |
| 3         Sulina         30         45,1228         29,9242         Sulina         M           4         Mila 9         5         45,0033         29,6517         Mila 9         T           5         Mila 9         30         45,0033         29,7733         Mila 9         T           6         Mila 9         30         45,0033         29,7750         Mila 9         M           7         Sf. Gheorghe         5         44,8836         29,6364         Sf. Gheorghe         T           8         Sf. Gheorghe         20         44,8836         29,6783         Sf. Gheorghe         T           9         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         M           10         Portita         5         44,6767         29,0067         Portita         T           11         Portita         5         44,6767         29,0067         Portita         M           12         Portita         30         44,6767         29,2992         Portita         M           13         Portita         50         44,6767         29,9167         Portita         M           14         Portita         57                                                                                                                                           |          | Sulina                   | 10           | 45,1422  | 29,7744                                 |                          |                               |
| 4         Mila 9         5         45,0033         29,6517         Mila 9         T           5         Mila 9         20         45,0033         29,7333         Mila 9         T           6         Mila 9         30         45,0033         29,7750         Mila 9         M           7         Sf. Gheorghe         5         44,8836         29,6783         Sf. Gheorghe         T           8         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         T           9         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         M           10         Portita         5         44,6767         29,2092         Portita         T           11         Portita         20         44,6767         29,9799         Portita         M           13         Portita         50         44,6767         29,7500         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           16         G. Buhaz         20                                                                                                                                    |          |                          |              |          | + - ·                                   |                          | Т                             |
| 5         Mila 9         20         45,0033         29,7733         Mila 9         T           6         Mila 9         30         45,0033         29,7750         Mila 9         M           7         Sf. Gheorghe         5         44,8836         29,6364         Sf. Gheorghe         T           8         Sf. Gheorghe         20         24,8836         29,6783         Sf. Gheorghe         M           9         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         M           10         Portita         5         44,6767         29,0067         Portita         T           11         Portita         20         44,6767         29,2992         Portita         T           12         Portita         50         44,6767         29,2992         Portita         M           13         Portita         50         44,6767         29,9167         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         20         44,4015         28,7633         G. Buhaz         M           17         Cazino Mamaia                                                                                                                                      | 3        | Sulina                   |              | 45,1228  | 29,9242                                 | Sulina                   | M                             |
| 6         Mila 9         30         45,0033         29,7750         Mila 9         M           7         Sf. Gheorghe         5         44,8836         29,6783         Sf. Gheorghe         T           8         Sf. Gheorghe         20         44,8836         29,6783         Sf. Gheorghe         T           9         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         M           10         Portita         5         44,6767         29,0067         Portita         T           11         Portita         20         44,6767         29,2992         Portita         T           12         Portita         50         44,6767         29,7500         Portita         M           13         Portita         57         44,6767         29,9167         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,6767         29,9167         Portita         M           16         G. Buhaz         20         44,4015         28,8633         G. Buhaz         M           17         Cazino Mamaia                                                                                                                                   |          | Mila 9                   | 5            | 45,0033  | 29,6517                                 | Mila 9                   | Т                             |
| 7         Sf. Gheorghe         5         44,8836         29,6364         Sf. Gheorghe         T           8         Sf. Gheorghe         20         44,8836         29,6783         Sf. Gheorghe         T           9         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         M           10         Portita         5         44,6767         29,9067         Portita         T           11         Portita         20         44,6767         29,2992         Portita         T           12         Portita         50         44,6767         29,7500         Portita         M           13         Portita         57         44,6767         29,9167         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,7634         Cazino Manai         C           16         G. Buhaz         20         44,4015         28,8638         Gazino Mamaia         C           17         Cazino Mamaia         0         44,2348         28,6284         Cazino Mamaia         C           19         <                                                                                                                       |          | Mila 9                   | 20           | 45,0033  | 29,7333                                 | Mila 9                   | Т                             |
| 8         Sf. Gheorghe         20         44,8836         29,6783         Sf. Gheorghe         T           9         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         M           10         Portita         5         44,6767         29,0067         Portita         T           11         Portita         20         44,6767         29,2999         Portita         T           12         Portita         50         44,6767         29,2970         Portita         M           13         Portita         50         44,6767         29,2990         Portita         M           14         Portita         50         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,87673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,86284         Cazino Mamaia         C           17         Cazino Mamaia         0         44,2358         28,6284         Cazino Mamaia         C           19         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20                                                                                                                               | 6        | Mila 9                   | 30           | 45,0033  | 29,7750                                 | Mila 9                   | M                             |
| 9         Sf. Gheorghe         30         44,8836         29,7018         Sf. Gheorghe         M           10         Portita         5         44,6767         29,0067         Portita         T           11         Portita         20         44,6767         29,2992         Portita         T           12         Portita         30         44,6767         29,7500         Portita         M           13         Portita         57         44,6767         29,9167         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         5         44,2358         28,6284         Cazino Mamaia         C           18         Cazino Mamaia         20         44,2348         28,8471         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2178         28,6417         Constanta Nord         C           21 <t< td=""><td>7</td><td>Sf. Gheorghe</td><td>5</td><td>44,8836</td><td>29,6364</td><td>Sf. Gheorghe</td><td>Т</td></t<>          | 7        | Sf. Gheorghe             | 5            | 44,8836  | 29,6364                                 | Sf. Gheorghe             | Т                             |
| 10         Portita         5         44,6767         29,0067         Portita         T           11         Portita         20         44,6767         29,2992         Portita         T           12         Portita         30         44,6767         29,7500         Portita         M           13         Portita         50         44,6767         29,7500         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,6767         29,9167         Portita         M           16         G. Buhaz         5         44,6015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,2158         28,6284         Cazino Mamaia         C           17         Cazino Mamaia         5         44,2358         28,6395         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2348         28,86395         Cazino Mamaia         C           21         Constanta Nord         0         44,2178         28,6417         Constanta Nord         C           22         C                                                                                                                           | 8        | Sf. Gheorghe             | 20           | 44,8836  | 29,6783                                 | Sf. Gheorghe             | Т                             |
| 11         Portita         20         44,6767         29,2992         Portita         T           12         Portita         30         44,6767         29,4742         Portita         M           13         Portita         50         44,6767         29,9167         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         0         44,2358         28,6284         Cazino Mamaia         C           18         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2349         28,8061         Cazino Mamaia         C           21         Constanta Nord         0         44,2167         28,6500         Constanta Nord         C           22         Constanta Nord         20         44,2167         28,7003         Constanta Nord         C                                                                                                                             | 9        | Sf. Gheorghe             | 30           | 44,8836  | 29,7018                                 | Sf. Gheorghe             | М                             |
| 12         Portita         30         44,6767         29,4742         Portita         M           13         Portita         50         44,6767         29,7500         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         0         44,2358         28,6395         Cazino Mamaia         C           18         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         C           21         Constanta Nord         0         44,2178         28,6417         Constanta Nord         C           22         Constanta Nord         20         44,2167         28,6500         Constanta Nord         C           23         Constanta Est         14         44,1667         28,7833         Constanta Est         C                                                                                                                 | 10       | Portita                  | 5            | 44,6767  | 29,0067                                 | Portita                  | Т                             |
| 12         Portita         30         44,6767         29,4742         Portita         M           13         Portita         50         44,6767         29,7500         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         0         44,2358         28,6395         Cazino Mamaia         C           18         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         C           21         Constanta Nord         0         44,2167         28,6601         Constanta Nord         C           22         Constanta Nord         0         44,2167         28,6601         Constanta Nord         C           23         Constanta Nord         0         44,2167         28,7003         Constanta Nord         C                                                                                                                 | 11       | Portita                  | 20           | 44,6767  | 29,2992                                 | Portita                  | Т                             |
| 13         Portita         50         44,6767         29,7500         Portita         M           14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         0         44,2358         28,6284         Cazino Mamaia         C           18         Cazino Mamaia         20         44,2358         28,6395         Cazino Mamaia         C           19         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2178         28,6417         Constanta Nord         C           21         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           22         Constanta Nord         20         44,2167         28,6533         Constanta Nord         C           23         Constanta Est         14         44,1667         28,7833         Constanta Est         C </td <td>12</td> <td>Portita</td> <td>30</td> <td>-</td> <td></td> <td>Portita</td> <td>М</td>     | 12       | Portita                  | 30           | -        |                                         | Portita                  | М                             |
| 14         Portita         57         44,6767         29,9167         Portita         M           15         G. Buhaz         5         44,4015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         0         44,2358         28,6284         Cazino Mamaia         C           18         Cazino Mamaia         5         44,2348         28,6395         Cazino Mamaia         C           20         Cazino Mamaia         20         44,2346         28,8471         Cazino Mamaia         M           21         Constanta Nord         0         44,2178         28,6417         Constanta Nord         C           22         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,6500         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         14         44,1667         28,903         Constanta Est         M </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>М</td>              |          |                          |              |          |                                         |                          | М                             |
| 15         G. Buhaz         5         44,4015         28,7673         G. Buhaz         M           16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         0         44,2358         28,6284         Cazino Mamaia         C           18         Cazino Mamaia         5         44,2358         28,6395         Cazino Mamaia         C           19         Cazino Mamaia         30         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2176         28,6500         Constanta Nord         C           21         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           22         Constanta Nord         20         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,6633         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Fst         C           25         Constanta Est         14         44,1667         28,7833         Constanta Est                                                                                     |          |                          | +            | •        | -                                       |                          |                               |
| 16         G. Buhaz         20         44,4015         28,8433         G. Buhaz         M           17         Cazino Mamaia         0         44,2358         28,6284         Cazino Mamaia         C           18         Cazino Mamaia         5         44,2358         28,6395         Cazino Mamaia         C           19         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         M           21         Constanta Nord         0         44,2167         28,6500         Constanta Nord         C           22         Constanta Nord         20         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,6003         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Fst         C           25         Constanta Est         14         44,1667         28,7833         Constanta Est         M           26         Constanta Est         47         44,1667         29,1333         Constanta                                                                               |          |                          | _            | -        | 1                                       |                          |                               |
| 17         Cazino Mamaia         0         44,2358         28,6284         Cazino Mamaia         C           18         Cazino Mamaia         5         44,2358         28,6395         Cazino Mamaia         C           19         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         M           21         Constanta Nord         0         44,2178         28,6500         Constanta Nord         C           22         Constanta Nord         20         44,2167         28,7003         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,6803         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         14         44,1667         28,9000         Constanta Est         M           26         Constanta Est         47         44,1667         29,3667         Constanta Est         M           27         Constanta Sud         5         44,1383         28,6489                                                                                        |          |                          |              | -        |                                         |                          |                               |
| 18         Cazino Mamaia         5         44,2358         28,6395         Cazino Mamaia         C           19         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         M           21         Constanta Nord         0         44,2178         28,6417         Constanta Nord         C           22         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,6500         Constanta Nord         C           24         Constanta Fst         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         28         44,1667         28,6833         Constanta Est         M           26         Constanta Est         36         44,1667         28,7833         Constanta Est         M           27         Constanta Est         47         44,1667         29,3667         Constanta Est         M           28         Constanta Sud         5         44,1383         28,6489                                                                                        |          |                          |              | -        | † · · · · · · · · · · · · · · · · · · · |                          |                               |
| 19         Cazino Mamaia         20         44,2349         28,7061         Cazino Mamaia         C           20         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         M           21         Constanta Nord         0         44,2178         28,6417         Constanta Nord         C           22         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,7003         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         28         44,1667         28,7833         Constanta Est         M           26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,3667         Constanta Est         M           28         Constanta Sud         5         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489                                                                                        |          |                          |              | †        | + - ·                                   |                          |                               |
| 20         Cazino Mamaia         30         44,2346         28,8471         Cazino Mamaia         M           21         Constanta Nord         0         44,2178         28,6417         Constanta Nord         C           22         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,7003         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         28         44,1667         28,7833         Constanta Est         M           26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,1333         Constanta Est         M           28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,0333         28,6539 <td< td=""><td></td><td></td><td></td><td>†</td><td>+ ·</td><td>+</td><td></td></td<> |          |                          |              | †        | + ·                                     | +                        |                               |
| 21         Constanta Nord         0         44,2178         28,6417         Constanta Nord         C           22         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,7003         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         28         44,1667         28,7833         Constanta Est         M           26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,1333         Constanta Est         M           28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,0333         28,6539         Eforie Sud         C           31         Eforie Sud         5         44,0493         28,6534         Eforie                                                                               |          |                          |              | ·        | + - ·                                   |                          |                               |
| 22         Constanta Nord         5         44,2167         28,6500         Constanta Nord         C           23         Constanta Nord         20         44,2167         28,7003         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         28         44,1667         28,7833         Constanta Est         M           26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,3667         Constanta Est         M           28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6534         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6692         Eforie Sud<                                                                               |          |                          |              | †        | <u> </u>                                | +                        |                               |
| 23         Constanta Nord         20         44,2167         28,7003         Constanta Nord         C           24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         28         44,1667         28,7833         Constanta Est         M           26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,3667         Constanta Est         M           28         Constanta Sud         5         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6539         Eforie Sud         C           31         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           32         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti                                                                                           |          |                          |              | 1        |                                         | +                        |                               |
| 24         Constanta Est         14         44,1667         28,6833         Constanta Est         C           25         Constanta Est         28         44,1667         28,7833         Constanta Est         M           26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,1333         Constanta Est         M           28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6692         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9450         28,6442         Costinesti <td< td=""><td></td><td></td><td></td><td>†</td><td>1</td><td></td><td></td></td<>             |          |                          |              | †        | 1                                       |                          |                               |
| 25         Constanta Est         28         44,1667         28,7833         Constanta Est         M           26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,1333         Constanta Est         M           28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6740         Costinesti         C                                                                                             |          |                          |              | †        | + - ·                                   |                          |                               |
| 26         Constanta Est         36         44,1667         28,9000         Constanta Est         M           27         Constanta Est         47         44,1667         29,1333         Constanta Est         M           28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         30         43,9450         28,7267         Costinesti         C     <                                                                                             |          | <b>†</b>                 |              |          | + - ·                                   |                          |                               |
| 27         Constanta Est         47         44,1667         29,1333         Constanta Est         M           28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,7267         Costinesti         C           37         Costinesti         30         43,8112         28,5873         Mangalia         C                                                                                                           |          | <b>†</b>                 |              | 1        | + ·                                     | +                        |                               |
| 28         Constanta Est         54         44,1667         29,3667         Constanta Est         M           29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         30         43,9450         28,7267         Costinesti         C           37         Costinesti         30         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C                                                                                                                      |          | <b>†</b>                 |              | †        |                                         |                          |                               |
| 29         Constanta Sud         5         44,1383         28,6489         Constanta Sud         C           30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,76740         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           4                                                                                                                  |          |                          | +            | -        | -                                       |                          | 1                             |
| 30         Constanta Sud         20         44,1218         28,6850         Constanta Sud         C           31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,7267         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41                                                                                                                           |          |                          |              | 1        |                                         | <del>-</del>             |                               |
| 31         Eforie Sud         0         44,0333         28,6539         Eforie Sud         C           32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,6740         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41         Mangalia         39         43,7985         28,7156         Mangalia         M           42         M                                                                                                                           |          |                          | _            | 1        |                                         | <del>-</del>             |                               |
| 32         Eforie Sud         5         44,0493         28,6534         Eforie Sud         C           33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,6740         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41         Mangalia         39         43,7985         28,7156         Mangalia         M           42         Mangalia         53         43,7999         28,8322         Mangalia         M           43         Vama                                                                                                                           |          |                          |              | 1        |                                         |                          |                               |
| 33         Eforie Sud         20         44,0493         28,6692         Eforie Sud         C           34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,6740         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41         Mangalia         39         43,7985         28,7156         Mangalia         M           42         Mangalia         53         43,7999         28,8322         Mangalia         M           43         Vama Veche         0         43,7512         28,5950         Vama Veche         C                                                                                                                                                     |          |                          |              | ·        | +                                       |                          | _                             |
| 34         Costinesti         0         43,9500         28,6387         Costinesti         C           35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,6740         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41         Mangalia         39         43,7985         28,7156         Mangalia         M           42         Mangalia         53         43,7999         28,8322         Mangalia         M           43         Vama Veche         0         43,7512         28,5771         Vama Veche         C           44         Vama Veche         5         43,7512         28,5950         Vama Veche         C                                                                                                                                                      |          |                          | -            | †        |                                         |                          |                               |
| 35         Costinesti         5         43,9450         28,6442         Costinesti         C           36         Costinesti         20         43,9450         28,6740         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41         Mangalia         39         43,7985         28,7156         Mangalia         M           42         Mangalia         53         43,7999         28,8322         Mangalia         M           43         Vama Veche         0         43,7512         28,5771         Vama Veche         C           44         Vama Veche         5         43,7512         28,5950         Vama Veche         C                                                                                                                                                                                                                                                             |          |                          |              |          |                                         |                          |                               |
| 36         Costinesti         20         43,9450         28,6740         Costinesti         C           37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41         Mangalia         39         43,7985         28,7156         Mangalia         M           42         Mangalia         53         43,7999         28,8322         Mangalia         M           43         Vama Veche         0         43,7512         28,5771         Vama Veche         C           44         Vama Veche         5         43,7512         28,5950         Vama Veche         C                                                                                                                                                                                                                                                                                                                                                                    |          |                          |              |          |                                         | <del>-</del>             |                               |
| 37         Costinesti         30         43,9450         28,7267         Costinesti         M           38         Mangalia         0         43,8112         28,5873         Mangalia         C           39         Mangalia         5         43,8002         28,5946         Mangalia         C           40         Mangalia         20         43,7988         28,6277         Mangalia         C           41         Mangalia         39         43,7985         28,7156         Mangalia         M           42         Mangalia         53         43,7999         28,8322         Mangalia         M           43         Vama Veche         0         43,7512         28,5771         Vama Veche         C           44         Vama Veche         5         43,7512         28,5950         Vama Veche         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                          |              |          |                                         |                          |                               |
| 38       Mangalia       0       43,8112       28,5873       Mangalia       C         39       Mangalia       5       43,8002       28,5946       Mangalia       C         40       Mangalia       20       43,7988       28,6277       Mangalia       C         41       Mangalia       39       43,7985       28,7156       Mangalia       M         42       Mangalia       53       43,7999       28,8322       Mangalia       M         43       Vama Veche       0       43,7512       28,5771       Vama Veche       C         44       Vama Veche       5       43,7512       28,5950       Vama Veche       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                          |              |          |                                         | +                        | С                             |
| 39       Mangalia       5       43,8002       28,5946       Mangalia       C         40       Mangalia       20       43,7988       28,6277       Mangalia       C         41       Mangalia       39       43,7985       28,7156       Mangalia       M         42       Mangalia       53       43,7999       28,8322       Mangalia       M         43       Vama Veche       0       43,7512       28,5771       Vama Veche       C         44       Vama Veche       5       43,7512       28,5950       Vama Veche       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                          |              | †        | <u> </u>                                | <del>-</del>             |                               |
| 40       Mangalia       20       43,7988       28,6277       Mangalia       C         41       Mangalia       39       43,7985       28,7156       Mangalia       M         42       Mangalia       53       43.7999       28.8322       Mangalia       M         43       Vama Veche       0       43,7512       28,5771       Vama Veche       C         44       Vama Veche       5       43,7512       28,5950       Vama Veche       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                          |              | †        |                                         |                          |                               |
| 41       Mangalia       39       43,7985       28,7156       Mangalia       M         42       Mangalia       53       43.7999       28.8322       Mangalia       M         43       Vama Veche       0       43.7512       28,5771       Vama Veche       C         44       Vama Veche       5       43,7512       28,5950       Vama Veche       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | _                        |              | ·        |                                         |                          |                               |
| 42       Mangalia       53       43.7999       28.8322       Mangalia       M         43       Vama Veche       0       43.7512       28.5771       Vama Veche       C         44       Vama Veche       5       43.7512       28.5950       Vama Veche       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | -                        |              | 43,7988  | 28,6277                                 |                          | С                             |
| 43         Vama Veche         0         43.7512         28,5771         Vama Veche         C           44         Vama Veche         5         43,7512         28,5950         Vama Veche         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | -                        |              |          | +                                       |                          | М                             |
| 44 Vama Veche 5 43,7512 28,5950 Vama Veche C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                          |              |          |                                         |                          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                          |              |          |                                         |                          |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44<br>45 | Vama Veche<br>Vama Veche | 20           | 43.7512  | 28,5950                                 | Vama Veche<br>Vama Veche | C                             |

 $<sup>^{75}\,\</sup>mathrm{T}$  – transitional; C- coastal; M - marine

| Nr. | N of station | Depth<br>(m) | Latitude | Longitude | Area/name of transect* | Type of station <sup>75</sup> |
|-----|--------------|--------------|----------|-----------|------------------------|-------------------------------|
|     | Stations for |              |          |           |                        |                               |
|     | macroalgae   |              |          |           |                        |                               |
| 1   | Năvodari     |              | 44.3237  | 28.6528   | Navodari               | С                             |
| 2   | Mamaia       |              | 44.2468  | 28.6293   | Mamaia                 | С                             |
| 3   | Pescărie     |              | 44.2214  | 28.6463   | Pescarie               | С                             |
| 4   | Constanta N  |              | 44.1917  | 28.6575   | Constanta N            | С                             |
| 5   | Agigea       |              | 44.0833  | 28.6718   | Agigea                 | С                             |
| 6   | Eforie Nord  |              | 44.0689  | 28.6422   | Eforie Nord            | С                             |
| 7   | Eforie Sud   |              | 44.0381  | 27.6583   | Eforie Sud             | С                             |
| 8   | Tuzla        |              | 43.9755  | 28.6568   | Tuzla                  | С                             |
| 9   | Costinesti   |              | 43.9413  | 28.6391   | Costinesti             | С                             |
| 10  | Mangalia     |              | 43.8043  | 28.5919   | Mangalia               | С                             |
| 11  | 2 MAI        |              | 43.7797  | 28.5835   | 2 MAI                  | С                             |
| 12  | Vama Veche   |              | 43.7580  | 28.5769   | Vama Veche             | С                             |

## Table 35. Parameters observed by NIMRD, Romania

Note: No measurements of physical parameters (e.g. currents, wave dynamics, sea level, etc.) have been specified. Note: trends can be derived from certain time-series data, they are specified accordingly.

| Parameter        | Analytical | Frequency            | 1            |            |          |
|------------------|------------|----------------------|--------------|------------|----------|
|                  | Method     | Water (specify       | Sediment     | Biota      | On-Coast |
|                  |            | Surface/Depth/Layer) |              |            |          |
| Transparency     |            | Seasonally           |              |            |          |
| Total            |            | Seasonally           |              |            |          |
| suspended        |            |                      |              |            |          |
| solids           |            |                      |              |            |          |
| Nutrients (P, N  |            | Seasonally (Trends   |              |            |          |
| and Si           |            | can be derived for   |              |            |          |
| compounds)       |            | surface/depth/layer) |              |            |          |
| Dissolved        |            | Seasonally (Trends   |              |            |          |
| oxygen           |            | can be derived for   |              |            |          |
|                  |            | surface/depth/layer) |              |            |          |
|                  |            | from monitoring      |              |            |          |
|                  |            | network and daily    |              |            |          |
|                  |            | from Mamaia station  |              |            |          |
| рН               |            | Seasonally (Trends   |              |            |          |
|                  |            | can be derived for   |              |            |          |
|                  |            | surface/depth/layer) |              |            |          |
| Temperature      |            | Seasonally (Trends   |              |            |          |
|                  |            | can be derived for   |              |            |          |
|                  |            | surface/depth/layer) |              |            |          |
| Salinity         |            | Seasonally           |              |            |          |
| BOD <sub>5</sub> |            | Seasonally           |              |            |          |
| TOC              |            | Seasonally           | Occasionally |            |          |
| OCP's            |            | twice/year (Trends   | twice/year   | twice/year |          |
|                  |            | can be derived for   |              |            |          |
|                  |            | surface)             |              |            |          |
| PCB's starting   |            | twice/year           | twice/year   | twice/year |          |
| with this year   |            |                      |              |            |          |
| (2012)           |            |                      |              |            |          |
| PAHs             |            | twice/year (Trends   | twice/year   | twice/year |          |
|                  |            | can be derived for   |              |            |          |
|                  |            | surface)             |              |            |          |

| Parameter        | Analytical      | Frequency              |              |             |              |
|------------------|-----------------|------------------------|--------------|-------------|--------------|
|                  | Method          | Water (specify         | Sediment     | Biota       | On-Coast     |
|                  |                 | Surface/Depth/Layer)   |              |             |              |
| TPH (Total       |                 | twice/year (Trends     | twice/year   |             | Occasionally |
| petroleum        |                 | can be derived for     |              |             | ,            |
| hydrocarbons)    |                 | surface)               |              |             |              |
| Heavy metals     |                 | Seasonally (Trends     | Seasonally   | Few         | Occasionally |
| ·                |                 | can be derived for     | -            | observatio  |              |
|                  |                 | surface)               |              | ns annually |              |
| Total coliforms  | Most Probable   | Surface Layer : almost | Occasionally | mussels     |              |
| TC,              | Number (MPN)    | monthly between        | ,            |             |              |
| (contamination)  | method          | March to October,      |              |             |              |
|                  |                 | every year since 1997  |              |             |              |
|                  |                 | (Trends can be         |              |             |              |
|                  |                 | derived for surface)   |              |             |              |
| Faecal           | Most Probable   | Surface Layer : almost | Occasionally | Mussels:    |              |
| coliforms FC,    | Number (MPN)    | monthly between        |              | once per    |              |
| (contamination)  | method          | March to October,      |              | season,     |              |
|                  |                 | every year since 1997  |              | every year  |              |
|                  |                 | (Trends can be         |              | since 2009  |              |
|                  |                 | derived for surface)   |              |             |              |
| Faecal           | Most Probable   | Surface Layer : almost | Occasionally |             |              |
| streptococci FC, | Number (MPN)    | monthly between        |              |             |              |
| (contamination)  | method          | March to October,      |              |             |              |
|                  |                 | every year since 1997  |              |             |              |
|                  |                 | (Trends can be         |              |             |              |
|                  |                 | derived for surface)   |              |             |              |
| Phytoplankton    | Moncheva, 2010  | Data starting from     |              | Seasonally  | twice/week   |
| (species,        |                 | 1960; twice a week     |              |             |              |
| abundance,       |                 | data from Mamaia       |              |             |              |
| biomass)         |                 | monitoring station –   |              |             |              |
|                  |                 | starting from 1975     |              |             |              |
| Chlorophyll a    | spectrophotomet | Seasonally – starting  |              |             | twice/week   |
|                  | er, Jeffrey –   | from 2000              |              |             |              |
|                  | Humphrey (1975) |                        |              |             |              |
|                  | equations       |                        |              |             |              |
| Macroalgae       |                 | Summers (Trends can    |              | Seasonally  |              |
| (species,        |                 | be derived for         |              |             |              |
| abundance,       |                 | changes in depth       |              |             |              |
| biomass)         |                 | distribution)          |              |             |              |
| Rates of         | BMAP software   |                        |              |             | Annual/      |
| shoreline        |                 |                        |              |             | seasonal     |
| changes          |                 |                        |              |             |              |
| Slope section    | BMAP software   |                        |              |             | Annual/      |
|                  | 21412           |                        |              |             | seasonal     |
| The              | BMAP software   |                        |              |             | Annual/      |
| sedimentary      |                 |                        |              |             | seasonal     |
| stock section    | 000             |                        |              |             |              |
| Shoreline        | GPS .           |                        |              |             | Every year   |
|                  | measurements    |                        |              |             |              |
| Vegetation line  | GPS             |                        |              |             | Every year   |
|                  | measurements    |                        |              |             |              |

Note: among the parameters zoobenthos, zooplankton and fishes are not mentioned.

Table 36. Coordinates of stations monitored by Dobrogea Littoral, Romania

| N of station                                      | Coordinates |                    | Area/name    | Type of   |
|---------------------------------------------------|-------------|--------------------|--------------|-----------|
|                                                   |             | T                  | of transect* | station** |
| Gura Buhaz                                        |             |                    |              |           |
| shore                                             | 28. 3753    | 44. 18 48          |              |           |
| 5m                                                | 28. 3842    | 44. 18 53          |              |           |
| 20m                                               | 28. 4123    | 44. 1847           |              |           |
| Cap Midia                                         |             |                    |              |           |
| Shore area exhaust                                |             |                    |              |           |
| mixture UT Midia                                  |             |                    |              |           |
| Fertilchim Navodari                               |             |                    |              |           |
| shore                                             |             |                    |              |           |
| 5m                                                | 28. 37 50   | 44. 18 09          |              |           |
| 20m                                               | 28. 44 22   | 44. 17 46          |              |           |
| <b>Constanta Nord Pescarie</b>                    |             |                    |              |           |
| shore                                             | 28. 3858    | 44. 1248           |              |           |
| 5m                                                | 28. 3911    | 44. 1252           |              |           |
| 20m                                               | 28. 4307    | 44. 1323           |              |           |
| Constanta Sud                                     |             |                    |              |           |
| Port Constanta Dana 34                            | 20, 2040    | 44 0027            |              |           |
| shore                                             | 28. 3818    | 44. 0927           |              |           |
| Port Constanta Dana 69                            |             |                    |              |           |
| shore – the mixture area                          | 20.00.04    | 44 0005            |              |           |
| discharge safety pipeline                         | 28. 38 21   | 44. 0935           |              |           |
| APC                                               |             |                    |              |           |
| Port Constanta Dana 78                            |             |                    |              |           |
| shore – the mixture area                          | 28. 3903    | 44. 0856           |              |           |
| evacuation SE APC                                 |             |                    |              |           |
| Port Cta Dana 84-86                               |             |                    |              |           |
| shore                                             | 28. 39 02   | 44. 0851           |              |           |
| Port Cta Sud Inland 5m                            | 28. 3849    | 44. 0756           |              |           |
| Entry Port Cta 20 m                               | 28. 4026    | 44. 0904           |              |           |
| Eforie Nord Belona 1                              |             |                    |              |           |
| 5m                                                | 28. 3834    | 44. 0334           |              |           |
| 10m                                               | 28. 3908    | 44. 0339           |              |           |
| 20m                                               | 28.4011     | 44. 0344           |              |           |
| Eforie Sud Dig Sud                                |             | 13371              |              |           |
| shore                                             | 28. 4123    | 44. 0119           |              |           |
| Costinesti                                        |             | 5115               |              |           |
| shore                                             | 28.4016     | 43. 5634           |              |           |
| Avamport Mangalia                                 | 20.7010     | <del>-3.303-</del> |              |           |
| shore                                             | 28. 36 22   | 43.4807            |              |           |
| Vama Veche                                        | 20. 30 22   | 75.7007            |              |           |
| shore                                             | 28. 34 48   | 43.4458            |              |           |
| 5nore 5m                                          | 28. 34 55   | 43.4458            |              |           |
|                                                   | 28. 35 00   |                    |              |           |
| 10m                                               |             | 43. 45 00          |              |           |
| 20m                                               | 28. 35 29   | 43. 44 57          |              |           |
| 12 marine mile                                    | 28. 36 36   | 43.44 58           |              |           |
| Mangalia Com                                      |             |                    |              |           |
| Entry SN Mangalia –Cap<br>Dig                     | 28. 34 38   | 43.4755            |              |           |
| -                                                 |             |                    |              |           |
|                                                   | 28. 3135    | 43.4819            |              |           |
| Dig<br>Coada lac sarat-Pod<br>Vechi-Zona Pescarie |             |                    |              |           |

| N of station      | Coordinates |          | Area/name of transect* | Type of station** |
|-------------------|-------------|----------|------------------------|-------------------|
| Golf Musura –Bara |             |          |                        | Transitional to   |
| Sulina            |             |          |                        | marine waters     |
| shore             | 29. 4106    | 45. 0854 |                        |                   |
| 5m                | 29. 4013    | 45.1503  |                        |                   |
| 20m               | 29. 4643    | 45. 1523 |                        |                   |
| 12 marine mile    | 30. 0203    | 45.14 21 |                        |                   |
| Sf.Gheorghe       |             |          |                        | Transitional to   |
|                   |             |          |                        | marine waters     |
| 5m                | 29.37 39    | 44. 5329 |                        |                   |
| 20m               | 29. 39 54   | 44. 5325 |                        |                   |

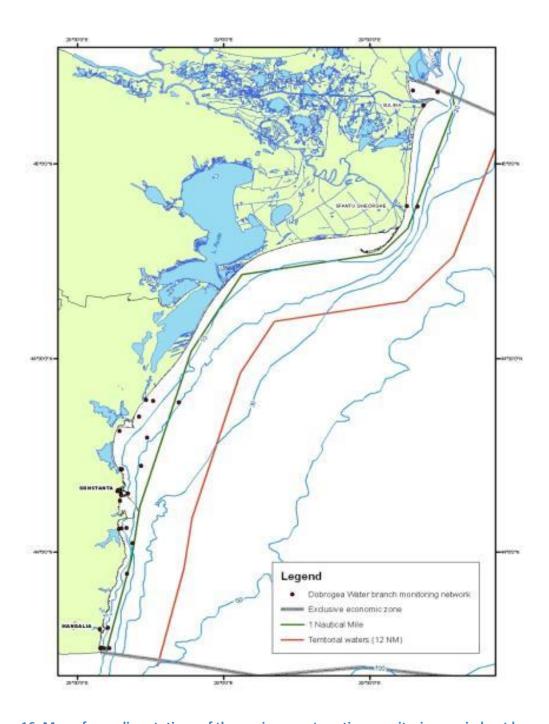



Figure 16. Map of sampling stations of the environment routine monitoring carried out by Dobrogea Water Branch, Romania

Table 37. List of parameters and frequency of observations carried out by Dobrogea Littoral, Romania

| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Parameter         | Analytical               | Frequency                      |          |              |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|--------------------------------|----------|--------------|-------|
| Phytoplankton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Method                   |                                | Sediment | Biota        | On-   |
| 1954(agreed by the Black Sea Commission)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                          |                                |          |              | Coast |
| Sea Commission  Sm, 10m, 20m, 12 marine mile isobaths   macrozoobentos   Manualul TSENKA   Konsulova, Valentina   Todorova-2005 (agreed by the BSC)   macrophytes   EEI method —being tested   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | phytoplankton     | Morozova Vodianitzskaia- | 4 times/year,                  | -        |              |       |
| Manualul TSENKA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | 1954(agreed by the Black | collected from shore,          |          |              |       |
| Manualul TSENKA   1 time / year, surface - 600 cm², sampling from the bottom   Fro |                   | Sea Commission)          | 5m, 10m, 20m, 12               |          |              |       |
| Konsulova , Valentina   G00 cm², sampling   From the bottom   Todorova - 2005 (agreed by the BSC)   From the bottom   Todorova - 2005 (agreed by the BSC)   Todorova - 2005 (agreed by |                   |                          | marine mile isobaths           |          |              |       |
| Todorova-2005 (agreed by the BSC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | macrozoobentos    | Manualul TSENKA          | 1 time /year, surface -        |          |              |       |
| the BSC)  macrophytes  EEI method –being tested  macroalgae  EEI method –being tested  SR EN ISON 17294-2-05  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Konsulova , Valentina    | 600 cm <sup>2</sup> , sampling |          |              |       |
| Macrophytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | Todorova-2005 (agreed by | from the bottom                |          |              |       |
| Macroalgae   EEI method – being tested   Cadmium and   SR EN ISON 17294-2-05   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | the BSC)                 |                                |          |              |       |
| Cadmium and compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | macrophytes       | EEI method –being tested |                                | -        |              |       |
| compounds         SR EN ISON 17294-2-05         4         1         1           Compounds         SR EN ISON 17294-2-05         4         1         1           Mercury and compounds         SR EN ISON 17294-2-05         4         1         1           Lead and compounds         SR EN ISON 17294-2-05         4         1         1           As         SR EN ISON 17294-2-05         4         1         1           Ba         SR EN ISON 17294-2-05         4         1         1           Be         SR EN ISON 17294-2-05         4         1         1           Cr         SR EN ISON 17294-2-05         4         1         1           Co         SR EN ISON 17294-2-05         4         1         1           Cu         SR EN ISON 17294-2-05         4         1         1           Se         SR EN ISON 17294-2-05         4         1         1           Se         SR EN ISON 17294-2-05         4         1         1           Herbicides, insecticides and fungicides with N and P         1         1         1           Organochlorine pesticides         SR EN ISO 10301:2003         1         1         1           VOLATILE CHLORINATED SOLVENTS         SR E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | macroalgae        | EEI method –being tested |                                | -        |              |       |
| Nickel and compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cadmium and       | SR EN ISON 17294-2-05    | 4                              | 1        |              | 1     |
| compounds         SR EN ISON 17294-2-05         4         1         1           Compounds         SR EN ISON 17294-2-05         4         1         1           Lead and SR EN ISON 17294-2-05         4         1         1           Compounds         SR EN ISON 17294-2-05         4         1         1           As         SR EN ISON 17294-2-05         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | compounds         |                          |                                |          |              |       |
| Mercury and compounds   SR EN ISON 17294-2-05   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nickel and        | SR EN ISON 17294-2-05    | 4                              | 1        |              | 1     |
| Compounds   Comp | compounds         |                          |                                |          |              |       |
| Lead and compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mercury and       | SR EN ISON 17294-2-05    | 4                              | 1        |              | 1     |
| Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | compounds         |                          |                                |          |              |       |
| As                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lead and          | SR EN ISON 17294-2-05    | 4                              | 1        |              | 1     |
| Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | compounds         |                          |                                |          |              |       |
| Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | As                | SR EN ISON 17294-2-05    | 4                              |          |              | 1     |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ва                | SR EN ISON 17294-2-05    | 4                              |          |              |       |
| Cr         SR EN ISON 17294-2-05         4         1           Co         SR EN ISON 17294-2-05         4         1           Cu         SR EN ISON 17294-2-05         4         1           Se         SR EN ISON 17294-2-05         4         1           Zn         SR EN ISON 17294-2-05         4         1           PAH         EPA 6440 A         1         1           Herbicides, insecticides and fungicides with N and P         SR EN ISO 10695: 2002         1         1           organochlorine pesticides         SR ISO 6468:2000         1         1         1           VOLATILE CHLORINATED SOLVENTS         SR EN ISO 10301:2003         1         1         1           Brominated diphenylethers         SR EN ISO 10301:2004         1         1         1           chlorinated hydrocarbons         SR EN ISO 11369:2004         1         1         1           PESTICIDES UREIC         SR ISO 6439-01         1         1         1           PHENOLS         SR ISO 6439-01         1         1         1           COMPOUNDS tributyl         The property of the prope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ве                | SR EN ISON 17294-2-05    | 4                              |          |              |       |
| Co         SR EN ISON 17294-2-05         4         1           Cu         SR EN ISON 17294-2-05         4         1           Se         SR EN ISON 17294-2-05         4         1           Zn         SR EN ISON 17294-2-05         4         1           PAH         EPA 6440 A         1         1           Herbicides, insecticides and fungicides with N and P         SR EN ISO 10695: 2002         1           organochlorine pesticides         SR ISO 6468:2000         1         1           CLORBENZENI         SR ISO 6468:2000         1         1           VOLATILE CHLORINATED SOLVENTS         SR EN ISO 10301:2003         1           Brominated diphenylethers         1         1           chlorinated hydrocarbons         SR EN ISO 10301:2004         1         1           PESTICIDES UREIC         SR ISO 6439-01         1         1           PHENOLS         SR ISO 6439-01         1         1           2ETILHEXIL-DIFTALAT COMPOUNDS tributyl         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                 | SR EN ISON 17294-2-05    | 4                              |          |              |       |
| Cu         SR EN ISON 17294-2-05         4         1           Se         SR EN ISON 17294-2-05         4         1           Zn         SR EN ISON 17294-2-05         4         1           PAH         EPA 6440 A         1         1           Herbicides, insecticides and fungicides with N and P         SR EN ISO 10695: 2002         1         1           organochlorine pesticides         SR ISO 6468:2000         1         1         1           CLORBENZENI         SR ISO 6468:2000         1         1         1           VOLATILE CHLORINATED SOLVENTS         SR EN ISO 10301:2003         1         1         1           Brominated diphenylethers         1         1         1         1           chlorinated hydrocarbons         SR EN ISO 10301:2004         1         1         1         1           PESTICIDES UREIC         SR ISO 11369:2004         1         1         1         1         1           PHENOLS         SR ISO 6439-01         1         1         1         1         1           COMPOUNDS tributyl         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cr                | SR EN ISON 17294-2-05    | 4                              |          |              | 1     |
| Se         SR EN ISON 17294-2-05         4         1           Zn         SR EN ISON 17294-2-05         4         1           PAH         EPA 6440 A         1         1           Herbicides, insecticides and fungicides with N and P         SR EN ISO 10695: 2002         1           organochlorine pesticides         SR ISO 6468:2000         1         1           CLORBENZENI         SR ISO 6468:2000         1         1           VOLATILE CHLORINATED SOLVENTS         SR EN ISO 10301:2003         1         1           Brominated diphenylethers         1         1         1           chlorinated hydrocarbons         SR EN ISO 10301:2004         1         1         1           PESTICIDES UREIC         SR ISO 6439-01         1         1         1           PHENOLS         SR ISO 6439-01         1         1         1           2ETILHEXIL-DIFTALAT COMPOUNDS tributyl         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Со                | SR EN ISON 17294-2-05    | 4                              |          |              |       |
| Zn         SR EN ISON 17294-2-05         4         1           PAH         EPA 6440 A         1         1           Herbicides, insecticides and fungicides with N and P         SR EN ISO 10695: 2002         1         1           Organochlorine pesticides         SR ISO 6468:2000         1         1         1           CLORBENZENI         SR ISO 6468:2000         1         1         1           VOLATILE CHLORINATED SOLVENTS         SR EN ISO 10301:2003         1         1         1           Brominated diphenylethers         1         1         1         1           chlorinated hydrocarbons         SR EN ISO 10301:2004         1         1         1           PESTICIDES UREIC         SR ISO 6439-01         1         1         1           PHENOLS         SR ISO 6439-01         1         1         1           2ETILHEXIL-DIFTALAT COMPOUNDS tributyl         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cu                | SR EN ISON 17294-2-05    | 4                              |          |              | 1     |
| PAH         EPA 6440 A         1         1           Herbicides, insecticides and fungicides with N and P         SR EN ISO 10695: 2002         1           organochlorine pesticides         SR ISO 6468:2000         1         1           CLORBENZENI         SR ISO 6468:2000         1         1           VOLATILE CHLORINATED SOLVENTS         SR EN ISO 10301:2003         1         1           Brominated diphenylethers         1         1         1           chlorinated hydrocarbons         SR EN ISO 10301:2004         1         1         1           PESTICIDES UREIC         SR ISO 6439-01         1         1         1           PHENOLS         SR ISO 6439-01         1         1         1           2ETILHEXIL-DIFTALAT COMPOUNDS tributyl         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Se                | SR EN ISON 17294-2-05    | 4                              |          |              |       |
| Herbicides, insecticides and fungicides with N and P  organochlorine pesticides  CLORBENZENI SR ISO 6468:2000 1 1 1  VOLATILE CHLORINATED SOLVENTS  Brominated diphenylethers  chlorinated hydrocarbons  PESTICIDES UREIC SR ISO 1309:2004 1  PHENOLS SR ISO 6439-01 1 1  ZETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zn                | SR EN ISON 17294-2-05    | 4                              |          |              | 1     |
| insecticides and fungicides with N and P  organochlorine pesticides  CLORBENZENI SR ISO 6468:2000 1 1 1  VOLATILE CHLORINATED SOLVENTS  Brominated diphenylethers  chlorinated hydrocarbons  PESTICIDES UREIC SR ISO 13001:2004 1 1 1  PHENOLS SR ISO 6439-01 1 1 1  ZETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PAH               | EPA 6440 A               | 1                              | 1        |              |       |
| fungicides with N and P         SR ISO 6468:2000         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Herbicides,       | SR EN ISO 10695: 2002    | 1                              |          |              |       |
| and P         SR ISO 6468:2000         1         1           pesticides         SR ISO 6468:2000         1         1           CLORBENZENI         SR ISO 6468:2000         1         1           VOLATILE<br>CHLORINATED<br>SOLVENTS         SR EN ISO 10301:2003         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | insecticides and  |                          |                                |          |              |       |
| organochlorine pesticides         SR ISO 6468:2000         1         1           CLORBENZENI         SR ISO 6468:2000         1         1           VOLATILE CHLORINATED SOLVENTS         SR EN ISO 10301:2003         1           Brominated diphenylethers         1         1           chlorinated hydrocarbons         SR EN ISO 10301:2004         1         1           PESTICIDES UREIC         SR ISO 11369:2004         1         1           PHENOLS         SR ISO 6439-01         1         1           2ETILHEXIL-DIFTALAT COMPOUNDS tributyl         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fungicides with N |                          |                                |          |              |       |
| Desticides   CLORBENZENI   SR ISO 6468:2000   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and P             |                          |                                |          |              |       |
| CLORBENZENI         SR ISO 6468:2000         1         1           VOLATILE<br>CHLORINATED<br>SOLVENTS         SR EN ISO 10301:2003         1           Brominated<br>diphenylethers         1         1           chlorinated<br>hydrocarbons         SR EN ISO 10301:2004         1         1           PESTICIDES UREIC         SR ISO 11369:2004         1         1           PHENOLS         SR ISO 6439-01         1         1           2ETILHEXIL-DIFTALAT<br>COMPOUNDS<br>tributyl         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                 | SR ISO 6468:2000         | 1                              | 1        |              |       |
| VOLATILE<br>CHLORINATED<br>SOLVENTS         SR EN ISO 10301:2003         1           Brominated<br>diphenylethers         1         1           chlorinated<br>hydrocarbons         SR EN ISO 10301:2004         1         1           PESTICIDES UREIC         SR ISO 11369:2004         1         1           PHENOLS         SR ISO 6439-01         1         1           2ETILHEXIL-DIFTALAT<br>COMPOUNDS<br>tributyl         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                 |                          |                                |          |              |       |
| CHLORINATED SOLVENTS  Brominated diphenylethers  Chlorinated hydrocarbons  PESTICIDES UREIC SR ISO 11369:2004 1 1 1  PHENOLS SR ISO 6439-01 1 1 1  2ETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLORBENZENI       | SR ISO 6468:2000         | 1                              | 1        |              |       |
| CHLORINATED SOLVENTS  Brominated diphenylethers  Chlorinated hydrocarbons  PESTICIDES UREIC SR ISO 11369:2004 1 1 1  PHENOLS SR ISO 6439-01 1 1 1  2ETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                          |                                |          |              |       |
| SOLVENTS Brominated diphenylethers  chlorinated hydrocarbons PESTICIDES UREIC SR ISO 11369:2004  PHENOLS SR ISO 6439-01  2ETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | SR EN ISO 10301:2003     | 1                              |          |              |       |
| Brominated diphenylethers  chlorinated hydrocarbons  PESTICIDES UREIC SR ISO 10301:2004 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                          |                                |          |              |       |
| diphenylethers  chlorinated hydrocarbons  PESTICIDES UREIC SR ISO 11369:2004 1  PHENOLS SR ISO 6439-01 1  2ETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                          |                                |          |              |       |
| chlorinated hydrocarbons  PESTICIDES UREIC SR ISO 11369:2004 1  PHENOLS SR ISO 6439-01 1  2ETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                          | 1                              |          |              |       |
| hydrocarbons  PESTICIDES UREIC SR ISO 11369:2004 1  PHENOLS SR ISO 6439-01 1 1  2ETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                          |                                |          | ļ            | ļ     |
| PESTICIDES UREIC SR ISO 11369:2004 1  PHENOLS SR ISO 6439-01 1 1  2ETILHEXIL-DIFTALAT COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | SR EN ISO 10301:2004     | 1                              | 1        |              |       |
| PHENOLS SR ISO 6439-01 1 1  2ETILHEXIL-DIFTALAT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                 |                          |                                |          | ļ            | ļ     |
| 2ETILHEXIL-DIFTALAT 1 COMPOUNDS tributyl 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PESTICIDES UREIC  | SR ISO 11369:2004        | 1                              |          |              |       |
| 2ETILHEXIL-DIFTALAT 1 COMPOUNDS tributyl 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DHENO! S          | SR ISO 6/30-01           | 1                              |          |              | 1     |
| COMPOUNDS tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 21/ 12/0 0423-01         |                                |          | <del> </del> | 1     |
| tributyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                          | _                              |          |              |       |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                          |                                |          |              |       |
| BTEX   SR ISO 11423/1-∙2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BTEX              | SR ISO 11423/1-:2000     |                                |          | 1            | 1     |

### Danube River, waste water discharges

Table 38. List of parameters monitored by SC AQUASERV SA, Romania

| Parameter   | Analytical | Frequency                           |          |       |          |
|-------------|------------|-------------------------------------|----------|-------|----------|
|             | Method     | Water (specify Surface/Depth/Layer) | Sediment | Biota | On-Coast |
| Suspension  |            |                                     |          |       | Х        |
| Extractable |            |                                     |          |       | Х        |
| Substances  |            |                                     |          |       | Х        |
| Sulphates   |            |                                     |          |       | Х        |
| Total       |            |                                     |          |       | Х        |
| Phosphates  |            |                                     |          |       | Х        |
| Chlorides   |            |                                     |          |       | х        |
| Phenols     |            |                                     |          |       | х        |
| Detergents  |            |                                     |          |       | х        |
| Hq          |            |                                     |          |       | Х        |
| BOD5        |            |                                     |          |       | Х        |
| Total Fe    |            |                                     |          |       | Х        |
| Zn          |            |                                     |          |       | Х        |
| C CO - Cr   |            |                                     |          |       | х        |
| Total       |            | -                                   |          |       | Х        |

Table 39. Coordinates of stations monitored by OMV Petrom SA, Romania

| N of station | Coordinates        | Area/name of   | Type of station** |
|--------------|--------------------|----------------|-------------------|
|              | Latitude Longitude | transect*      |                   |
|              | N: 44° 31' 23,0"   |                | Marine waters     |
| 1            | E: 29° 33' 55,4"   | PFCP           |                   |
|              | N: 44° 31' 38,6"   |                | Marine waters     |
| 2            | E: 29° 32' 55,5"   | PFS 3          |                   |
|              | N: 44° 32' 02,1"   |                | Marine waters     |
| 3            | E: 29° 32' 50,1"   | PFS 4          |                   |
|              | N: 44° 31′ 56,9″   |                | Marine waters     |
| 4            | E: 29° 28' 05,6"   | PFS 6          |                   |
|              | N: 44° 32' 42,6"   |                | Marine waters     |
| 5            | E: 29° 26′ 48,6′′  | PFS 7          |                   |
|              | N: 44° 35' 59,7"   |                | Marine waters     |
| 6            | E: 29° 21' 32,2"   | PFS 8 (Gloria) |                   |
|              | N: 44° 28' 51,9"   |                | Marine waters     |
| 7            | E: 29° 38' 43,3"   | PFSSU          |                   |

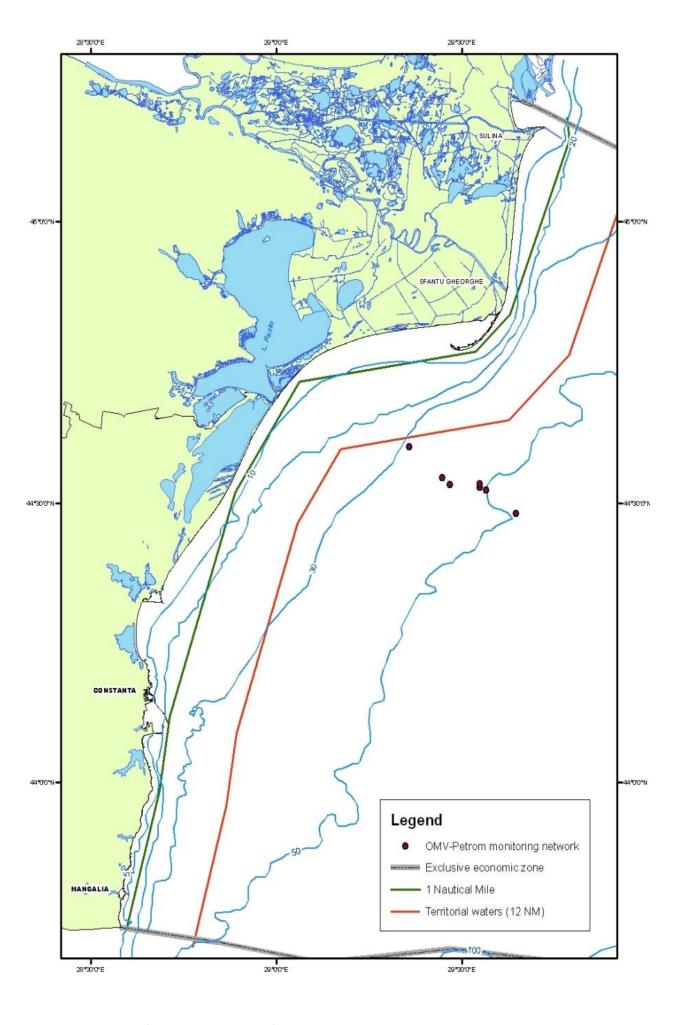



Figure 17. Map of sampling stations of the environment monitoring carried out by OMV-Petrom, Romania

Table 40. List of parameters\* monitored by OMV Petrom SA, Romania

| Parameter          | Analytical            | Frequency               |           |       |       |  |
|--------------------|-----------------------|-------------------------|-----------|-------|-------|--|
|                    | Method                | Water (specify          | Sediment  | Biota | On-   |  |
|                    |                       | Surface/Depth/Layer)    |           |       | Coast |  |
| Contaminants -     | In house              |                         | quarterly |       |       |  |
| total hydrocarbons | PS-06 Ed.             |                         |           |       |       |  |
|                    | 2(accredited          |                         |           |       |       |  |
|                    | laboratory DAC)       |                         |           |       |       |  |
| Contaminants -     | In house, PS-06 Ed. 2 | Surface/Permanent       |           |       |       |  |
| total hydrocarbons |                       | (quarterly)             |           |       |       |  |
| Contaminants -     | S REN 1899-1/2003     | Surface/Permanent       |           |       |       |  |
| BOD5               |                       | (quarterly)//evacuation |           |       |       |  |
| Contaminants -     | In house              | Surface/Permanent       |           |       |       |  |
| substances         | PS-06 Ed. 2DAC        | (quarterly)//evacuation |           |       |       |  |
| extractable        | (accredited           |                         |           |       |       |  |
|                    | laboratory)           |                         |           |       |       |  |
| Contaminants       | LCK 1014              | Surface/Permanent       |           |       |       |  |
| CCoCr              |                       | (quarterly)//evacuation |           |       |       |  |
| Contaminants -     | STAS 6953-81          | Surface/Permanent       |           |       |       |  |
| suspension         |                       | (quarterly)//evacuation |           |       |       |  |
| Contaminants -     | LCK 332               | Surface/Permanent       |           |       |       |  |
| detergents         |                       | (quarterly)//evacuation |           |       |       |  |

<sup>\*</sup>Note: the data allows for deriving long-term trends.

Constanta County Department for Statistics<sup>76</sup> (www.constanta.insse.ro) performs no monitoring.

### **Data Collection Framework for the Common Fisheries Policy**

The National Agency for Fisheries and Aquaculture (NAFA) is designated for the implementation of the National Data Collection Programme 2011-2013 (NDCP 2011-2013). NIMRD Constanta is involved in the following activities:

- Evaluation of the fishing sector;
- Data collection and processing on economic variables, on metier related variables, on recreational fisheries, on stock related variables and on transversal variables;
- Research surveys at sea;
- Evaluation of effects of the fishing sector on the marine ecosystem;
- Management and use of data;
- Participation with specialists in the co-ordination meetings, planning groups on data collection, planning groups on surveys at sea and stock assessment working groups.

However, NIMRD Constanta has historical data (obtained from own projects) on qualitative and quantitative structure of the catches and landings, structure of fish populations, growth parameters and mortality rates, state of stocks, distribution of fishing agglomerations, spawning and recruitment intensity, etc.

Monitoring related to the Habitats and Birds Directives has not been specified.

<sup>76</sup> Governmental. Contact person: Nicoleta Trandafir, Bd. Tomis, No. 51, Constanţa, Phone/Fax: 0040 241 614293/00 40 241 672032; E-mail: nicoleta.trandafir@constanta.insse.ro; tele@constanta.insse.ro; webpage: www.constanta.insse.ro

### **TURKEY**

The TR EEZ is shown in Fig. 18. This is the target area for the MSFD and environment protection under the jurisdiction of TR. The monitoring system in TR fairly well covers part of the EEZ.

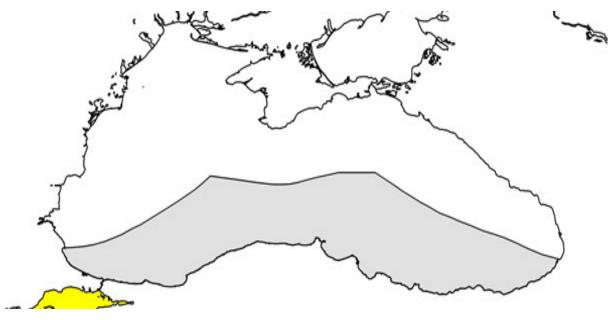



Figure 18. Turkish EEZ (marked in gray)

The TR Black Sea Pollution Monitoring Programme (BSPMP) in the Black Sea<sup>77</sup> has been operational since 2004. Biological quality elements have been incorporated in 2009 and the Programme applied until 2010 (In 2011 and 2012, not implemented). The implementing organization is the Istanbul University (Institute of Marine Science and Management, on a procurement basis of services), and the Ministry of Environment and Urbanization (former Ministry of Environment and Forests, MoEF) is the responsible/funding organization, participating also in the monitoring activities with its experts. The network of stations is sustained and the monitoring is carried out in transitional, coastal and marine waters taking into consideration the requirements of the Bucharest (BSIMAP) and Barcelona Conventions (MEDPOL) for the Mediterranean, as well as of EEA.

Ongoing water quality monitoring in the Strait of Istanbul (Bosphorus) area since 1996 is carried out in the context of long-term project of ISKI<sup>78</sup> (1996-2009) by the Istanbul University as well. Cruises have been performed regularly once per month. There is one station at the Black Sea-Bosphorus junction which is a long-term station covered also by studies of IMS/METU in the period 1986-1996. This station is not observed as to produce time series data but is visited frequently.

The compliance monitoring for point and diffuse sources of pollution is also under the Ministry of Environment. Other responsible organizations for the compliance monitoring (land-based sources of pollution) are: General Directorate of Environmental Management, Provincial Directorates, General Directorate of State Hydraulic Works, and Universities participate in the monitoring itself. There is no formal coordination between the BSPMP and the compliance monitoring, and especially pressures-impact for biological quality elements are poorly studied. Though, the locations of important land-based sources are mapped (see the arrows in the Fig. 19) and the environment monitoring around them recognises their influence in terms of water quality changes. The monitoring network covers TR waters up to 5 miles offshore (stations are located at transects: 1mile (app. 20m depth), 3 miles (app. 50m depth) and 5 miles (app. 100m depth) away from the coast).

<sup>&</sup>lt;sup>77</sup> The National Marine Monitoring Program of TR covers all TR seas and is implemented by different organizations, e.g. the Istanbul University, TUBITAK, IMS/METU (Erdemli), etc.

<sup>78</sup> Metropoliten authority of Istanbul.

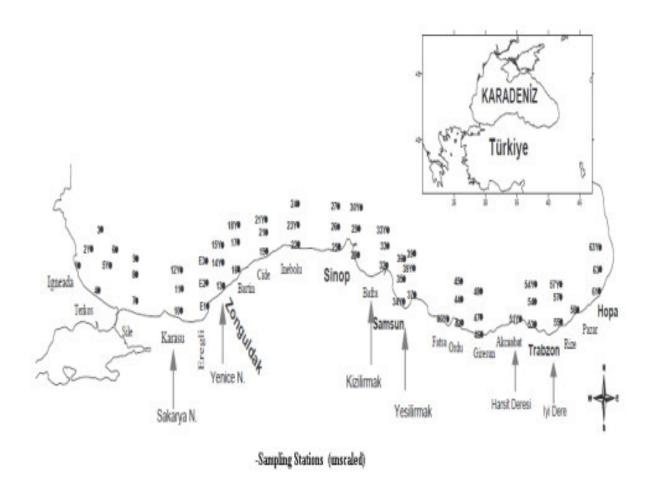



Figure 19. Map of sampling stations along the Turkish coast (National Monitoring Program implemented by the Istanbul University<sup>79</sup> in 2004-2010).

The fisheries-related monitoring-control-surveillance is fully under the responsibility of the Ministry of Food, Agriculture and Livestock (former Ministry of Agriculture and Rural Affairs, MARA). Coast Guard Command performs inspections for enforcement having the tools to apply fines and reporting criminal cases to the prosecuting authorities.

The MISIS Questionnaire on monitoring and data management has been distributed to many different organizations in Turkey. Among them, two Municipalities have been contacted — of Kastamonu and Zonguldak. However, they have given only contact details (see Annex II) and identified them as entities having no relation to monitoring or data management.

Among the Universities contacted, the Canakkale Onsekiz Mart University, Fisheries Faculty (Canakkale)<sup>80</sup> pointed relation of its research to human activities in the field of Public Health, Coastal and urban development, Fishery and Aquaculture and Agriculture and farming. In this University two Faculties have been contacted – the Fishery one and the Faculty of Marine Sciences and Technology, both are not part of National monitoring programmes. The Fishery Faculty has specified no monitoring, whereas the Faculty of Marine Sciences submitted relevant information and it is described in the Tables further.

From the Istanbul University two Faculties have been contacted – of Fishery and of Marine Sciences and Management, both responded. The Faculty of Fishery<sup>81</sup>, is not part of a national monitoring

<sup>&</sup>lt;sup>79</sup> PRESENT SITUATION: For 2011-2013 a harmonized programme was approved for the Turkish coastal waters monitoring, keeping almost all the BS stations at their previous coordinates. However, the BS monitoring tender in 2011 was not successful and in 2012 there was no tender.

<sup>80</sup> Governmental University Postal address: Terzioglu Campus, 17100, Çanakkale, Turkey; http://suurunleri.comu.edu.tr/. Conatct person: A. Suat Ates, Yesim Buyukates, Çanakkale Onsekiz Mart University, Fisheries Faculty, Terzioglu Campus, 17100, Çanakkale, Turkey, e-mail: asuatates@yahoo.com e-mail: ybuyukates@yahoo.com, FaX: +90 286 218 0543

<sup>81</sup> Governmental. Postal address: Ordu cad. No 200 Laleli- İstanbul/TURKEY; http://suurunleri.istanbul.edu.tr/; Contact person: Prof. Dr. Bayram ÖZTÜRK, Tel: 00902124555700-16404, e-mai: ozturkb@istanbul.edu.tr

program, and has specified activities only in the 'Tropical Sygnals Programme" of CIESM<sup>82</sup>, which is relevant to the Mediterranean Sea mainly. Though, north-ward movement of species, related to climate change, has been also investigated for the Black Sea by the scientists of this Faculty. The activities of the Fishery Faculty of the Istanbul University are related also to fishery and aquaculture, as well as to agriculture and farming. The monitoring sustained by the Faculty of Marine Sciences is described in the Tables below.

The Recep Tayyip Erdoğan University (Faculty of Fisheries) in Rize<sup>83</sup> is an organization with activities related to fishery and aquaculture, however, it is not involved in national monitoring programmes and has not specified any monitoring or data collection.

Note: in Part II of the Questionnaire they have provided though information on data availability, as reflected in Chapter VI of this report.

Among NGOs, the Turkish Sturgeon Conservation Society<sup>84</sup> has been contacted, however, the organization has not specified anything about its activities in monitoring or data collection/management. Another NGO identified as an important stakeholder was the Turkish Marine Environment Protection Association (TURMEPA), which identified its activities as being related to Public Health, Coastal and urban development, Marine and riverine traffic, Fishery and aquaculture, Tourism and recreation, Offshore gas and oil exploitation, and Various branches of industry. TURMEPA did not mention any monitoring activities, or any data collection to justify its broad range of engagement in environment protection. TUDAV (Turkish Marine Research Foundation<sup>85</sup>) is a well-known NGO in Turkey, it is not part of a national monitoring program, however, it is well involved in ACCOBAMS activities in the BS region supporting by its investigations the BS Marine mammals Strandings and By-catch networks. The NGO also participates in an ecological monitoring programme of the Istanbul Strait, as well as in different international projects (e.g. EC FP7/MARLISCO related to marine litter, etc.). The activities of this NGO are related to Marine and riverine traffic and to Fishery and aquaculture.

The Nature Conservation Center has been also contacted and their response was quite comprehensive. The organization deals with on-coast observations of flora and fauna (freshwater fish, mammals, birds, dragonflies, butterflies and herpetofauna). Their projects are under 4 national programmes: Forest, Species Conservation, Climate Change and Systematic Conservation Planning.

Among all identified Fishery Cooperatives, the one in Trabzon<sup>86</sup> has been contacted. The Cooperative specified relation of its activities to Public Health, Agriculture and farming, but not to Fishery and aquaculture. No further information has been provided.

In Turkey private companies are involved in environment protection, e.g. MEKE<sup>87</sup> and SESMEKE<sup>88</sup>, KOSEQ<sup>89</sup>, MARE<sup>90</sup> and others deal with oil spill accidents in the Black Sea, participating in clean-up operations. DenArOcean Engineering Ltd<sup>91</sup> has been contacted, among other identified stakeholders (Annex II), and they distinguished their activities as being related to Public health, Coastal and urban development, Marine and riverine traffic, Fishery and aquaculture, Tourism and recreation, Offshore gas and oil exploration, and Military activities. The company carries out no monitoring and no data collection/management has been specified to demonstrate specific environment protection-related actions.

<sup>82</sup> The Mediterranean Science Commission, http://www.ciesm.org/

<sup>83</sup> Governmental. Postal address: Zihni Derin Kampüsü 53100 /Rize, http://suf.rize.edu.tr/tr/; Contact person: Dr. Göktuğ DALGIÇ, Recep Tayyip Erdoğan University, Faculty of Fisheries Zihni Derin Kampüsü 53100 /Rize; Tel +90 464 223 33 85 /1450, Fax +90 464 223 4118 goktug.dalgic@erdogan.edu.tr\_Skype: godalgic

<sup>&</sup>lt;sup>84</sup> NGO. Postal address: Gelincik mah. Orkide Sok. No:3 57000 SİNOP, www.merkoder.org; Contact person not specified, Tel: 0 541 698 35 32, info@merkoder.org

<sup>85</sup> NGO. Postal address: P.O.Box: 10, Beykoz, 81650, İSTANBUL – TURKEY; http://www.tudav.org; Contact person: Prof. Dr. Bayram ÖZTÜRK, Phone: + 90 216 424 07 72, Fax: + 90 216 424 07 71, e-mail: info@tudav.org

<sup>86</sup> Regional Union of Fisheries Cooperatives. Postal address: Yali Mah. Foroz Balıkçı Barınağı İçi TRABZON; Contactperson: Ahmet Mutlu, Tel: 0090 505 963 61 07.

<sup>&</sup>lt;sup>87</sup> Meke Marine Environmental Protection Services Ltd deals with marine and inland pollution response. Among its clients are the Turkish Ministries of Env. And Transport, and Istanbul Municipality. Webpage: http://www.mekemarine.com/HTML/profile.htm

<sup>88</sup> SESMEKE is a joint venture formed between SES and MEKE Marine Environmental Services (MEKE), an experienced Turkish oil spill response contractor. Webpage: http://www.sesi.seacorholdings.com/ses\_meke.htm
89 http://www.koseq.com/

<sup>90</sup> MARE Sea Cleaning Service : Kartal iş merkezi E-5 No:63 34876 Yakacık/istanbul / TURKEY phone: +90 216 3772700

<sup>91</sup> Priavate. Postal address: Gazeteciler Sitesi, Hikaye Sokak No:1/4 34394 Şişli İSTANBUL; Tel: (212) 216 64 82; e-mail: info@den-ar.com; www.den-ar.com

Table 41. Information on different types of Black Sea-related monitoring in Turkey

| Responsible organization*                                                                                   |                                 | Type of                                                                                      | Geographic                                                                                  | Number of Parameters  | Period/                                                                               | Related to humar                                      |                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Name                                                                                                        | National<br>M. P. <sup>93</sup> | monitoring <sup>92</sup>                                                                     | al scope                                                                                    | stations              | (from-to)                                                                             | Frequency                                             | activity                                                                                                                         |
| Environmental<br>Problems<br>Research<br>Centre of<br>Ondokuz Mayis<br>University <sup>94</sup><br>(Samsun) | No                              | Routine pollution<br>monitoring in the<br>vicinity of land-<br>based sources of<br>pollution | Turkish<br>coastal<br>Black Sea                                                             | ≥25                   | Not<br>specified/Tr<br>ends can be<br>derived for<br>different<br>depths and<br>layer | 1997-2012/<br>Seasonal                                | Coastal and urbar<br>development,<br>various branches<br>of industry,<br>Military activities                                     |
| Ataturk<br>University,<br>Faculty of<br>Fishery <sup>95</sup><br>(Erzurum)                                  | No                              | Not specified                                                                                | Tortum<br>Lake**<br>(40°40'18"N<br>41°40'20"E)                                              |                       | O2, pH,<br>Total<br>phosphorus<br>, ammonia,<br>biota                                 |                                                       | Public health, Fishery and Aquaculture, Tourism and recreation                                                                   |
| Institute of<br>Marine Science<br>and Technology<br>(Izmir) <sup>96</sup>                                   | No                              | Routine<br>(hydrochemistry)                                                                  | Western<br>part of the<br>Black Sea<br>Turkish<br>waters (41°<br>- 43.5° N;<br>28° - 35° E) | 76                    | 7, trends<br>cannot be<br>derived<br>(Table 42)                                       | 1992-1995/<br>Twice a year                            | Public health, Coastal and urbar development, Fishery and Aquaculture, Tourism and recreation, Offshore gas and oil exploitation |
| Central<br>Fisheries<br>Research<br>Institute<br>(Trabzon) <sup>97</sup>                                    | No <sup>98</sup>                | Surveillance and<br>Compliance<br>monitoring,<br>Pelagic and<br>demersal<br>fisheries        | TR Black<br>Sea                                                                             | 1-8 (Table<br>43, 44) | 2-8<br>(Table 45)                                                                     | Daily to<br>Seasonal<br>since 1993<br>(Table 45)      | Fishery and<br>Aquaculture                                                                                                       |
| Istanbul University, Institute of Marine Science and Management <sup>99</sup>                               | Yes***                          | Environment<br>routine<br>monitoring/Pollu<br>tion monitoring                                | TR Black<br>Sea                                                                             | 71 (Table<br>46)      | 34<br>(Table 47)                                                                      | Twice a year<br>in 2004-<br>2010                      | Public health,<br>Coastal and urbar<br>development,<br>Tourism and<br>recreation                                                 |
| Sinop<br>University<br>Faculty of<br>Fisheries <sup>100</sup>                                               | No                              | Hydrobiology,<br>Fishery                                                                     | Southern<br>Black Sea-<br>Sinop<br>(Fig. 20)                                                | 1-8 (Table<br>49, 50) | 10-20<br>(Table 51)                                                                   | Monthly<br>since 1990                                 | Fishery and aquaculture                                                                                                          |
| TUBITAK - Marmara Research Center- Environment Institute / Marine and Inland Waters Unit <sup>101</sup>     | Yes <sup>102</sup>              | Surveillance and<br>Compliance<br>monitoring                                                 | Marmara<br>Sea                                                                              | 6-55<br>(Table 52)    | 8-50<br>(Table 53)                                                                    | From<br>monthly to<br>twice per<br>year since<br>2008 | Public health, Coastal and urbar development, Marine and riverine traffic, Fishery and Aquaculture, Tourism and recreation,      |

\_

<sup>92</sup> The Questionnaire asked for identification of the type of monitoring carried out by the contacted organization/stakeholder: the types of monitoring are specified on p. 38-39.

<sup>93</sup> Is the organization part of a National Monitoring Program? Yes/No

<sup>&</sup>lt;sup>94</sup> Governmental University. Postal address: Ondokuz Mayis University, Engineering Faculty, Department of Environmental Engineering, 55200 Samsun/TURKEY; Contact person: Prof.Dr. Hanife Buyukgungor, E-mail: hbuyukg@omu.edu.tr

<sup>95</sup> Governmental University; webpage: http://www.atauni.edu.tr/#birim=su-urunleri-fakultesi; e-mail: suurunlerifak@atauni.edu.tr

<sup>96</sup> Governmental Institute. Postal address: Bakü Bul, No. 100, 35340, İnciraltı, İzmir, Türkiye/web.deu.edu.tr/deuimst; Contact person: Doç. Dr. Erdem Sayın (erdem.sayın@deu.edu.tr)

<sup>&</sup>lt;sup>97</sup> Governmental Institute, subordinated to the Ministery of Food, Agriculture and Livestock General Directorate of Agricultural, Research and Policy; Postal address: Vali Adil Yazar Cad. No:14 Kaşüstü, Yomra 61250 Trabzon-TURKEY, www.sumae.gov.tr; Contact person: Dr. Atilla ÖZDEMİR, Phone:+90 462 3411053, Fax:+90 462 3411152, e-mail: aozdemir@sumae.gov.tr; Dr. Ilhan AYDIN, Director; e-mail: iaydin@sumae.gov.tr; Dr. Yaşar GENÇ (ygenç@sumae.gov.tr); Dr. Mustafa ZENGİN (mzengin@sumae.gov.tr);

Dr. Nimet Selda BAŞÇINAR (sbascinar@sumae.gov.tr)

<sup>98</sup> Or may be Yes, as National Data collection to determine BS anchovy stock, applying also acoustic model or methods for monitoring, is in place and the institute takes part.

<sup>&</sup>lt;sup>99</sup> Governmental University. Postal address: Molla Hüsrev Mah., Müşküle Sk., No: 1, 34134, Vefa - Eminönü, Istanbul, 34134, TURKEY, http://www.istanbul.edu.tr/enstituler/denizbilimleri/denizbilimleri.htm Tel: +90 212 5112070; Contact person: Seyfettin Taş, Müşküle sk. No:1 Vefa İstanbul, Tel. 0212 440 00 00/26034, Fax: 02120526 84 33, e-mail: stas@istanbul.edu.tr.

<sup>100</sup> Governmental University. Postal address: Sinop University Faculty of Fisheries, 57000 Sinop, TURKEY, www.sinop.edu.tr; Contact person: Prof. Dr. Levent Bat (leventb@sinop.edu.tr), Assoc. Prof. Dr. Murat Sezgin (msezgin@sinop.edu.tr), Assist. Prof. Dr. Fatih Sahin (fsahin@sinop.edu.tr)

<sup>&</sup>lt;sup>101</sup> Governmental, subordinated to the Ministry of Science and Technology. Postal address: P.O.Box 21, 41470, Gebze Kocaeli Turkey, www.mam.gov.tr; Contact person: Çolpan Polat Beken, Tel: +90 262 6772977, Fax: +90 262 6412309

| Responsible orga                                                                            | nization*                       | Type of                                         | Geographic                        | Number of                                                                  | Number of Parameters | Period/                                                                                                | Related to human                                                                                                                      |  |
|---------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| Name                                                                                        | National<br>M. P. <sup>93</sup> | monitoring <sup>92</sup>                        | al scope                          | stations                                                                   | (from-to)            | Frequency                                                                                              | activity                                                                                                                              |  |
|                                                                                             |                                 |                                                 |                                   |                                                                            |                      |                                                                                                        | Offshore gas and oil exploitation, Various branches of industry                                                                       |  |
| Nature<br>Conservation<br>Center <sup>103</sup>                                             | Yes                             | Biodiversity <sup>104</sup>                     | Not<br>specified                  | N/A                                                                        | N/A                  | N/A                                                                                                    | Coastal and urban development, Fishery and aquaculture, Tourism and recreation, Agriculture and farming, Various branches of industry |  |
| Ministry of<br>Environment<br>and<br>Urbanization <sup>105</sup>                            | Yes <sup>106</sup>              | Surveillance                                    | TR Black<br>Sea<br>(Fig. 19)      | 71<br>(Table 46,)                                                          | 34<br>(Table 47)     | Twice a year since 2004                                                                                | Public health,<br>Coastal and urban<br>development,<br>Various branches<br>of industry                                                |  |
| Karadeniz<br>Technical<br>University,<br>Faculty of<br>Marine<br>Sciences <sup>107</sup>    | No                              | Env. routine<br>complex                         | Sürmene<br>Bay                    | 2                                                                          | 6                    | Since<br>1987/mont<br>hly                                                                              | Coastal and urban<br>development,<br>Marine and<br>riverine traffic,<br>Fishery and<br>aquaculture                                    |  |
| Institute of<br>Marine<br>Sciences, METU<br>(Erdemli) <sup>108</sup>                        | Yes                             | Env. routine<br>complex                         | TR Black<br>Sea                   | In total<br>4922<br>stations<br>for all the<br>years of<br>observatio<br>n | 70                   | Since 1985. Btw 1985&1999: more frequent (6 times/ year) Btw 2000&2012 less frequent (~1-2 times/year) | Public health,<br>Fishery and<br>aquaculture                                                                                          |  |
| Çanakkale Onsekiz Mart University, Faculty of Marine Sciences and Technology <sup>109</sup> | No                              | Env. routine<br>complex and<br>Ecotoxicological | Dardanelles<br>area,<br>Gallipoli | 5-10                                                                       | 25-30                | Annually/m<br>onthly                                                                                   | Public health,<br>Coastal and urban<br>development,<br>Fishery and<br>Aquaculture                                                     |  |

\*Note: The Marine Science Institutes are usually affiliated to the universities (like METU /IMS, for instance) and the universities are affiliated with the Council of Higher Education (which is related with the Ministry of Education). TUBITAK is the Council of Science and Technology, affiliated with the Ministry of Science and technology.

\*\*\* Note: In the Questionnaire the Istanbul University identified itself as not being part of a National Monitoring System. However, they have carried out in 2004-2010 the observations in the Black Sea and reported to the Ministry of Environment. Besides, the type of monitoring was identified as Pollution only, but in 2009-2010 biology was added also.

kideys@ims.metu.edu.tr

<sup>\*\*</sup>Note: Tortum Lake monitoring is not related to the BS monitoring.

<sup>&</sup>lt;sup>102</sup> TUBITAK mostly deals with the revision of monitoring programmes according to the emerging needs (regional and EU accession) working together with the Ministry of Environment and Urbanization. The organization also deals with assessments of monitoring data and data/information from research projects.

<sup>103</sup> NGO. Postal address: Aşağı Öveçler Mah. 1065. Cad. 1293 Sok. No:9/32 (06460) Ankara, Tel: 0312 287 81 44, Faks: 0312 286 68 20, www.dkm.org.tr; E-mail: dkm@dkm.org.tr. The organization deals with Ssytematic Conservation Planning, however, coastal habitats are meant, no those in the Black Sea.

<sup>105</sup> Governmental. Postal address: DG Environmental Management; Ehlibeyt Mah. 1271. Sok. No:13 Balgat Ankara 06520; www.csb.gov.tr Contact person: Mr.Murat TURAN, Head of Marine and Coastal Management Department, e-mail: murat.turan@csb.gov.tr, Tel: +90 0312 586 30 44

<sup>&</sup>lt;sup>106</sup> This is the same Program, stations (from Igneada to Hopa, Fig. 14, covering transitional, coastal, and marine waters), parameters and frequence, described by the Istanbul University, Faculty of Marine Science and Management, as the Program is implemented in cooperation between the two organizations, and funded by the Ministry of Environment and Urbanization.

<sup>107</sup> Governmental. Postal address: 61530 Çamburnu, Trabzon, Turkey; Contact person: Dr. Kadir SEYHAN; e-mail: seyhan@ktu.edu.tr; Tel: +90 462 7522419; Fax: +90 7522158

<sup>108</sup> Governmental. Postal address: P.O.Box 28, 33731, Erdemli-Mersin, TURKEY; web: http://www.ims.metu.edu.tr; Contact person: Prof. Ahmet Erkan Kideys

<sup>109</sup> Governmental. Postal address: Terzioglu Campus, 17100, Çanakkale, Turkey; webpage: http://suurunleri.comu.edu.tr; Conatct person: Assoc. Prof. Dr. Yeşim Büyükateş; e-mail: asuatates@yahoo.com;\_ybuyukates@comu.edu.tr

Table 42. Information on the monitoring carried out by the Institute of Marine Science and Technology, Izmir, Turkey

| Parameter                           | Analytical         | Frequency                 |          |       |          |  |
|-------------------------------------|--------------------|---------------------------|----------|-------|----------|--|
|                                     | Method             | Water (specify            | Sediment | Biota | On-Coast |  |
|                                     |                    | Surface/Depth/Layer)      |          |       |          |  |
| PO <sub>4</sub> , NO <sub>3</sub> , | Spectrophotometric | Twice a year/ 0-100 (10m  |          |       |          |  |
| NO <sub>2</sub> , Si,               |                    | interval)                 |          |       |          |  |
| Chl-a                               |                    | 100-300 (100 m interval)  |          |       |          |  |
|                                     |                    | 300-2000 (500 m interval) |          |       |          |  |
| DO, H <sub>2</sub> S                |                    |                           |          |       |          |  |

Table 43. Information on the monitoring carried out by the Central Fisheries Research Institute, Trabzon, Turkey

| Type of monitoring*                  | Geographical scope                | Time period<br>(from-to) | Frequency<br>(from-to) | Number of stations          | Number of parameters |
|--------------------------------------|-----------------------------------|--------------------------|------------------------|-----------------------------|----------------------|
| Surveillance<br>Monitoring<br>(CTD)  | Trabzon, Yomra                    | 2000-2012                | Weekly-<br>Monthly     | 2                           | 8                    |
| Compliance<br>Monitoring             | Rize, Çayeli                      | 1993-2012                | Seasonal               | 7                           | 19                   |
| Surveillance<br>Monitoring           | Samsun / Hopa                     | 2012-2014                | Monthly                | River (13)<br>Black Sea (3) | 33                   |
| Surveillance<br>Monitoring<br>(ADCP) | Trabzon, Yomra                    | 2010 Mart<br>2012        | Daily                  | 1                           | 2                    |
| Pelagic<br>fisheries                 | Eastern Black<br>Sea Coast        | 2006 - 2014              | Seasonal               | 8                           | 4                    |
| Pelagic<br>fisheries                 | Black Sea coast<br>(Igneada/Hopa) | 2011-2015                | Weekly                 | (Acoustiv survey)           | 8                    |
| Demersal<br>Fisheries                | Black Sea                         | 2009-                    | Seasonal               | 3                           | 4                    |

<sup>\*</sup>Environment routine complex monitoring; Ecotoxicological monitoring; Surveillance monitoring<sup>110</sup>; Compliance monitoring<sup>111</sup>; Operational monitoring (based on real-time observations)<sup>112</sup>.

<sup>110</sup> Surveillance monitoring is usually the environment monitoring for trends (complex and routine monitoring);

<sup>111</sup> Compliance monitoring is the one checking the relevance of water quality and level of discharges against certain norms (governmentally established):

established);

112 **Operational monitoring** - real time (satellites, radars, any automatic devices working for real-time collection of data).

Table 44. Coordinates of stations monitored by the by the Central Fisheries Research Institute, Trabzon, Turkey

| N of station        | Coordinates                                                       | Area/name of transect* | Type of station**         |
|---------------------|-------------------------------------------------------------------|------------------------|---------------------------|
| 1                   | 40°58.385′N<br>39°50.982′E                                        | Trabzon, Yomra Bay     | Coastal <sup>113</sup>    |
| 2                   | 40°58.662′N<br>39°51.275′E                                        | Trabzon, Yomra Bay     | Coastal                   |
| 1                   | 40°57.935′N<br>39°51.738′E                                        | Trabzon, Yomra Bay     | Coastal                   |
| 1                   | 41°05.980′ N<br>40°41.590′ E                                      | Rize / Çayeli          | Coastal                   |
| 2                   | 41°06.020′ N<br>40°41.240′ E                                      | Rize / Çayeli          | Coastal                   |
| 3                   | 41°05.880′ N<br>40°40.930′ E                                      | Rize / Çayeli          | Coastal                   |
| 4                   | 41°06.210′ N<br>40°40.570′ E                                      | Rize / Çayeli          | Coastal                   |
| 5                   | 41°06.260′ N<br>40°41.400′ E                                      | Rize / Çayeli          | Coastal                   |
| 6                   | 41°06.210′ N<br>40°41.900′ E                                      | Rize / Çayeli          | Coastal                   |
| 7                   | 41°06.830′ N<br>40°41.410′ E                                      | Rize / Çayeli          | Coastal (Reference)       |
| Acoustic monitoring | 41°53′ N - 27°59′ E<br>(Igneada) to 41°23′ N -<br>41°26′ E (Hopa) | Igneada / Hopa         | Coastal and marine waters |

<sup>\*</sup>e.g. Varna Bay, or Constanta / Mamaia transect, etc.
\*\*transitional, coastal or marine waters; Please indicate which stations are Reference stations.

<sup>&</sup>lt;sup>113</sup> In Turkey the following definitions for different types of waters are specified:

<sup>&</sup>quot;Transitional waters" are bodies of surface water in the vicinity of river mouths which are partly saline in character as a result of their proximity to coastal waters but which are substantially influenced by freshwater flows.

<sup>&</sup>quot;Coastal water" means water on the landward side of a line every point of which is at a distance of one nautical mile on the seaward side from the nearest point of the baseline from which the breadth of territorial waters is measured. "Territorial waters" means all waters designated as such by countries pursuant to the United Nations Convention on the Law of the Sea (UNCLOS).

<sup>&</sup>quot;Marine waters" means all waters designated by countries as falling within the exclusive economic zone pursuant to the United Nations Convention on the Law of the Sea.

Table 45. List of parameters monitored<sup>114</sup> by the Central Fisheries Research Institute, Trabzon, Turkey

| Parameter          | Analytical                | Frequency                     | Frequency |       |          |  |  |
|--------------------|---------------------------|-------------------------------|-----------|-------|----------|--|--|
|                    | Method                    | Water (specify                | Sediment  | Biota | On-Coast |  |  |
|                    |                           | Surface/Depth/Layer) - 0-200m |           |       |          |  |  |
| CTD <sup>115</sup> | SBE 25 CTD                | Х                             |           |       |          |  |  |
| Water Temperature  | SM 2550                   | Х                             |           |       |          |  |  |
| Salinity           |                           |                               |           |       |          |  |  |
| рН                 | 4500- H <sup>+</sup> B.   | Х                             |           |       |          |  |  |
| Conductivity       | SM 2510                   | Х                             |           |       |          |  |  |
| Dissolved Oxygen   | 4500-O.G                  | Х                             |           |       |          |  |  |
| Density            |                           |                               |           |       |          |  |  |
| Turbidity          | SM 2130.B                 | Х                             |           |       |          |  |  |
| Light transmission |                           |                               |           |       |          |  |  |
| TSS                | SM 2540 D                 | Х                             |           |       |          |  |  |
| Chlorophyll-a      | SM 10200 H.               | Х                             |           |       |          |  |  |
| Nitrate            | SM 4500 NO <sub>3</sub> F | Х                             |           |       |          |  |  |
| Nitrite            | SM 4500 NO <sub>2</sub> F | Х                             |           |       |          |  |  |
| Ammonia            | SM 4500 NH <sub>3</sub> H | Х                             |           |       |          |  |  |
| Phosphate          | SM 4500 P.G               | Х                             |           |       |          |  |  |
| Silicate           | SM 4500SiO2.F             | Х                             |           |       |          |  |  |
| Total Phosphate    | SM 4500 P J.              | Х                             |           |       |          |  |  |
| Total Nitrogen     | SM 4500 P J.              | Х                             |           |       |          |  |  |
| Metals             | SM 3125 B                 | Х                             | Χ         | Х     |          |  |  |
| Current            | ADCP                      | Х                             |           |       |          |  |  |
| Velocity/Direction |                           |                               |           |       |          |  |  |
| Mercury            | SM 3112 B.                | Х                             |           |       |          |  |  |
| Arsenic            | SM 3115 C.                | Х                             |           |       |          |  |  |
| Anchovy            | Biological                |                               |           |       |          |  |  |
|                    | sampling                  |                               |           |       |          |  |  |
| Mackerel           | Biological                |                               |           |       |          |  |  |
|                    | sampling                  |                               |           |       |          |  |  |
| Turbot             | Biological                |                               |           |       |          |  |  |
|                    | sampling                  |                               |           |       |          |  |  |
| Whiting            | Biological                |                               |           |       |          |  |  |
|                    | sampling                  |                               |           |       |          |  |  |
| Red mullet         | Biological                |                               |           |       |          |  |  |
|                    | sampling                  |                               |           |       |          |  |  |

<sup>\*</sup>on coast: monitoring at land-based point sources like at waste water discharges or at rivers

Note: For all commercial species the Central Fisheries Research Institute, Trabzon, provides: estimation of growth parameters and natural mortality, Cohort analysis, estimation of selectivity, Beverton and Hold yield per recruit analysis, VPA, XSA. The data of this institute provides for long-term trends (layer 0-200m) for: water temperature, salinity, conductivity, density, pH, dissolved oxygen, ChI and light transmission.

<sup>&</sup>lt;sup>114</sup> Biodiversity/biological elements are also studied, but information on these has not been provided.

<sup>&</sup>lt;sup>115</sup> The parameters have not been specified.

Table 46. Coordinates of stations monitored by the Istanbul University, Institute of Marine Science and Management, Turkey (National Program of Turkey implemented with and funded by the Ministry of Environment and Urbanization)

| No | Name of station | Coordinates  |             | Area/name of transect* |
|----|-----------------|--------------|-------------|------------------------|
| 1  | TRK-1           | 41.52.23 N   | 28.03.498 E | İğneada and Danube R.  |
| 2  | TRK-4           | 41.22.11 N   | 28.37.47 E  | Western Black Sea      |
| 3  | TRK-7           | 41.11.562 N  | 29.35.586 E | Şile                   |
| 4  | TRK-10          | 41.08.07 N   | 30.37.656 E | Sakarya River          |
| 5  | TRK-E1          | 41.16.428 N  | 31.23.94 E  | Karadeniz Ereğlisi     |
| 6  | TRK-13          | 41.27.606 N  | 31.46.308 E | Zonguldak              |
| 7  | TRK-16          | 41.35.208 N  | 32.02.622 E | Bartın                 |
| 8  | TRK-19          | 41.41.388 N  | 32.13.194 E | Cide                   |
| 9  | TRK-22          | 41.59.214 N  | 33.47.154 E | İnebolu                |
| 10 | TRK-25          | 42.03.84 N   | 34.55.074 E | Sinop                  |
| 11 | TRK-28          | 42.01.032 N  | 35.09.372 E | Sinop                  |
| 12 | TRK-32          | 41.44.598 N  | 35.57.372 E | Kızılırmak River       |
| 13 | TRK-34Y         | 41.18.09 N   | 36.21.612 E | Samsun                 |
| 14 | TRK-37          | 41.23.61 N   | 36.39.186 E | Yeşilırmak River       |
| 15 | TRK-43          | 40.59.814 N  | 37.53.13 E  | Ordu                   |
| 16 | TRK-46          | 40.55.362 N  | 38.24.138 E | Giresun                |
| 17 | TRK-53          | 41.00.936 N  | 39.44.076 E | Trabzon                |
| 18 | TRK-55          | 41.02.112 N  | 40.32.388 E | Rize                   |
| 19 | TRK-58          | 41.11.634 N  | 40.54.24 E  | Pazar                  |
| 20 | TRK-61          | 41.30.96 N   | 41.30.996 E | Нора                   |
| 21 | TRK-SK1         | 41.15.168 N  | 36.27.384 E | Samsun                 |
| 22 | TRK-SK2         | 41. 15.318 N | 36.29.046 E | Samsun                 |
| 23 | TRK-TY1         | 40. 58.092 N | 39.52.146 E | Yomra                  |
| 24 | TRK-AR1         | 40. 56.802 N | 40.03.516 E | Araklı                 |
| 25 | TRK-ÇY1         | 41.05.682 N  | 40.43.05 E  | Çayeli                 |
| 26 | TRK-51Y         | 41.02.316 N  | 39.35.22 E  | Akçaabat               |
| 27 | TRK-10A         | 41.08.08 N   | 30.39.13 E  | Sakarya River          |
| 28 | TRK-13A         | 41.27.606 N  | 31.46.308 E | Zonguldak              |
| 29 | TRK-19A         | 41.41.11 N   | 32.13.35 E  | Bartin Stream          |
| 30 | TRK-31A         | 41.44.42 N   | 35.57.40 E  | Kızılırmak River       |
| 31 | TRK-37A         | 41.23.43 N   | 36.39.37 E  | Yeşilırmak River       |
| 32 | TRK-2Y          | 41.50.88 N   | 28.19.638 E | İğneada and Danube R.  |
| 33 | TRK-3           | 41.49.512 N  | 28.36.174 E | iğneada and Danube R.  |
| 34 | TRK-5Y          | 41.28.410 N  | 28.44.202 E | Western Black Sea      |
| 35 | TRK-6           | 41.35.178 N  | 28.50.922 E | Western Black Sea      |
| 36 | TRk-8           | 41.14.22 N   | 29.36.24 E  | Şile                   |
| 37 | TRK-9           | 41.20.55 N   | 29.38.808 E | Şile                   |
| 38 | TRK-11          | 41.10.044 N  | 30.38.466 E | Sakarya River          |
| 39 | TRK-12Y         | 41.12.816 N  | 30.39.018 E | Sakarya River          |
| 40 | TRK-E2          | 41.17.25 N   | 31.22.416 E | Karadeniz Ereğlisi     |
| 41 | TRK-E3          | 41.18.858 N  | 31.19.602 E | Karadeniz Ereğlisi     |
| 42 | TRK-14Y         | 41.29.202 N  | 31.45.558 E | Zonguldak              |
| 43 | TRK-15Y         | 41.31.686 N  | 31.43.536 E | Zonguldak              |
| 44 | TRK-17          | 41.35.454 N  | 32.03.03 E  | Filyos                 |
| 45 | TRK-18Y         | 41.37.32 N   | 32.01.728 E | Filyos                 |
| 46 | TRK-21          | 41.41.85 N   | 32.13.182 E | Bartin                 |
| 47 | TRK-21Y         | 41.43.092 N  | 32.12.48 E  | Bartin                 |
| 48 | TRK-23Y         | 42.00.99 N   | 33.46.032 E | İnebolu                |

| No | Name of station | Coordinates |             | Area/name of transect* |
|----|-----------------|-------------|-------------|------------------------|
| 49 | TRK-24          | 42.04.92 N  | 33.47.19 E  | İnebolu                |
| 50 | TRK-26          | 42.04.92 N  | 33.47.19 E  | Sinop                  |
| 51 | TRK-27          | 42.04.92 N  | 33.47.19 E  | Sinop                  |
| 52 | TRK-29          | 41.45.222 N | 35.56.718 E | Sinop                  |
| 53 | TRK-30Y         | 41.57.054 N | 35.12.246 E | Sinop                  |
| 54 | TRK-33Y         | 41.47.316 N | 35.56.28 E  | Kızılırmak             |
| 55 | TRK-33          | 41.45.222 N | 35.56.718 E | Kızılırmak             |
| 56 | TRK-35          | 41.20.808 N | 36.23.316 E | Samsun                 |
| 57 | TRK-36          | 41.22.578 N | 36.24.726 E | Samsun                 |
| 58 | TRK-39Y         | 41.28.398 N | 36.39.192 E | Yeşilırmak River       |
| 59 | TRK-39          | 41.25.23 N  | 36.39.192 E | Yeşilırmak River       |
| 60 | TRK-40Y         | 41.03.018 N | 37.30.522 E | Fatsa                  |
| 61 | TRK-44          | 41.01.218 N | 37.54.48 E  | Ordu                   |
| 62 | TRK-45          | 41.04.128 N | 37.59.862 E | Ordu                   |
| 63 | TRK-47          | 40.55.98 N  | 38.24.636 E | Giresun                |
| 64 | TRK-48          | 40.56.622 N | 38.24.702 E | Giresun                |
| 65 | TRK-51Y         | 41.02.316 N | 39.35.22 E  | Akçaabat               |
| 66 | TRK-54          | 41.01.842 N | 39.43.494 E | Trabzon                |
| 67 | TRK-54Y         | 41.03.606 N | 39.43.482 E | Trabzon                |
| 68 | TRK-57          | 41.03.414 N | 40.31.956 E | Rize                   |
| 69 | TRK-57Y         | 41.04.638 N | 40.32.22 E  | Rize                   |
| 70 | TRK-63          | 41.26.094 N | 41.24.222 E | Нора                   |
| 71 | TRK-63Y         | 41.27.546 N | 41.23.622 E | Нора                   |

Table 47. Parameters monitored by the Istanbul University, Institute of Marine Science and Management, Turkey (National Monitoring Program of Turkey implemented with and funded by the Ministry of Environment and Urbanization)

| Parameter                                  | Analytical                                                                          | Frequency                                                |                              |                           |              |
|--------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|---------------------------|--------------|
|                                            | Method                                                                              | Water (specify<br>Surface/Depth/Layer)<br>(twice a year) | Sediment<br>(once a<br>year) | Biota<br>(once a<br>year) | On-<br>Coast |
| Metals (Al, Cd, Cu,<br>Cr, Zn, Pb, Hg, V)  | AAS (Kuvvetli Asit<br>Çözünürleştirmesi ve<br>AAS'de okuma)                         | х                                                        | х                            | х                         |              |
| Water<br>temperature,<br>Salinity, Density | CTD Manual                                                                          | x                                                        |                              |                           |              |
| Secchi depth                               |                                                                                     | X                                                        |                              |                           |              |
| pH O <sub>2 (and saturation)</sub>         | Winkler                                                                             | x                                                        |                              |                           |              |
| Chl-a                                      | Spektrofotometrik                                                                   | X                                                        |                              |                           |              |
| NO <sub>2</sub>                            | Sepektrometrik                                                                      | х                                                        |                              |                           |              |
| NO <sub>3</sub>                            | Otoanalizör                                                                         | х                                                        |                              |                           |              |
| NH <sub>4</sub>                            | Otoanalizör (Berthelot<br>reaksiyonu metodu ve<br>Bran+Luebbe AA3<br>otoanalizörde) | х                                                        |                              |                           |              |
| TON, TN                                    | Otoanalizör (Bazik<br>persülfat Kadmium<br>indirgeme metodu,                        | х                                                        |                              |                           |              |

| Parameter        | Analytical            | Frequency            |          |         |       |
|------------------|-----------------------|----------------------|----------|---------|-------|
| Method           |                       | Water (specify       | Sediment | Biota   | On-   |
|                  |                       | Surface/Depth/Layer) | (once a  | (once a | Coast |
|                  |                       | (twice a year)       | year)    | year)   |       |
|                  | Bran+Luebbe AA3       |                      |          |         |       |
|                  | otoanalizörde)        |                      |          |         |       |
| P-PO4, TP        | Otoanalizör (Bazik    | x                    |          |         |       |
|                  | persülfat parçalaması |                      |          |         |       |
|                  | sonrası Askorbik asit |                      |          |         |       |
|                  | metodu ve             |                      |          |         |       |
|                  | Bran+Luebbe AA3       |                      |          |         |       |
|                  | otoanalizörde)        |                      |          |         |       |
| SiO <sub>4</sub> | Otoanalizör           | x                    |          |         |       |
|                  | (Bran+Luebbe AA3      |                      |          |         |       |
|                  | otoanalizörde)        |                      |          |         |       |
| TOC              | Yüksek ısıda          | x                    | х        |         |       |
|                  | parçalama metodu      |                      |          |         |       |
|                  | TOC cihazında         |                      |          |         |       |
| TSS              |                       | Х                    |          |         |       |
| Pesticides       |                       | X                    |          |         |       |
| Detergents       |                       | X                    |          |         |       |
| Phytoplankton    | bolluk, tür           | X                    |          |         |       |
|                  | kompozisyonu          |                      |          |         |       |
| Zooplankton      | bolluk, tür           | X                    |          |         |       |
|                  | kompozisyonu          |                      |          |         |       |
| İhthyoplankton   | bolluk, tür           | x                    |          |         |       |
|                  | kompozisyonu          |                      |          |         |       |
| Total coliforms  | CFU/100 ml            | X                    |          |         |       |
| Fecal coliforms  | CFU/100 ml            | X                    |          |         |       |
| Streptococcus    | CFU/100 ml            | Х                    |          |         |       |
| Macrozoobenthos  | bolluk, biyokutle tür |                      |          |         |       |
|                  | kompozisyonu          |                      |          |         |       |
| Total carbonates |                       |                      | х        |         |       |
| PAH and total    |                       | х                    | х        | х       |       |
| hydrocarbons     |                       |                      |          |         |       |

Trends can be derived based on the data collected by the Istanbul University (Institute of Marine Science and Management), as specified in the Table 48:

Table 48. Parameters monitored by the Istanbul University, Institute of Marine Science and Management, Turkey (National Monitoring Program of Turkey implemented with and funded by the Ministry of Environment and Urbanization)

| Parameter            | Trend (Yes/No)       |          |       |          |  |
|----------------------|----------------------|----------|-------|----------|--|
|                      | Water (specify       | Sediment | Biota | On-Coast |  |
|                      | Surface/Depth/Layer) |          |       |          |  |
| TSS, TN,TP,SO4,      | Surface, bottom/for  |          |       |          |  |
| chlorophyl-a,TOC     | all the transects    |          |       |          |  |
| Trace                |                      | yes      |       |          |  |
| metals(Hg,Cu,Cd,Pb), |                      |          |       |          |  |
| PAH,TPH              |                      |          |       |          |  |

<sup>\*</sup>on coast: monitoring at land-based point sources like at waste water discharges or at rivers

The Sinop University, Faculty of Fisheries carries out monitoring in the Black Sea. Its monitoring was designed as a time-series study, however, sustained only by short-term TUBITAK projects, therefore, needs special attention to operate it in the long-term. Since 1990, monitoring has been held almost monthly, collecting hydrobiological, fishery, hydrochemical and chlorophyll data.

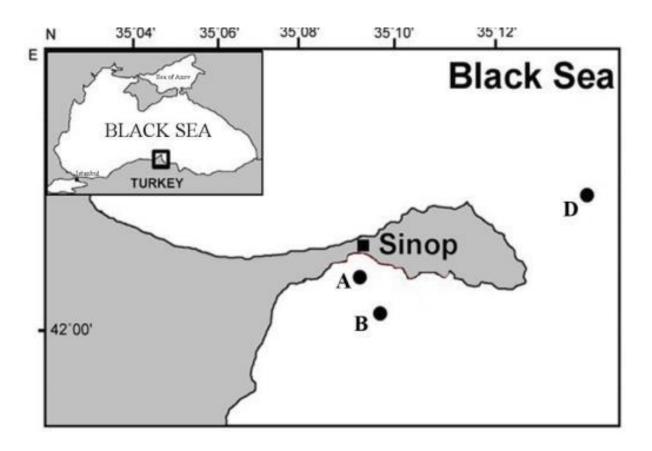



Figure 20. Map of sampling stations in the vicinity of Sinop

Table 49. Information on the monitoring carried out by the Sinop University, Faculty of Fishery, Turkey

| Type of monitoring*                 | Geographical scope                 | Time period<br>(from-to) | Frequency<br>(from-to) | Number of stations | Number of parameters |
|-------------------------------------|------------------------------------|--------------------------|------------------------|--------------------|----------------------|
| Plankton (Phyto,                    | Southern Black                     | 1990-2006                | Monthly                | 4                  | 13                   |
| Zoo, Macrozoo,<br>Ichthyo) Sampling | Sea-Sinop Region                   |                          |                        |                    |                      |
| Plankton (Phyto,                    | Southern Black                     | 2006-2009                | Monthly                | 3                  | 12                   |
| Zoo, Macrozoo,<br>Ichthyo) Sampling | Sea-Sinop Region                   |                          |                        |                    |                      |
| Plankton (Phyto,<br>Zoo) Sampling   | Southern Black<br>Sea-Sinop Region | 2009-2012                | Monthly                | 1                  | 10                   |
| Zoobenthos<br>(Macrozoobenthos)     | Southern Black<br>Sea-Sinop Region | 2000-2012                | Monthly                | 3                  | 15                   |
| Zoobenthos                          | Southern Black                     | 2009-2012                | Monthly                | 8                  | 20                   |
| (Meiobenthos)                       | Sea-Sinop Region                   |                          |                        |                    |                      |
| Fisheries and                       | Southern Black                     |                          |                        |                    |                      |
| Dolphin                             | Sea-Sinop Region                   |                          |                        |                    |                      |

Table 50. Coordinates of stations monitored by the Sinop University, Faculty of Fishery, Turkey

| N of    | Name of | Coordinates | Area/name of | Type of station** |
|---------|---------|-------------|--------------|-------------------|
| station | Station |             | transect*    |                   |
| 1       | Α       | 35.1588E-   | Sinop Region | Coastal Waters    |
|         |         | 42.0058N    |              |                   |
| 2       | В       | 35.1700E-   | Sinop Region | Coastal Waters    |
|         |         | 41.9908N    |              |                   |
| 3       | D       | 35.1500E-   | Sinop Region | Open Waters       |
|         |         | 42.0405N    |              |                   |

Table 51. List of parameters observed by the Sinop University, Faculty of Fishery, Turkey

| Parameter        | Analytical     | Frequency            |          |       |       |
|------------------|----------------|----------------------|----------|-------|-------|
|                  | Method         | Water (specify       | Sediment | Biota | On-   |
|                  |                | Surface/Depth/Layer) |          |       | Coast |
| Temperature      | YSI 6600-Probe | X                    |          |       |       |
| рН               | YSI 6600-Probe | X                    |          |       |       |
| Conductivity     | YSI 6600-Probe | X                    |          |       |       |
| Dissolved Oxygen | YSI 6600-Probe | X                    |          |       |       |
| Turbidity        | YSI 6600-Probe | X                    |          |       |       |
| TSS              | YSI 6600-Probe | X                    |          |       |       |
| Chlorophyll-a    | YSI 6600-Probe | X                    |          |       |       |
| Nitrate          | Spectrometric  | X                    |          |       |       |
| Nitrite          | Spectrometric  | X                    |          |       |       |
| Ammonia          | Spectrometric  | X                    |          |       |       |
| Phosphate        | Spectrometric  | X                    |          |       |       |
| Silicate         | Spectrometric  | X                    |          |       |       |
| Heavy metals     | Spectrometric  |                      | х        | х     |       |
| Granulometry     | Titration      |                      | х        |       |       |
| (sediment)       |                |                      |          |       |       |
| Organic matter   | Burning        |                      | x        |       |       |
|                  | method         |                      |          |       |       |
| Species number   |                |                      |          |       |       |
| Habitat type     |                |                      |          |       | Х     |
| Abundance        |                |                      |          |       |       |
| Biomass          |                |                      |          |       |       |
| Frequency        |                |                      |          |       |       |
| Population       |                |                      |          |       |       |
| parameters       |                |                      |          |       |       |

Table 52. Information on the monitoring carried out by TUBITAK – the Marmara Research Center, Turkey

| Type of monitoring                                            | Geographical scope                    | Time period (from-to) | Frequency<br>(from-to) | Number of stations | Number of parameters |
|---------------------------------------------------------------|---------------------------------------|-----------------------|------------------------|--------------------|----------------------|
| Surveillance<br>Monitoring<br>(water and<br>sediment quality) | izmit Bay of<br>the Sea of<br>Marmara | 2008-2012             | Monthly                | 6                  | 20                   |

| Type of           | Geographical    | Time period | Frequency | Number of | Number of      |
|-------------------|-----------------|-------------|-----------|-----------|----------------|
| monitoring        | scope           | (from-to)   | (from-to) | stations  | parameters     |
| Compliance        | Rivers and      | 2008-2012   | Seasonal  | 12        | 8              |
| Monitoring        | river mouths of |             |           |           |                |
|                   | the İzmit Bay   |             |           |           |                |
| Surveillance      | Marmara Sea     | 2011        | Twice per | 55        | 40-50          |
| Monitoring*       |                 |             | year      |           | (incl.biologic |
| (physicochemical, |                 |             |           |           | al elements)   |
| pollution,        |                 |             |           |           |                |
| biological        |                 |             |           |           |                |
| elements)         |                 |             |           |           |                |

<sup>\*</sup> This type of monitoring was planned for all seas surrounding Turkey for 2011-2013. However, the plan for the Black Sea in 2011-2012 was not implemented.

The Table below includes parameter groups of the monitoring programme of 2011-2013 (for all TR seas)

Table 53. Parameters observed by TUBITAK – the Marmara Research Center, Turkey

| Parameter                                                                         | Analytical | Frequency                           |          |       |          |
|-----------------------------------------------------------------------------------|------------|-------------------------------------|----------|-------|----------|
|                                                                                   | Method     | Water (specify Surface/Depth/Layer) | Sediment | Biota | On-Coast |
| Biodiversity (Phytoplankton, macroalgae, benthic communities, fish)               |            | X                                   |          |       |          |
| Eutrophication<br>(nutrients, chl, phyto<br>and other biological<br>parameters)   |            | Х                                   |          |       |          |
| Contamination (All priority substances in biota and sediments.  Not in seawater ) |            |                                     | Х        | Х     |          |
| Litter is included in 2012                                                        |            |                                     |          |       |          |

Table 54. Information on the geographical coverage of the monitoring carried out by the Karadeniz Technical University, Faculty of Marine Science, Trabzon, Turkey

| N of station | Coordinates                                                 | Area/name of transect* | Type of station** |
|--------------|-------------------------------------------------------------|------------------------|-------------------|
| Sürmene Bay  | 40° 56′ 43″ N-40° 12′ 01″ E<br>41° 06′ 43″ N- 40° 10′ 05″ E | Camburnu transect      | Coastal           |

Table 55. Parameters observed by the Karadeniz Technical University, Faculty of Marine Science, Trabzon, Turkey

| Parameter                                           | Analitical                 | Frequency                           |          |       |          |
|-----------------------------------------------------|----------------------------|-------------------------------------|----------|-------|----------|
|                                                     | Method                     | Water (specify Surface/Depth/Layer) | Sediment | Biota | On-Coast |
| CTD (water<br>temperature,<br>salinity,<br>density) |                            | Surface to 200 m                    | -        | -     | -        |
| Chlorophyll-a                                       | Sepectrophotometric        | Surface to 50 m                     | -        | -     | -        |
| Phytoplankt.                                        | Direct count               | Surface to 50 m                     | -        | -     | -        |
| Zooplnkt.                                           | Direct count,<br>Microcopy | Surface to 120 m                    | -        | -     | -        |

Note: the data of the Karadeniz Technical University, Faculty of Marine Science, Trabzon, provides for deriving trends: salinity and water temperature (0-200m), as well as for the phytoplankton in the layer 0-50m.

The Institute of Marine Sciences/Middle East Technical University, Erdemli-Mersin (IMS/METU) described monitoring activities, which since 1985 covered 4922 stations in total, the geographical coverage is between the latitudes of 41°&46° N and longitudes of 28°&42° E (coastal and marine waters).

Full list of the cruises of this Institute can be found at:

http://www.ims.metu.edu.tr/index1.php?sayfa=activities\_cruises. During the last years, IMS/METU carries out monitoring in the Black Sea mainly in the frames of different EC projects.

Largest integrated projects of IMS/METU (cruises carried out/data compiled) were: of ISKI (1986-1994; regular), TUBITAK (1990-2000, less regular) and SESAME Project (2007-2008). Current projects of IMS METU are enlisted at: http://www.ims.metu.edu.tr/Sayfa.php?icerik=Makale&mid=19.

Full set of stations covered by IMS METU are presented for 1986-2008 as follow (Figure 21):

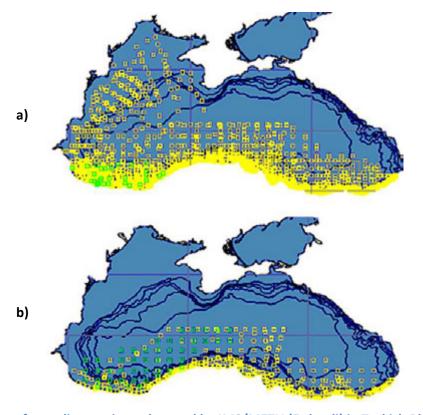



Figure 21. Map of sampling stations observed by IMS/METU (Erdemli) in Turkish Black Sea waters since 1985 (a) and in the period 2006-2011 (b).

The parameters observed by IMS/METU (Erdemli) are presented in the Table below:

Table 56. Parameters observed by IMS/METU (Erdemli), Turkey

| Parameter      | Analytical     | Period/Frequency              |          |        |       |
|----------------|----------------|-------------------------------|----------|--------|-------|
|                | Method         | Water (specify                | Sediment | Biota  | On-   |
|                |                | Surface/Depth/Layer)          |          |        | Coast |
| Biodiversity   | Microscopic    | For pelagic communities about |          |        |       |
|                | analysis       | once or two times a year btw  |          |        |       |
|                |                | 1989 to 2000;                 |          |        |       |
|                |                | two times a year in           |          |        |       |
|                |                | 2008&2010. Benthic            |          |        |       |
|                |                | communities – on 1988-89      |          |        |       |
|                |                | only.                         |          |        |       |
| Eutrophication | Autoanalyzer   | Btw 1985&1999: more           |          |        |       |
|                | for nutrients, | frequent (~6 times in a year) |          |        |       |
|                | CHN analyzer   | Btw 2000&2012 less frequent   |          |        |       |
|                |                | (~1-2 times in a year)        |          |        |       |
| Contamination  | GC and/or AA   | No regular data               |          | No     |       |
|                | analysis       |                               |          | regula |       |
|                |                |                               |          | r data |       |
| Commercial     | Lenght-weigth  | Once a year btw 1988-1992     |          |        |       |
| fish           | measurements   | and 2011-2012                 |          |        |       |
| Hydrological   | CTD            | Btw 1985&1999: more           |          |        |       |
| data           | measurements   | frequent (~6 times in a year) |          |        |       |
|                |                | Btw 2000&2012 less frequent   |          |        |       |
|                |                | (~1-2 times in a year)        |          |        |       |
| Aerosol data   | Particles size | 2009-2010, 2012               |          |        |       |
|                | measurements   |                               |          |        |       |

The Canakkale University, Faculty of Marine Sciences and Technology specified monitoring activities in the TR Straits (Dardanelles area, Gallipoli). The geographical coverage described is between the latitudes of 40.07.49 N - 40.40.01 N and longitudes of 26.35.20 E - 26.66.09 E. The parameters observed are as follow:

Table 57. Parameters observed by Canakkale Univ., Faculty of Marine Sciences and Technology, Turkey

| Parameter       | Analitical | Frequency                           |          |       |          |
|-----------------|------------|-------------------------------------|----------|-------|----------|
|                 | Method     | Water (specify Surface/Depth/Layer) | Sediment | Biota | On-Coast |
| Biodiversity    |            | Water column, bottom                |          |       |          |
| Eutrophication  |            | Water column                        |          |       |          |
| Contamination   |            | Water column                        | х        |       |          |
| Commercial fish |            | Pelagic, demersal                   |          |       |          |

No organizations dealing with bathing water have been contacted. The information provided further has been extracted from the archive of the BSC.

### **Bathing water monitoring**

In total, 14 Provinces have swimming areas in the Black Sea. Every 15 days samples are collected at the selected points. Total and faecal coliforms and faecal streptococci are analysed. This kind of monitoring is under the Ministry of Health and is conducted byt its subordinated laboratories.

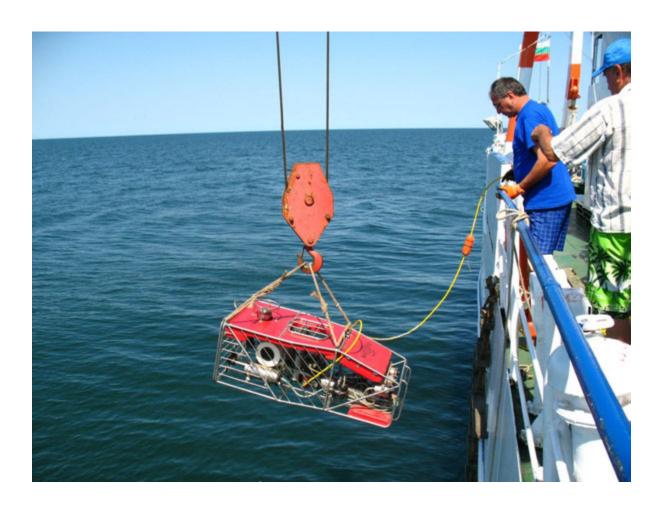

To conclude on the performance of the beneficiary countries in the field of monitoring. Going back to the recommendations of the Diagnostic Report I in relation to monitoring, the following conclusions can be made as per the following important issues:

Table 58. State of the monitoring in BG, RO and TR – main findings on achievements and gaps

| N | Issue                                       |                                     | Bulgaria       | Romania    | Turkey        |
|---|---------------------------------------------|-------------------------------------|----------------|------------|---------------|
| 1 | Maintain                                    | frequency of observations – in      | Since 2012     | Mostly Yes | No            |
|   | line with WFD and MSFD                      |                                     |                |            |               |
| 2 | Ensure pr                                   | oper geographical coverage –        | Since 2012,    | No         | Yes           |
|   | include o                                   | oen sea to cover the EEZ            | partially      |            |               |
| 3 | Sustain st                                  | ations and transects with long-     | Mostly Yes,    | Yes        | No such       |
|   | term obs                                    | ervations (and create network of    | but with no    |            | stations and  |
|   | Reference                                   | e stations)                         | network of     |            | transects, no |
|   |                                             |                                     | Reference      |            | Reference     |
|   |                                             |                                     | stations       |            | stations      |
| 4 | Cover mandatory parameters                  |                                     | No             | Mostly Yes | Partially     |
| 5 | Improve                                     | Yes                                 | Yes            | Yes        | Yes           |
|   |                                             | No                                  | Partially      | Partially  | No            |
|   |                                             | No                                  | Partially (not | Partially  | No            |
|   |                                             |                                     | in the sea)    |            |               |
|   |                                             | No                                  | Yes            | Yes        | Yes           |
|   |                                             | No                                  | Partially      | Partially  | Partially     |
|   |                                             | Poor                                | Poor           | Mostly No  | Mostly No     |
|   |                                             | Partially                           | Partially      | Partially  | Partially     |
| 6 | Utilization                                 | of the capacities of all Institutes | No             | No         | No            |
|   | dealing with monitoring in the country (not |                                     |                |            |               |
|   | only those, which are officially nominated  |                                     |                |            |               |
|   | by the Ministries of Environment or others  |                                     |                |            |               |
|   | to implen                                   | nent National Programmes)           |                |            |               |
| 7 | Avoid ove                                   | erlapping of activities and efforts | No             | No         | No            |

**The issue on Capacity building (**regular trainings, bringing best available practices to the country) will be dealt with in **Chapter V**. The **Harmonization** process will be discussed in **Chapter VII**. The status of QA/QC in the field of monitoring is discussed further.

# 4. Procedures of QA/QC in monitoring (Field and Laboratory works)



The regulators in all countries of the region have defined quality control and quality assurance requirements for laboratories involved in marine monitoring programmes. However, the main regulatory requirements that are in place relate to standardization and certification of analytical instruments, but these requirements do not cover procedures and methodologies, which could only be tested through regular participation in internal and external inter-laboratory calibration programs (proficiency testing) in accordance with ISO 17025 and other ISO procedures.

### **BULGARIA**

References of major guiding documents used by IFR-Varna and IO-BAS, Varna, Bulgaria are provided below:

- Alexandrov B. and Korshenko A. 2006. Manual for zooplankton sampling and analysis in the Black Sea Region (Draft), http://www.blacksea-commission.org/
- Cochrane S.K.J., D.W. Connor, P. Nilsson, I. Mitchell, J. Reker, J. Franco, V. Valavanis, S.Moncheva, J. Ekebom, K. Nygaard, R. Serrão Santos, I. Naberhaus, T. Packeiser, W. van de Bund & A.C. Cardoso. 2010. Marine Strategy Framework Directive Task Group 1 Report: Biological diversity. N. Zampoukas [ed]. Luxembourg: Office for Official Publications of the European Communities, 111 pp. EUR 24337 EN Joint Research Centre, EUR Scientific and Technical Research series ISSN 1018-5593, ISBN 978-92-79-15650-2, DOI 10.2788/86653
- Coleman, D., Wiebe, W. 1998. First-ever scientific estimate of total bacteria on Earth shows far greater numbers than ever known before. In Proceedings of the National Academy of Sciences, University of Georgia.
- Dimov, I. 1959. Improved Quantitative Zooplankton Sampling Method. Rep.BAS, vol. 12, no. 5,pp. 427-429.
- Grimes, D.J., Singleton, F.L., Colwell, R.R. 1984. Allogenic succession of marine bacterial communities in response to pharmaceutical waste. J. Appl. Bacteriol. 57: 247-261.
- HITACHI Model U-2001 UV/Vis Spectrophotometer, (1995). Users Manual.
- http://documents.blacksea-commission.org/Downloads/BlackSea-Non Native Species List.pdf
- http://documents.blacksea-commission.org/Downloads/Guidlines-Phytoplankton-QC-QA.pdf
- http://documents.blacksea-commission.org/Downloads/IUCN\_Status\_BS\_states.pdf
- http://documents.blacksea-commission.org/Downloads/Phytoplankton\_%20Mannual-Final-1.pdf
- http://phyto.bss.ibss.org.ua/wiki/List\_checked
- http://www.blacksea-commission.org/ publ-BSFishList.asp
- ICES/HELCOME steering group of quality assurance of biological measurements in the Baltic Sea.ICES SGQAB report, 2005. http://www.ices.dk/reports/ACME/2005/SGQAB05.pdf for macrophytes
- Kogure, K., Simidu, U., Taga, N. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415-420.
- Konsulov, A., Dencheva, K., Petrova-Karadjova, V., Konsulova, T., Moncheva, S., Prodanov, K., Shterev, I., Temniskova-Topalova, D., Velikov, A., Krastev, A., Stojanova, A., Solakov, D., Kamburska, K. (1998). Black Sea Biological Diversity Bulgaria. Bulgarian National Report, GEF, Black Sea Environmental Programme. Black Sea Environmental Series, UN Publ., New York, v. 5, 131 pp.
- Korshenko A., Aleksandrov B., 2009. Manual for zooplankton sampling and analysis in the Black Sea Region.
- Lund, J.W.G., Kipling, C. and Le Cren, E.D. 1958, 'The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting', *Hydrobiologia*, 11, 143–170.
- Marinov, T. (1990). The zoobenthos from the Bulgarian Sector of the Black Sea, Publishing House of the BAS, 195 pp.
- Methodology of hydrochemical research of the ocean, (1978). Nauka, Moscow, 269. (in Russian).
- Moncheva S. 2010. Guidelines for QC/QA of Biological Data-Phytoplankton. 18 pp. Black Sea Commission/UPGRADE BLACK SEA SCENE Project, GA 226592, FP7, EC
- Moncheva S., B. Par. 2005 (updated-2010). Manual for Phytoplankton Sampling and Analysis in the Black Sea. GEF/UNDP Black Sea Ecosystem Recovery Project (BSERP)-RER/01/G33/A/1G/31 & UPGRADE BLACK SEA SCENE Project, GA 226592, FP7, EC, BSC electronic publication. 68 p.
- Moncheva, 2010. An updated and WoRMS revised phytoplankton checklist from studies in Bulgarian Black Sea area- a contribution to Black Sea phytoplankton check-list (published on-line):
- Morduhai-Boltovskii et al. 1968. The identification book of Black and Azov Seas fauna, Naukova Dumka, Kiev, vol. I, II, III.
- Protocols for the joint global ocean flux study (JGOFS) core measurements, (1994). UNESCO, 15-83.
- Tabor, P.S., Neihof, R.A. 1984. Direct determination of activities for microorganisms of Chesapeake Bay populations. Appl. Environ. Microbiol. 48: 1,012-1,019.

- Throndsen, J. 1978, 'Preservation and storage', in A. Sournia (ed) *Phytoplankton Manual*, UNESCO, Paris.
- Todorova V., Konsulova T., 2005. Manual for quantitative sampling and sample treatment of marine soft-bottom macrozoobenthos, 38p.
- UNESCO 1974, A review of methods used for quantitative phytoplankton studies, Final report of SCOR Working Group 33, UNESCO Technical Papers in Marine Science, 18, Paris.
- Utermöhl, H. 1958, 'Zur Vervollkommung der quantitativen Phytoplankton Methodik' (Towards a perfection of quantitative phytoplankton methodology), *Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie*, 9, 1–38.
- Warwick, R. M. 1986. A new method for detecting pollution effects on marine macrobenthick communities, Marine biology, Volume 92, Number 4
- Yankova, M., Raykov, V., Ivanova, P., Meladze, M., Diasamidze, R., Radu, G., Nikolaev, S., Agapov, S., Grinchenko, M., Őztűrk, B., Oral, M., Bat, L., Dűzguneş, E., Slyakhov, V., Boltachov, A., Karpova, E. 2010. Black Sea fish check-list. Black Sea Commission Publication, 58 pp.
- Zubov N. (1957). Oceanological tables. Gidrometeoizdat, Leningrad, 406. (in Russian).

The manuals for phytoplankton (Moncheva, Parr, 2010) and marine soft-bottom macrozoobenthos (Todorova, Konsulova, 2005) are those cited by both institutions as guidance for monitoring and processing of samples. The Reference to the same manuals does not impose the use of same methods. For instance, for phytoplankton the two institutions use different methods of processing of samples and calculation of qualitative parameters (biomass, density), which means that the data are hardly comparable.

**IFR-Varna** has participated in the following inter-calibrations during the last 10 years:

- 09.2004-The methodologies applied for gelatinous zooplankton estimations was agreed between IFR-Varna and University of Bergen, Norway, under the frame of EU FP 5 project EUROGEL.
- 08.2005 Harmonization and intercalibration of methodologies applied in IFR-Varna and NIMRD-Constanta for field estimations of young fish, larvae and eggs distribution and qualitative analysis. Unified methodology has been applied regarding morphology measurements for small pelagics, population parameters estimation, stock assessment, and measures for sustainable utilization.
- 05.2006-The benthos laboratory has participated in the instruction and practical training program leaded by the representatives from the Faculty of Marine Biology to the University of Groningen.
- 06.2006-The benthic and phytoplankton laboratories have participated in the intercalibration procedure, organized by the Basin Directory-Varna.
- 02.2007-The mesozooplankton laboratory have participated in the international inter-calibration of sample analysis procedures, as this calibration includes most of the Black Sea countries.

**IO-BAS, Varna** has participated in the following inter-calibrations during the last 10 years:

- Intercalibaration (phyto- and zooplankton) among the Black Sea countries Institutes UNDP/GEF, 2005;
- Proficiency Test (Analytical performance study for the Black Sea /Bulgaria, Romania, Russia, Ukraine/ on the determination of nutrients in seawater) organized for BSEP by the International Atomic Energy Agency, Marine Environment Laboratory, Monaco, 2006;
- Intercalibaration (phyto- and zooplankton, chemistry) among the Black Sea countries Institutes (without Turkey and Georgia) Project SESAME, 2009;
- JRC/EC intercalibration for BQE (phytoplankton, zoobenthos, macrophytobenthos) 2012, WFD.

**IBER-BAS** has specified a single guideline document in QA/QC for monitoring:

Korshenko, A., Denga, Y., Lisovsky, R., Gavrilova, T., Velikova, V., Zodiatis, G., Iona, S. (2011). Quality Assurance and Quality Control of Chemical Oceanographic Data Collections (Regional Procedure for QA/QC)<sup>116</sup>.

No inter-calibrations have been specified by IBER-BAS, Bulgaria.

<sup>&</sup>lt;sup>116</sup> This Guideline has been recently updated and is still under further development. Its last draft version is cited as: Korshenko, A., Denga, Y., Velikova, V. (2012). Quality Assurance and Quality Control of Chemical Oceanographic Data Collections (Regional Procedure for QA/QC). When finalised it will be electronically published on the webpage of the BSC.

### **ROMANIA**

The issue of QA/QC in monitoring is well attended in Romania as reported by the stakeholders contacted.

Table 59. Radionuclides QA/QC documents used by the Environmental Protection Agency of Constanta, Romania

| N  | Title of Document                                             | dd.mm.yy   |
|----|---------------------------------------------------------------|------------|
| 1. | The sampling, processing, measurement and calculation of      | 01/05.2007 |
|    | global beta activity of water samples -PL-004                 |            |
| 2. | ISO 9697:2008 –Determination of global beta activity of water | 2008       |
|    | samples                                                       |            |
| 3. | The sampling and processing water samples for measuring       | 01/05/2006 |
|    | gamma spectrometry - PL- 010                                  |            |
| 4. | ISO 10703: 2007 -Determination of specific activity of        | 2007       |
|    | radionuclides in water by high resolution gamma spectrometry  |            |
| 5. | S505QA Software Genie                                         |            |

Note: The Software Genie was reported by the Environment Protection Agency of Constanta, no explanation on it has been provided.

### Environmental Protection Agency of Constanta - Radionuclides proficiency tests

- Intercomparison Exercise IAEA<sup>117</sup>-437 Radionuclides in Mediterranean Mussel;
- IAEA-CU-2007-03 World-wild open proficiency test;
- IAEA-2008-03 proficiency test on the determination of natural radionuclides in phosphogypsum and spiked water;
- IAEA-CU-2009-03 World-wild open proficiency test;
- IAEA-CU-2010-03 World-wild open proficiency test on the determination of natural radionuclides in water and Ra-226 in soil;
- EC interlaboratory comparison on 90Sr, 137Cs and 40K in bilberry powder;
- IAEA-TEL-2011-03 World-wild open proficiency test.

Note: Frequency of participation in testing/international exercises is usually annual.

Bathing water monitoring proficiency tests of Constanta and Tulcea County Departments of Public Health (Romania) take place as follow. Once per year, 3 samples are collected for "Drinking Water Microbiology" according to the same ISO references standards - for Coliforms, E.coli and Enterococci – with LIVMEDLS WERKET SUEDIA. Participation to these proficiency tests since 2005.

List of Guiding documents in **environment monitoring** of GeoEcoMar and NIMRD is presented below (**Note:** only a couple of manuals repeat those pointed as used in Bulgaria, and they are the manuals developed for phytoplankton (Moncheva, Parr, 2010; Moncheva, 2010) and zooplankton (Alexandrov, Korshenko, 2009 (draft)): developed under the hat of the BSC and with the financial assistance of projects (BSERP/UNDP/GEF and Upgrade BS Scene/EC FP7).

- Bacescu M., 1951 Cumacea. Crustacea. Fauna RSR. IV, Fasc. 1. Ed. Academiei RSR, 91pp.
- Bacescu M., 1954 Mysidacea. Crustacea. Fauna RSR. IV, Fasc. 3. Ed. Academiei RSR, 124 pp.
- Bacescu M., Muller G. I., Gomoiu M.-T., 1971 Researches of benthic ecology in the Black Sea. Quantitative, qualitative and comparative analyses of the Pontic benthal fauna. Ecologie marina, 4, Ed. Academia Romana, Bucharest, 357 pp.
- Biovolumes and size classes of phytoplankton in the Baltic Sea 2006. HELCOM. Baltic Sea Environment Proceedings, No. 106. 142 pp.

<sup>117</sup> IAEA- International Atomic Energy Agency, http://www.iaea.org/

- Report of the third ICES/HELCOM Workshop on quality assurance of Biological measurements Warnemunde, Germany, 1996.
- Clarke K. R. and Warwick R. M., 1994 Changes in marine communities: an approach to statistical analysis and interpretation. Natural Environmental Research Council, Plymouth.
- EA-4/16:2003 (RO) EA Guidelines on the expression of uncertainty in quantitative testing.
- Fauvel P., 1923 Polychaetes errantes. Fauna de France. Vol. 5. Paris.
- Fauvel P., 1927 Polychaetes sedenteires. Fauna de France. Vol. 16. Paris.
- Ghid ISO/CEI 2:1996 Termenii generali şi definiţiile lor privind standardizarea şi activităţile conexe. ISO/CEI Guide 2:1996 "General terms and their definitions concerning standardization and related activities".
- Guide EURACHEM/ CITAC, edition 2 1999 Quantifying of uncertainty in analytical measurements.
- Holme N. A. and McIntryre A., 1984 Methods for the Study of Marine Benthos. Oxford, 387 pp.
- IAEA MEL, Monaco, 1999. Proceduri standard de laborator pentru determinarea metalelor grele "Standard laboratory procedures for determination of heavy metals".
- IAEA, 1995. Manual pentru analizele geochimice ale sedimentelor marine şi a suspensiilor. Metode de referintă pentru studiul poluării marine nr.63 NEP/FAO/IOC. "Manual for geochemical analysis of marine sediments and suspensions. Reference methods for marine pollution study no.63 NEP/FAO/IOC".
- ICES 2004 Report of the ICES/OSPAR Steering Group on Quality Assurance of Biological Measurements in the Baltic Sea. 59 pp.
- ICES 2005 Report of the ICES/OSPAR Steering Group on Quality Assurance of Biological Measurements in the Northeast Atlantic. 59 pp.
- ICES Zooplankton Manual, Eds: R. Harris, P. H. Wiebe, J. Lenz, H-R. Skjoldal and M. Huntley, Academic Press, 2000.
- ILAC-G17:2002 (RO) Introducing the Concept of Uncertainty of Measurement in Testing in Association with the Application of ISO / IEC 17025.
- ISO 16665:2005 (E). Water quality Guidelines for quantitative sampling and sample processing of marine soft-bottom macrofauna.
- Korshenko A., Alexandrov B., 2009 (draft) Manual for zooplankton sampling and analyses in the Black Sea Region.
- Manual for Marine Monitoring in the COMBINE Programme of HELCOM 2003. Part C. Programme for monitoring of eutrophication and its effects. Annex C-8 Soft bottom macrozoobenthos. http://sea.helcom.fi/Monas/CombineManual2/PartC/CFrame.htm
- Manual for Marine Monitoring in the COMBINE Programme of HELCOM. Annex C-6. Phytoplankton species composition, abundance and biomass. 21 pp.
- Manual for Marine Monitoring in the COMBINE Programme of HELCOM. Annex C-7. Mesozooplankton.
- Manualul pentru analiza apei de mare "Methods of Seawater Analysis", GRASSHOFF, 1999.
- Method EPA 3051, 1992 "Microwave acid digestion of sediments, sludge and soil. Physicochemical testing of solid waste" SW-846, 3<sup>rd</sup> Ed., US EPA.
- Metode chimice standard pentru monitorizarea mediului "Standard chemicals methods for marine environmental monitoring", UNESCO, 1983.
- Metode chimice standard pentru monitorizarea mediului marin "Standard chemical methods for marine environmental monitoring", UNEP, 1988.
- Milchakova N., 2011 Marine plants of the Black Sea. An illustrated field guide, 144.
- Moncheva, 2010 Guidelines for Quality Control of Biological Data Phytoplankton, UPGRADE BLACK SEA SCENE, 18 pp.
- Morduhai-Boltovskii et all., 1968 The identification book of Black and Azov Seas fauna. Naukova Dumka, Kiev, vol. I, II, III.
- Morduhai-Boltovskii F. D., 1968; 1969; 1972 Opredeliteli fauni Chernogo i Azovskogo morey, Naukova Dumka, Vol. I, II, III.
- NOAA Memorandum Tehnic NOS ORCA 130, 1998. Prelevare si metode analitice in cadrul programului national de stare si tendinte "Mussel Watch" 1993-1996 (233 pp).
- NOAA Technical Memorandum NOS ORCA 130, 1998 "Sampling and analytical methods in the national program status and trends "Mussel Watch 1993-1996 (233 pp)"

- Procedures Estimation of uncertainty test, control and traceability of sampling, handling of testing objects, reporting test results, quality assurance testing and interlaboratory comparisons, control test equipment, measurement traceability, Methods validation, Uncertainty estimation.
- Quality manual for Laboratory of Measurement and Analysis, NIMRD "Grigore Antipa"
- Quevauviller, Maier and Griepink Eds., 1995, Quality assurance for environmental analysis
- Sava D., 2006 Algele macrofite de la Littoralul romanesc. Ghid ilustrat, 147 pp. "The macrophytes from the Romanian Coast. An illustrated field guide, 147 pp."
- Sava D., 2006 Lucrari practice de botanica sistematica Partea 1, 140 pp. "Practical work of systematic botany", First part, 140 pp.
- SR 13251:1996 International vocabulary of basic and general terms in metrology
- SR 13434:1999 Guidelines for evaluating and expressing measurement uncertainty.
- SR EN ISO 9001: 2008 Sisteme de management a calității. "Quality management systems".
- SR EN ISO/CEI 17025: 2005 Cerințe generale pentru competența laboratoarelor de încercări şi etalonări. "General requirements for competence of testing and calibration".
- Todorova V., Konsulova T., 2005 Manual for quantitative sampling and sample treatment of marine soft-bottom macrozoobenthos.
- Training manual on measuring organochlorine compounds and petroleum hydrocarbons in environmental samples, IAEA-MEL/Marine Environmental Studies Laboratory, September 1995."
- Tratat de algologie eds. Peterfi S. and Ionescu A., vol. 2, 3. "Treaty algologie"

### Dobrogea Littoral specified QA/QC under SR ENISO 17025:2005. www.renar.ro.

**SC AQUASERV SA** specified own procedures for QA/QC for monitoring of physical-chemical parameters, and also listed the following guiding documents:

ISO 9001:2008 - Quality Management System Certification

ISO 14001:2005 - Environmental Management System Certification

OHSAS 18001:2007 - Certification Management System Safety Management of Health and occupational safety

ISO 28000:2005 - Food Safety Management System

ISO 27001:2005 - Certified Information Security Management System

The private company **OMV Petrom SA** (oil and gas exploitation) works with accredited laboratories specified as follow:

- SRAC laboratory accredited to ISO 9001:2008 for quality assurance
- DAC accredited laboratory to ISO 17025: 2005 for sampling water, soil and gas
- DAC accredited to ISO 17025: 2005 for determination of water, soil and gas

**SRAC** is the Romanian certification body with the largest recognition of the marks and certificates nationwide.

**DAC** (Dubai Accreditation Department, http://www.dac.dm.ae) provides the following Accreditation services to all types of conformity assessment bodies including laboratories (testing, calibration, medical), inspection bodies and certification bodies:

- Proficiency testing programs for laboratories.
- Trainings to staff of conformity assessment bodies on various accreditation related subjects.
- Mandatory registration services to all types of conformity assessment bodies including laboratories (testing, calibration), inspection bodies and certification bodies.

Proficiency tests in environment monitoring undertaken in Romania are specified below. The intercalibrations in hydrobiology of NIMRD are those in which IO-BAS, Bulgaria has also participated.

Table 60. Proficiency tests in Romania

| N  | Name of organization | Proficiency tests in               | Proficiency tests in               |
|----|----------------------|------------------------------------|------------------------------------|
|    |                      | hydrochemistry                     | hydrobiology                       |
| 1. | GeoEcoMar            | IAEA-0140 (1997), IAEA-407 (2003), |                                    |
|    |                      | IAEA-433 (2004), IAEA-436 (2006),  |                                    |
|    |                      | IAEA-158 (2008), IAEA-457 (2011)   |                                    |
| 2. | NIMRD                | QUASIMEME, IAEA-MEL annually.      | Intercalibration (phyto and        |
|    |                      |                                    | zooplankton) among the Black       |
|    |                      |                                    | Sea countries Institutes -         |
|    |                      |                                    | UNDP/GEF, 2005                     |
|    |                      |                                    | Intercalibration (phyto and        |
|    |                      |                                    | zooplankton, chemistry)            |
|    |                      |                                    | among the Black Sea countries      |
|    |                      |                                    | Institutes (without Turkey and     |
|    |                      |                                    | Georgia) – Project SESAME,<br>2009 |
|    |                      |                                    | JRC/EC intercalibration for        |
|    |                      |                                    | BQE (phytoplankton,                |
|    |                      |                                    | zoobenthos,                        |
|    |                      |                                    | macrophytobenthos) 2012,           |
|    |                      |                                    | WFD                                |
| 3. | National             | Since 1997, 4 times / year QUALCO  |                                    |
|    | Administration       | - VITUCI BUDAPEST program (in the  |                                    |
|    | "Dobrogea Littoral"  | org. ICPDR) and once / year        |                                    |
|    |                      | organized by the National Testing  |                                    |
|    |                      | Laboratory of the National         |                                    |
|    |                      | Administration Romanian Waters     |                                    |
|    |                      | National Bucharest                 |                                    |
| 4. | SC AQUASERV SA       | Quarterly testing and daily checks |                                    |
|    |                      | are made with Local Public Health  |                                    |

Note: Needs in wider participation in intercalibration exercises is specified by GeoEcoMar.

### **TURKEY**

The Ministry of Environment and Urbanization has specified the following policy documents: Regulation on Qualifying Environmental Measurements and Analytical Labratories (published on 05.09.2008 in 26988 Official Gazette); Regulation on Control of Water Pollution Communique on Sampling and Analystical Methods (published on 10.10.2009 in 27372 Official Gazette).

The rest of the contacted organizations have informed on the following:

Table 61. Monitoring QC/QA manuals/guidelines in Turkey

| N  | Name of organization                                            | QA/QC Manuals/Guidelines                                            |
|----|-----------------------------------------------------------------|---------------------------------------------------------------------|
| 1. | Ondokuz Mayis University (Samsun)                               | Not specified                                                       |
| 2. | Ataturk University (Erzerum)                                    | Not specified                                                       |
| 3. | Canakkale Onsekiz Mart University                               | Not specified                                                       |
| 4. | Institute of Marine Science and Technology (Izmir)              | Not specified                                                       |
| 5. | Central Fisheries Research Institute (Trabzon)                  | Standard methods for examination of water and wastewater, ISO 17025 |
| 6. | Istanbul University, Institute of Marine Science and Management | Standard methods                                                    |
| 7. | Sinop University, Faculty of Fishery                            | Not specified                                                       |
| 8. | TUBITAK – the Marmara Research Center                           | All external and internal                                           |
|    |                                                                 | QA/QC procedures and                                                |
|    |                                                                 | Standard methods for                                                |
|    |                                                                 | examination of water and                                            |
|    |                                                                 | wastewater (2005) and ISO                                           |
|    |                                                                 | 17025 are applied.TS EN                                             |
|    |                                                                 | ISO/IEC 17025 "general                                              |
|    |                                                                 | requirements for the                                                |
|    |                                                                 | competence of testing and                                           |
|    |                                                                 | calibration laboratories are                                        |
|    |                                                                 | conducted.)                                                         |
| 9. | IMS/METU (Erdemli)                                              | Not specified                                                       |

Table 62. Proficiency tests in Turkey

| N  | Name of organization                     | Proficiency tests in      | Proficiency tests in             |
|----|------------------------------------------|---------------------------|----------------------------------|
|    |                                          | hydrochemistry            | hydrobiology                     |
| 1. | Ondokuz Mayis University(Samsun)         | No                        |                                  |
| 2. | Ataturk University (Erzurum)             | No                        |                                  |
| 3. | Canakkale Onsekiz Mart University        | No                        |                                  |
| 4. | Institute of Marine Science and          | Intercalibration          |                                  |
|    | Technology (Izmir)                       | exercises organized by    |                                  |
|    |                                          | IAEA-Monaco               |                                  |
| 5. | Central Fisheries Research Institute     | No                        | FAPAS <sup>118</sup> /First time |
|    | (Trabzon)                                |                           | in 2012                          |
|    |                                          |                           | CRM/intercalibration             |
|    |                                          |                           | S                                |
| 6. | Istanbul University, Institute of Marine | Quasimeme (annually       |                                  |
|    | Science and Management <sup>119</sup>    | since 2006, incl for Chl) |                                  |
| 7. | Sinop University, Faculty of Fishery     | No                        | No                               |
| 8. | TUBITAK –Marmara Research Center         | External: IAEA/MEL        |                                  |
|    |                                          | intercalibration (less    |                                  |
|    |                                          | frequently),              |                                  |
|    |                                          | QUASIMEME (since          |                                  |
|    |                                          | 2007 once or twice per    |                                  |
|    |                                          | year for nutrients and    |                                  |
|    |                                          | DOC and only once in      |                                  |
|    |                                          | 2008 for chl), accredited |                                  |
|    |                                          | lab procedures applied    |                                  |
|    |                                          | Internal: Accredited lab  |                                  |
|    |                                          | control procedures        |                                  |
|    |                                          | applied                   |                                  |
| 9. | IMS/METU (Erdemli)                       | Quasimeme and IAEA        |                                  |
|    |                                          | (annually)                |                                  |

To conclude on QA/QC in the field of monitoring and laboratory work. QA/QC in monitoring is well advanced in BG and RO. However, a few common guidelines are used in BG and RO in conducting monitoring. In TR the issue is either not paid due attention in all Institutions or the stakeholders insufficiently reflected their efforts.

Proficiency tests in the field of chemistry (limited list of parameters though) are carried out on a relatively regular basis in all beneficiary countries, but not the case for the biological monitoring. In the latter, insufficient number of inter-calibration exercises have been organised by different projects only (e.g. phytoplankton and zooplankton) at the national and regional level.

In the frames of the BSC, only a nutrients and trace metals monitoring has been discussed so that to make sure that the data obtained are of equal quality and comparable. QUASIMEME exercises include only nutrients, trace metals and PAHs in sediments and/or water, and Chlorophyll-a.

None of the stakeholders has mentioned Guidelines in the field of Marine Litter monitoring. The UNEP/IOC Guidelines on Survey and Monitoring of ML (2009)<sup>120</sup> has been recommended by the BSC for use in the Black Sea states, however, neither this kind of monitoring is well attended, nor is quality control ensured.

<sup>119</sup> The laboratory has ISO 17025 accreditation.

<sup>&</sup>lt;sup>118</sup> Proficiency tests for water analysis.

<sup>&</sup>lt;sup>120</sup> Cheshire, A.Ć., Adler, E., Barbière, J., Cohen, Y., Evans, S., Jarayabhand, S., Jeftic, L., Jung, R.T., Kinsey, S., Kusui, E.T., Lavine, I., Manyara, P., Oosterbaan, L., Pereira, M.A., Sheavly, S., Tkalin, A., Varadarajan, S., Wenneker, B., Westphalen, G. (2009). *UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter*. UNEP Regional Seas Reports and Studies, No. 186; IOC Technical Series No. 83: xii + 120 pp.



Reporting of data (not assessments) has been indicated by the stakeholders contacted, however, no formats have been specified with a few exceptions. Obviously, the reporting is mostly organized through Excel sheets sent by e-mail, but not through on-line data bases. The reporting to international organizations, such as BSC, EEA, and UNEP/FAO is in Formats developed by these organizations. Usually, all EC FP7, EC DG Env, EC DG Mare, etc. projects develop their own formats as well. And the Institutions reporting use them. Most famous are the formats of the projects SeaDataNet (shared with Black Sea Scene and UpgradeBlackSeaScene), EmodNET, SESAME (shared with PERSEUS), etc. Information on the quoted projects here is given in the sub-chapter I.7. Thus, in the Tables below (63 - 65), the phrase 'As per project' means that the organization submittes data to the data base created by the project, using the project's formats.

Table 63. Information on data reporting in Bulgaria

| Type of                                           | Reporting         | To whom the data are reported                                         |                                                |                                                                                                       |  |  |  |  |  |  |
|---------------------------------------------------|-------------------|-----------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| data<br>reported                                  | organization      | Name of organization                                                  | Postal address/webpage                         | Contact person (address, tel/ fax, e-mail)                                                            |  |  |  |  |  |  |
| Environme<br>ntal<br>(BSIMAP<br>related)          | MOEW              | Black Sea<br>Commission                                               | www.blacksea-<br>commission.org                | Secretariat                                                                                           |  |  |  |  |  |  |
| Environme<br>ntal<br>(Danube<br>River<br>related) |                   | ICPDR                                                                 | www.icpdr.org                                  | Secretariat                                                                                           |  |  |  |  |  |  |
| Environme<br>ntal (WFD<br>and MSFD<br>related)    |                   | WISE&WISE<br>Marine                                                   | www.eea.europa.eu                              | European Environment<br>Agency                                                                        |  |  |  |  |  |  |
| Fishery<br>data                                   | NAFA              | European Commission DG Maritime Affairs and Fisheries JRC             | J99- 05/1s, B-1049<br>Brussels                 | Not specified                                                                                         |  |  |  |  |  |  |
| Environme<br>ntal data                            | IFR-Varna         | Agricultural<br>Academy                                               | Str. Suhodolska 30,<br>Sofia, 1373             | Not specified                                                                                         |  |  |  |  |  |  |
| (chemistry,<br>biology,<br>fishery)               |                   | To EC DG Research in the frames of FP Projects                        | Upgrade BS Scene<br>(www.blackseascene.<br>ne) | Not specified                                                                                         |  |  |  |  |  |  |
| Environme<br>ntal data<br>(hydrology,<br>geology, | IO-BAS,<br>Varna  | Ministry of<br>Environment and<br>water,-BSBD                         | Alexander Diakovich<br>str. 33 , Varna, 9000   | Ventzislav Nikolov<br>Phone/fax: +359 52<br>631447<br>e-mail:                                         |  |  |  |  |  |  |
| chemistry,<br>biology,<br>fishery)                |                   | Ministry of Agriculture /National Agency of Fisheries and Aquaculture | Hristo Botev str., 17<br>Sofia, 1606           | Dr. Dragomir<br>Gospodinov<br>+359 2 80 51 666;<br>+359 2 80 51 674<br>office@iara.governmen<br>t.bg; |  |  |  |  |  |  |
|                                                   |                   | Black Sea<br>Commission                                               | www.blacksea-<br>commission.org                | Secretariat,<br>secretariat@blacksea-<br>commission.org                                               |  |  |  |  |  |  |
|                                                   |                   | To EC DG Research in the frames of FP Projects                        | As per project                                 | As per project                                                                                        |  |  |  |  |  |  |
|                                                   |                   | JRC – EC                                                              | As per project, GIG<br>Black Sea               | As per Project, GIG<br>Black Sea                                                                      |  |  |  |  |  |  |
| Environme<br>ntal data<br>(chemistry,<br>biology) | IBER-BAS          | To EC DG Research in the frames of FP Projects                        | As per project                                 | As per project                                                                                        |  |  |  |  |  |  |
| Socio-<br>economy                                 | BS NGO<br>Network | As per projects                                                       |                                                |                                                                                                       |  |  |  |  |  |  |

**IBER-BAS** has specified no reporting to any organization. However, they also report data to Projects, to BAS annual reports with achievements, publish papers etc. There is no data reporting to Ministry of Education the same, IBER-BAS, as mentioned already, are not officially part of the national monitoring program for the Black Sea (only for inland waters and terrestrial).

The data flow system of NAFA is visualised below:

# **DATA FLOW SCHEME**

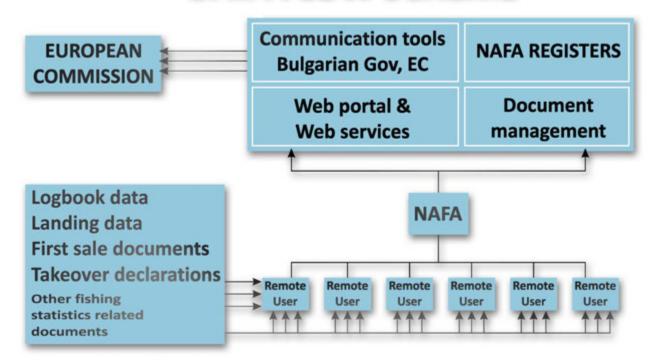



Figure 22. Data flow system of NAFA

#### **ROMANIA**

Table 64. Information on data reporting in Romania

| Type of data  | Reporting     | To whom the data    | To whom the data are reported |                               |  |  |  |  |  |  |  |
|---------------|---------------|---------------------|-------------------------------|-------------------------------|--|--|--|--|--|--|--|
| reported      | organization  | Name of             | Postal                        | Contact person (address,      |  |  |  |  |  |  |  |
|               |               | organization        | address/webpage               | tel/fax, e-mail)              |  |  |  |  |  |  |  |
| Bathing water | Constanta and | Ministry of         | Intr. Cristian                | Dr. Adriana Cârlan            |  |  |  |  |  |  |  |
| monitoring    | Tulcea County | Health,             | Popişteanu, No. 1-3,          | St. Cristian Popisteanu, no.  |  |  |  |  |  |  |  |
| data          | Departments   | Department for      | sector 1, Cod                 | 1-3, 010024, Bucuresti        |  |  |  |  |  |  |  |
|               | of Public     | Public Health and   | 010024, Bucharest             | Phone: 0040 21 3072667        |  |  |  |  |  |  |  |
|               | Health        | Public Health       | Web:                          | Fax: 004021 3031452           |  |  |  |  |  |  |  |
|               |               | Control             | http://www.ms.gov.ro          | Email:                        |  |  |  |  |  |  |  |
|               |               |                     |                               | adriana.carlan@ms.ro          |  |  |  |  |  |  |  |
|               |               | Public Health       | St. Dr. Leonte                | Dr. Anca Tudor                |  |  |  |  |  |  |  |
|               |               | Institute           | Anastasievici No.1-3,         | St. Dr. A. Leonte, no. 1-3,   |  |  |  |  |  |  |  |
|               |               | Bucharest           | Sector 5, Bucharest           | 050483, Bucuresti             |  |  |  |  |  |  |  |
|               |               | (National           | Web:                          | Phone: 004021 3183620         |  |  |  |  |  |  |  |
|               |               | Institute of Public | http://www.insp.gov           | Fax: 004021 3123429           |  |  |  |  |  |  |  |
|               |               | Health)             | .ro                           | Phone: 00 40 21 3183620       |  |  |  |  |  |  |  |
|               |               |                     |                               | Email:                        |  |  |  |  |  |  |  |
|               |               |                     |                               | anca.tudor@insp.gov.ro        |  |  |  |  |  |  |  |
|               |               |                     |                               | Email:                        |  |  |  |  |  |  |  |
|               |               |                     |                               | directie.generala@insp.gov.ro |  |  |  |  |  |  |  |

| Type of data                                                                                   | Reporting                                                  | To whom the data are reported                                          |                                                                                        |                                                                                                                                                                     |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| reported                                                                                       | organization                                               | Name of                                                                | Postal                                                                                 | Contact person (address,                                                                                                                                            |  |  |  |  |  |  |
| D 1: 1:1                                                                                       |                                                            | organization                                                           | address/webpage                                                                        | tel/fax, e-mail)                                                                                                                                                    |  |  |  |  |  |  |
| Radionuclides<br>monitoring<br>data                                                            | Environment Protection Agency of Constanta                 | National Environmental Protection Agency (Bucharest)                   | Splaiul Independentei No. 294, Sector 6, Bucharest, Code 060031 Web: http://www.anpm.r | Elena Simion Splaiul Independentei No. 294, Sector 6, Bucharest, code 060031, Phone: 00 40 21 2071117 Fax: 00 40 21 2071129 Email: Irm@anpm.ro elena.simion@anpm.ro |  |  |  |  |  |  |
|                                                                                                |                                                            | Regional<br>Environmental<br>Protection<br>Agency Galati               | St. Regimentul 11 Siret, No. 2, Galaţi, Code 800322 Web: http://arpmgl.anpm. ro        | Phone: 00 40 236 460049 Fax: 00 40 236 471009 E-mail: office@arpmgl.anpm.ro                                                                                         |  |  |  |  |  |  |
| Environmental<br>data<br>(chemistry,<br>biology)<br>collected<br>during drilling<br>operations | ExxonMobil<br>(through<br>NIMRD)                           | Environment<br>Protection<br>Agency of<br>Constanta                    | Unirii Str, No. 23,<br>Constanta, Romania<br>Web:<br>http://apmct.anpm.r               | Monitorig/compliance<br>Department                                                                                                                                  |  |  |  |  |  |  |
| Not specified                                                                                  | S.C. Thermo-<br>electric factory<br>Midia S.A.             | Water Basin<br>Administration<br>"Dobrogea-<br>Littoral",<br>Constanta |                                                                                        |                                                                                                                                                                     |  |  |  |  |  |  |
|                                                                                                |                                                            | Environmental<br>Protection<br>Agency<br>Constanta                     | Unirii Road, no. 23,<br>Constanta, Romania<br>apmct.anpm.ro                            | Monitoring/compliance<br>Department                                                                                                                                 |  |  |  |  |  |  |
| Statistical on<br>the flow of<br>tourists                                                      | National Institute for Research and Development in Tourism | Ministry of<br>Regional<br>Development<br>and Tourism                  |                                                                                        |                                                                                                                                                                     |  |  |  |  |  |  |
| Environmental data (chemistry) collected in the Constanta Port                                 | National<br>Company<br>Maritime Ports<br>Administration    | Water Basin Administration "Dobrogea- Littoral", Constanta             |                                                                                        |                                                                                                                                                                     |  |  |  |  |  |  |
|                                                                                                |                                                            | Environmental<br>Protection<br>Agency<br>Constanta                     | Unirii Road, no. 23,<br>Constanta, Romania<br>apmct.anpm.ro                            |                                                                                                                                                                     |  |  |  |  |  |  |
| Marine litter,<br>dolphins                                                                     | Mare Nostrum<br>NGO                                        | To the funders/donors depending on the type of project implemented     |                                                                                        |                                                                                                                                                                     |  |  |  |  |  |  |
| Environmental<br>data (geology,<br>chemistry,<br>biology)                                      | GeoEcoMar                                                  | As per project                                                         |                                                                                        |                                                                                                                                                                     |  |  |  |  |  |  |

| Type of data              | Reporting         | To whom the data are reported     |                                            |                                  |  |  |  |  |  |
|---------------------------|-------------------|-----------------------------------|--------------------------------------------|----------------------------------|--|--|--|--|--|
| reported                  | organization      | Name of                           | Postal                                     | Contact person (address,         |  |  |  |  |  |
|                           |                   | organization                      | address/webpage                            | tel/fax, e-mail)                 |  |  |  |  |  |
| Environmental             | NIMRD             | Ministry of                       |                                            |                                  |  |  |  |  |  |
| data                      |                   | Environment and                   |                                            |                                  |  |  |  |  |  |
| (chemistry,               |                   | Forests                           |                                            |                                  |  |  |  |  |  |
| biology, fishery,         |                   | Black Sea                         | www.blacksea-                              | Permanent Secretariat            |  |  |  |  |  |
| sedimentology)            |                   | Commission                        | commission.org                             | secretariat@blacksea-            |  |  |  |  |  |
|                           |                   | (Excel template)  National Agency | http://www.anpa.ro                         | commission.org Constantin Stroie |  |  |  |  |  |
|                           |                   | for Fisheries and                 | Tittp://www.alipa.io                       | constantin.stroie@anpa.ro        |  |  |  |  |  |
|                           |                   | Aquaculture                       |                                            | constantini.stroic@anpa.ro       |  |  |  |  |  |
|                           |                   | (NAFA)                            |                                            |                                  |  |  |  |  |  |
|                           |                   | National Agency                   |                                            |                                  |  |  |  |  |  |
|                           |                   | Romanian                          |                                            |                                  |  |  |  |  |  |
|                           |                   | Waters (Excel                     |                                            |                                  |  |  |  |  |  |
|                           |                   | template)                         |                                            |                                  |  |  |  |  |  |
|                           |                   | DG MARE –                         | http://ec.europa.eu/                       | Antonio Cervantes                |  |  |  |  |  |
|                           |                   | European                          | dgs/maritimeaffairs_                       | Antonio.cervantes@ec.eur         |  |  |  |  |  |
|                           |                   | Commission                        | fisheries/index_en.h                       | opa.eu                           |  |  |  |  |  |
|                           |                   | ,                                 | tm                                         |                                  |  |  |  |  |  |
|                           |                   | EEA/ WISE-                        | www.eea.europa.eu                          |                                  |  |  |  |  |  |
|                           |                   | EIONET (Excel                     |                                            |                                  |  |  |  |  |  |
|                           |                   | template) <sup>121</sup>          |                                            |                                  |  |  |  |  |  |
| Fishery data              | NAFA              | As per project DG MARE –          | http://ec.europa.eu/                       | Antonio Cervantes                |  |  |  |  |  |
| 1 isrici y data           | INGLA             | European                          | dgs/maritimeaffairs                        | Antonio cervantes@ec.eur         |  |  |  |  |  |
|                           |                   | Commission                        | fisheries/index_en.h                       | opa.eu                           |  |  |  |  |  |
|                           |                   |                                   | tm                                         |                                  |  |  |  |  |  |
| Environmental             | Dobrogea          | AN "Romanian                      | Str. Edgar Quinet no.                      |                                  |  |  |  |  |  |
| (hydrochemistr            | Littoral          | Waters"                           | 6, sector 1, code                          | Phone: 00 40 21 3110146          |  |  |  |  |  |
| y and                     |                   | Bucharest                         | 010018, Bucurest.                          | Fax: 00 40 21 3122174            |  |  |  |  |  |
| hydrobiology)             |                   | (through ARQ                      | Web:                                       |                                  |  |  |  |  |  |
|                           |                   | Program)                          | http://www.rowater                         |                                  |  |  |  |  |  |
|                           | CC A QUIA CERV    | B 11: 11 11                       | .ro                                        |                                  |  |  |  |  |  |
| Danube water              | SC AQUASERV<br>SA | Public Health<br>Tulcea           | Tulcea, Future Street no.50, County Tulcea |                                  |  |  |  |  |  |
| chemistry,<br>waste water | SA                | Tuicea                            | 110.50, County Tuicea                      |                                  |  |  |  |  |  |
| discharges                |                   | Romanian                          | Constanta,                                 |                                  |  |  |  |  |  |
| discharges                |                   | Waters National                   | str.Mircea cel                             |                                  |  |  |  |  |  |
|                           |                   | Administration                    | Batran, no.127, jud.                       |                                  |  |  |  |  |  |
|                           |                   |                                   | Constanta                                  |                                  |  |  |  |  |  |
| Contaminants              | OMV Petrom        | Environmental                     | Constanta, Str. Unirii                     | Phone: 00 40 241 546696          |  |  |  |  |  |
|                           | SA                | Protection                        | No. 23                                     | Fax: 00 40 241 543717            |  |  |  |  |  |
|                           |                   | Agency                            |                                            |                                  |  |  |  |  |  |
|                           |                   | Constanta                         |                                            | DI 00 10 211                     |  |  |  |  |  |
|                           |                   | National Guard                    | Constanta, B-dul                           | Phone: 00 40 241 698555          |  |  |  |  |  |
|                           |                   | environmental -<br>Constanta      | Mamaia No. 300                             | Fax: 00 40 241 690990            |  |  |  |  |  |
|                           |                   | County                            |                                            |                                  |  |  |  |  |  |
|                           |                   | Commissioner                      |                                            |                                  |  |  |  |  |  |
|                           |                   | Administration                    | Constanta, Str.                            | Phone.: 00 40 241 673036         |  |  |  |  |  |
|                           |                   | water basin -                     | Mircea cel Batran                          | Fax: 00 40 241 673025            |  |  |  |  |  |
|                           |                   | Dogrogea -                        | No. 127                                    |                                  |  |  |  |  |  |
|                           |                   | Seaside                           |                                            |                                  |  |  |  |  |  |
| Noise and                 | Constanta         | General Staff of                  |                                            |                                  |  |  |  |  |  |
| salinity                  | Maritime          | Naval Forces                      |                                            |                                  |  |  |  |  |  |
|                           | Hydrographic      |                                   |                                            |                                  |  |  |  |  |  |
|                           | Directorate       |                                   |                                            |                                  |  |  |  |  |  |

<sup>121</sup> EIONET Central Data Repository (CDR) (cdr.eionet.europa.eu/ro/eea/me1)

No data reporting has been specified by the Ataturk University and Canakkale Onsekiz Mart University.

Table 65. Information on data reporting in Turkey

| Type of data                                             | Reporting                                                           | To whom the data are reported                                                                          |                                                                                                                                                      |                                                                                                                                                                                             |  |  |  |  |  |  |
|----------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| reported                                                 | organization                                                        | Name of                                                                                                | Postal                                                                                                                                               | Contact person (address,                                                                                                                                                                    |  |  |  |  |  |  |
|                                                          |                                                                     | organization                                                                                           | address/webpage                                                                                                                                      | tel/fax, e-mail)                                                                                                                                                                            |  |  |  |  |  |  |
| Hydrochemis try, biology,                                | Ministry of<br>Environment                                          | BSC                                                                                                    | www.blacksea-<br>commission.org                                                                                                                      |                                                                                                                                                                                             |  |  |  |  |  |  |
| fishery,<br>microbiology                                 | and<br>Urbanization                                                 | EEA                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                             |  |  |  |  |  |  |
| Pollution                                                | Ondokuz<br>Mayis<br>University                                      | See the Note below<br>this Table                                                                       |                                                                                                                                                      |                                                                                                                                                                                             |  |  |  |  |  |  |
| Hydrochemis                                              | Institute of                                                        | TUBITAK                                                                                                | Ankara/Turkey                                                                                                                                        |                                                                                                                                                                                             |  |  |  |  |  |  |
| try                                                      | Marine                                                              | IBES                                                                                                   | Brussels/Belgium                                                                                                                                     |                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                          | Science and<br>Technology,<br>Izmir                                 | EC DG Research in<br>the frames of FP<br>Projects                                                      | e.g. Upgrade BS Scene                                                                                                                                |                                                                                                                                                                                             |  |  |  |  |  |  |
| Hydrology,<br>hydrochemis<br>try, fishery                | Central<br>Fisheries<br>Research<br>Institute,<br>Trabzon           | Tarımsal Araştırmalar<br>ve Politikalar Genel<br>Müdürlüğü<br>(DG Agricultural<br>Research and Policy) | Istanbul Yolu Uzeri<br>Tarım Kampusu, P.K.51,<br>06171<br>Yenimahalle/ANKARA<br>Tel:+90(312) 315 76 23<br>Fax:+90(312) 315 34<br>48/www.tagem.gov.tr | Erdinc VESKE, Technical Coordinator İstanbul Yolu Üzeri Tarım Kampüsü 06171 Yenimahalle – Ankara Tel: +90 312 343 20 59 / +90 312 315 76 23 – 237 erdincveske@gmail.com eveske@tagem.gov.tr |  |  |  |  |  |  |
|                                                          |                                                                     | Balıkçılık ve Su<br>Ürünleri Genel<br>Müdürlüğü (DG<br>Fisheries and<br>Aquaculture)                   | Balıkçılık ve Su Ürünleri<br>Genel Müdürlüğü<br>Eskişehir Yolu 9. km<br>Lodumlu /ANKARA Tel:<br>0312 287 33<br>60/www.bsgm.gov.tr                    | Erdinç GÜNEŞ Head of Department erdinc.gunes@tarim.gov.t r Tel: +90 312 286 49 01/3018                                                                                                      |  |  |  |  |  |  |
|                                                          |                                                                     | Çayeli Bakır<br>İşletmeleri A.Ş.                                                                       | Çayeli-Rize<br>İnfo@cayelibakir.com<br>90 312 440 84 46<br>0464 544 15 44<br>www.cayelibakir.com                                                     | Mehmet<br>EĞRİBOYUNOĞLU                                                                                                                                                                     |  |  |  |  |  |  |
| Hydrochemis<br>try, biology,<br>fishery,<br>microbiology | Istanbul University, Institute of Maritime Sciences and Managemen t | Ministry of<br>Environment and<br>Urban Planning <sup>123</sup>                                        | http://www.deniz.cevre<br>orman.gov.tr/kirlilik/201<br>0%20karadeniz.xls<br>(Excel files)                                                            |                                                                                                                                                                                             |  |  |  |  |  |  |
| Hydrochemis<br>try,<br>hydrobiology<br>, fishery         | Sinop<br>University,<br>Faculty of<br>Fishery                       | As per project                                                                                         | EMODNET Project<br>http://bio.emodnet.eu/<br>component/imis/?modu<br>le=dataset&dasid=3086                                                           |                                                                                                                                                                                             |  |  |  |  |  |  |

<sup>122</sup> The Ministry reports to the BSC on much broader scale: ICZM, ESAS, LBS, CBD, FOMLR, and pollution monitoring as well (PMA) 123 The same as Ministry of Environment and Urbanization

| Type of data  | Reporting    | To whom the data are reported |                         |                          |  |  |  |  |  |  |
|---------------|--------------|-------------------------------|-------------------------|--------------------------|--|--|--|--|--|--|
| reported      | organization | Name of                       | Postal                  | Contact person (address, |  |  |  |  |  |  |
|               |              | organization                  | address/webpage         | tel/fax, e-mail)         |  |  |  |  |  |  |
|               |              |                               | http://bio.emodnet.eu/  |                          |  |  |  |  |  |  |
|               |              |                               | component/imis/?modu    |                          |  |  |  |  |  |  |
|               |              |                               | le=dataset&dasid=3085   |                          |  |  |  |  |  |  |
|               |              |                               | http://bio.emodnet.eu/  |                          |  |  |  |  |  |  |
|               |              |                               | component/imis/?modu    |                          |  |  |  |  |  |  |
|               |              |                               | le=person&persid=8990   |                          |  |  |  |  |  |  |
|               |              |                               | http://bio.emodnet.eu/  |                          |  |  |  |  |  |  |
|               |              |                               | component/imis/?modu    |                          |  |  |  |  |  |  |
|               |              |                               | le=dataset&dasid=2931   |                          |  |  |  |  |  |  |
|               |              |                               | http://bio.emodnet.eu/  |                          |  |  |  |  |  |  |
|               |              |                               | component/imis/?modu    |                          |  |  |  |  |  |  |
|               |              |                               | le=dataset&dasid=3129   |                          |  |  |  |  |  |  |
|               |              |                               | http://bio.emodnet.eu/  |                          |  |  |  |  |  |  |
|               |              |                               | component/imis/?modu    |                          |  |  |  |  |  |  |
|               |              |                               | le=dataset&dasid=291    |                          |  |  |  |  |  |  |
|               |              |                               | SEADATANET Project      |                          |  |  |  |  |  |  |
|               |              |                               | http://seadatanet.maris |                          |  |  |  |  |  |  |
|               |              |                               | 2.nl/webservices/edmer  |                          |  |  |  |  |  |  |
|               |              |                               | p/get_detail/n_code/11  |                          |  |  |  |  |  |  |
|               |              |                               | 426                     |                          |  |  |  |  |  |  |
| Environment   | TUBITAK –    | Municipality of               |                         |                          |  |  |  |  |  |  |
| data          | the          | Kocaeli                       |                         |                          |  |  |  |  |  |  |
| data          | Marmara      | Ministry of                   |                         |                          |  |  |  |  |  |  |
|               | Research     | Environment and               |                         |                          |  |  |  |  |  |  |
|               | Center       | Urbanization                  |                         |                          |  |  |  |  |  |  |
|               |              | As per project                |                         |                          |  |  |  |  |  |  |
| Environment   | IMS/METU     | TUBITAK                       | www.tubitak.gov.tr/     |                          |  |  |  |  |  |  |
| data          | (Erdemli)    | Ministry of                   | www.tabitak.gov.try     |                          |  |  |  |  |  |  |
| aata          | (2. de)      | Environment and               |                         |                          |  |  |  |  |  |  |
|               |              | Forestry                      |                         |                          |  |  |  |  |  |  |
|               |              | UNEP/FAO                      |                         |                          |  |  |  |  |  |  |
|               |              | NATO SfP                      |                         |                          |  |  |  |  |  |  |
|               |              | As per project                | SeaDataNet, PERSEUS,    |                          |  |  |  |  |  |  |
|               |              | 7.5 per project               | etc.                    |                          |  |  |  |  |  |  |
| Hydrochemis   | Canakkale    | TUBITAK                       | Tunus Cad. No:80,       | Zeynep Okay Durmuş       |  |  |  |  |  |  |
| try, biology, | Univ.,       | . 35.17.11                    | Kavaklıdere, Ankara,    |                          |  |  |  |  |  |  |
| fishery       | Faculty of   |                               | Turkey                  |                          |  |  |  |  |  |  |
| ,             | Marine       |                               | ,                       |                          |  |  |  |  |  |  |
|               | Sciences and |                               |                         |                          |  |  |  |  |  |  |
|               | Technology   |                               |                         |                          |  |  |  |  |  |  |

Note: The Ondokuz Mayis University has not specified reporting.

### To conclude on data reporting.

The data of different organizations are reported to various end-users, however, the bulk of them remains for internal use only. At the national level in the beneficiary countries, there was no real effort to create a single Data/Information Center where all Black Sea-related data would be stored and used for ecosystem-based management. This gap in data accessibility became especially evident while preparing the Initial Assessments in BG and RO for the MSFD.

# 6. Operational monitoring



The aim of operational oceanography is to provide in "real time" reliable information and forecasts for the marine environment in order to support human activities at sea, exploitation of resources and the protection of the environment. The development of forecasting based on operational oceanography tools improves the understanding of the processes contributing to the actual state of the ocean in the short-term, because better predictions require these processes to be adequately and precisely represented, while it is also most likely that the long-term response is also represented by the same processes averaged over time.

Operational oceanography encompasses (i) specialized observing systems such as repeated transects and mooring arrays (ii) multi-disciplinary observatories to monitor short-term as well as multi-decadal patterns in specific areas (iii) general operational oceanographic tools such as ships of opportunity, XBT's, floats, drifters, ferry-boxes, AUV's and gliders used to monitor significant ocean variables through continuous campaigns; (iv) remote sensing.

The last 30 years have seen an increasing number of actions dedicated to estimate the ocean state or observe how climate change has unfolded in the ocean. International programs such as the GOOS and ARGO<sup>124</sup> have been instrumental in spreading and making available the observational tools of operational oceanography on a global scale, and also at regional. Despite the Black Sea regional

<sup>124</sup> The international Argo programme was initiated in 1999 as a pilot project endorsed by the Climate Research Programme of the World Meteorological Organisation (WMO), Global Ocean Observing System (GOOS), and the Intergovernmental Oceanographic Commission (IOC) that aims to measure the physical properties of the ocean at any given time using an array of 3000 floats in the global ocean, each float provides the temperature and salinity profiles from the upper ocean, once in few days. The name Argo is chosen to be in synergy with the satellites Jason-1 and 2 which has been providing maps of sea surface height (SSH) anomaly since 2001. The application of Argo data in oceanographic and climatic studies falls into three categories [1]:

To provide a global description of the upper ocean thermohaline state at spatial and temporal scales;

<sup>2.</sup> To generate the datasets required by numerical models for ocean analysis and forecast;

<sup>3.</sup> To complement the satellites in monitoring the climate.

The European contribution to the global Argo project is Euro-Argo programme (www.euro-argo.eu) that was initiated in 2008. The project aims at developing a European Argo fleet to the level where the European partners (France, UK, Germany, Italy, Spain, Greece, Portugal, Norway, Bulgaria, Poland, Ireland, Netherlands) have the capacity to procure and deploy about 250 floats per year, to monitor these floats and ensure all the data can be processed and delivered to users (both in real-time and delayed-mode).

initiatives such as Black Sea GOOS and occasional uses of ARGO and other drifters in the Black Sea, as well as participation in the MyOcean program, there is still much ground to be covered through regional cooperation.

The main impediment to development of operational monitoring by the Black Sea states is the assumption that relatively high cost is required. Though, not always this is the case. For instance, the price of an Argo float is 14-17 000 Euro, and the cost to sustain a Regional Black Sea Argo Infrastructure (through distributed national facilities and a central facility (C-RI) Full members of EuroArgo contribute annually by 30 000 Euro fee for sustaining of the central European facilities in UK and France. If the BS states sustain status of observers (no commitments for floats, minimum funding for the C-RI, no voting rights but can use the C-RI (coordination, data processing, float procurement), the contribution is 10 000 Euro per year. Members commit for a minimum of 5floats/year.

Refined estimations of costs for deploying Argo floats in the North, Baltic, Mediterranean and Black Seas together are given in Table 66.

Table 66. EuroArgo refined estimation of costs (European level)

| Category                                    | Unit cost (k€) | Number | Cost (k€) |
|---------------------------------------------|----------------|--------|-----------|
| Float procurement                           |                |        |           |
| Global (assumes standard Argo float)        | 14             | 200    | 2800      |
| Regional (assumes enhanced floats)          | 17             | 50     | 850       |
| Operations                                  |                |        |           |
| Telecommunications                          | 0.4            | 800    | 320       |
| Personnel () for management/coordination    | 100            | 5      | 500       |
| Personnel () for technical/logistic support | 100            | 6      | 600       |
| Misc (e.g. freighting)                      | 0.2            | 250    | 50        |
| Equipment and consumables                   |                |        | 50        |
| Dedicated ship time                         |                |        | 300       |
| Data management                             |                |        |           |
| Personnel ()                                | 100            | 19     | 1900      |
| Equipment, other                            |                |        | 100       |
| Euro-Argo central infrastructure (CI)       |                |        |           |
| Personnel () for management/coordination    | 100            | 2      | 200       |
| Personnel () for technical/logistic support | 100            | 3      | 300       |
| Missions (users workshops, board, council), |                |        | 100       |
| equipment, etc.                             |                |        |           |
| International infrastructure support        |                |        |           |
| Support to Argo Information Centre          |                |        | 40        |
| Support for Argo Project Office/Director    |                |        | 30        |
| TOTAL                                       |                |        | 8 140     |

So far, from the BS region only Bulgaria participates in EuroArgo, Russian Federation is an observer. Thus the BulArgo project is the Bulgarian contribution to the Euro-Argo programme. The project is funded by the Bulgarian National Science Fund of the Bulgarian Ministry of Education, Youth and Science. The main objective of the BulArgo is to deploy and makes operational an array of 5 floats for the duration of the project. The first autonomous profiling float was deployed by Bulgaria in the Black Sea on 8<sup>th</sup> of Dec. 2009<sup>125</sup>. In 2011, 3 Argo floats (one of which with oxygen sensor) were deployed in the western open-sea part of the Black Sea (sites marked on Fig. 23).



Figure 23. BulArgo floats deployment locations

Operational monitoring in the field of air pollution has been specifically well attended by Turkey. The EC PROMOTE project (http://www.gse-promote.org/) created a dedicated web page for the Black Sea region in the field of atmospheric pollution (http://db.eurad.uni-koeln.de/promote/RLAQS/riu\_rlaqs.php?force=BSC). However, this webpage was not further sustained, though there were such plans in the frames of the follow-up projects (PASODOBLE and MACC).

Bulgaria developed a national project (cooperation of IO-BAS and Varna Maritime Administration) to operationally monitor the Bulgarian BS coastal area by buoys. Four buoys have been deployed in the Bourgas Bay and they automatically register the following parameters:

Table 67. Parameters measured automatically *in situ* in the air and in BG coastal waters of the Black Sea (Bourgas Bay – stations B1, B2, B3, B4, coordinated have not been specified in the information provided)

| Parameters                         | B1 | B2 | В3 | B4 |
|------------------------------------|----|----|----|----|
| Marine water                       |    |    |    |    |
| рН                                 | Х  |    | Х  | Х  |
| Water temperature, °C              | Х  |    | Х  | Х  |
| Dissolved oxygen (O <sub>2</sub> ) | X  |    | Х  | Х  |
| Turbidity                          | Х  |    | Х  | Х  |
| Specific conductivity              | X  |    | Х  | Х  |
| Salinity                           | Х  |    | Х  | Х  |
| Chl                                | Х  |    | Х  | Х  |
| Currents (velocity, direction)     | Х  |    | Х  | Х  |
| Cyanophyceae                       | X  |    | Х  | Х  |

<sup>125</sup> In the frames of MedArgo 3 floats have been deployed in the BS in June 2006, which were performing 170 cycles every 7 days.

| Parameters                 | B1 | B2 | В3 | B4 |
|----------------------------|----|----|----|----|
| N-NH <sub>4</sub>          | -  |    | -  | Χ  |
| N-NO <sub>2</sub>          | -  |    | -  | Χ  |
| N-NO <sub>3</sub>          | -  |    | -  | Χ  |
| P-PO <sub>4</sub>          | -  |    | -  | Χ  |
| Petroleum hydrocarbons     | Χ  |    | Χ  | Χ  |
| In the air                 |    |    |    |    |
| Particulate matter         |    | Χ  |    |    |
| Wind (velocity, direction) |    | Χ  |    |    |
| Temperature, °C            |    | Χ  |    |    |
| NO <sub>2</sub>            |    | Χ  |    |    |
| СО                         |    | Χ  |    |    |
| SO <sub>2</sub>            |    | Χ  |    | ·  |
| H <sub>2</sub> S           |    | Χ  |    |    |

There was a special webpage, where the data used to be displayed, however, it had not been sustained.

#### Remote sensing

The EC project MONRUK (http://monruk.nersc.no/) has developed and implemented satellite Synthetic Aperture Radar (SAR) monitoring of the Black Sea marine environment as a component of GMES.

The project IMAGIS in Romania (Complex application of GIS and remote sensing techniques to support integrated management activities Romanian coastal area, source of funding: PNCDI II, period: 2008-2011), states the following objectives: developing a complex information system, operational, dedicated application techniques GIS and remote sensing to support implementation of the ICZM process in Romania, reaching sustainability indicators, namely the sustainable use of coastal resources and the conservation / reconstruction Romanian coastal ecosystem.

In Romania the Space Agency develops also satellite-based monitoring of land-based sources of pollution and accidental oil spills in the Black Sea (e.g. TanDEM-X Project).

For oil spills (including illegal discharges), EMSA (European Maritime Security Agency) provides satellite images to BG and RO, and there was an attempt to arrange this service for Turkey as well (MONINFO Project, EC DG Env., 2009-2011). However, no sustainable practice has been established in this aspect.

Turkey develops actively satellite monitoring in support of environment protection and human safety. The Istanbul Technical University - Center for Satellite Communications and Remote Sensing (ITU-CSCRS, http://www.cscrs.itu.edu.tr/content/uzaktanalgilamaing.php) is one of the forecoming institutions around the world with a highly capable ground receiving station unit. It is the first center established in Turkey to conduct application oriented projects in remote sensing and satellite communications technologies and serve national/international civil/military companies in their research, development, and educational activities. After successful design, assemble and test stages of the receiving station through the years 1996-2000, ITU-CSCRS was established for operational working under the name ITU-SAGRES (Satellite Ground Receiving Station) in 2000 as a wide range communications and remote sensing integrated system. In the second half of the year 2003, it was restructured into ITU-CSCRS. ITU-CSCRS has the capabilities of acquiring images from remote sensing satellites, processing data, and sending the products via satellite links to resident and foreign users. The station can receive images of the Earth's surface within a radius of 3000 km, which covers from Sweden to Sudan, and England to Kazakhstan. In the center the data acquired from SPOT-2, SPOT-4, RADARSAT-1, ERS-2, NOAA-11, NOAA-14, METEOSAT satellites is archived, formatted and processed with the state-of-the-art technology. These successful studies were certificated with Operational and Product Certificate by the Radarsat Inc., Canada in November 2002.

The IMS/METU (Erdemli, Turkey) HRPT (high-resolution-picture transmission) station is an authorized station<sup>126</sup> and was receiving SeaWiFS data since September 1997 till 2004. The remote sensing data flow has reached to a considerable volume together with the data received from METEOSAT satellite through SSB radio. The Remote-Sensing Group of IMS/METU upgraded the station to assure the reception of data from MODIS (http://modis.gsfc.nasa.gov/data/) since 2002.

MODIS and SeaWifs<sup>127</sup> data were examined by the experts of METU-IMS, as follow: (Ref.: SST, http://www.ims.metu.edu.tr/SeaDataNet/indexsat.asp?doc=pageSSTday.htm, and for Chl, http://www.ims.metu.edu.tr/SeaDataNet/indexsat.asp?doc=pageChl-A.htm)

Table 68. Remote sensing data collected by IMS/METU (Erdemli)

| Year    | Mo | Months |   |   |   |   |   |   |   |    |    |    | Seasons |     |     | Annual |    |
|---------|----|--------|---|---|---|---|---|---|---|----|----|----|---------|-----|-----|--------|----|
| SEAWIFS |    |        |   |   |   |   |   |   |   |    |    |    |         |     |     |        |    |
| 1997    |    |        |   |   |   |   |   |   | 9 | 10 | 11 | 12 |         |     |     | aut    |    |
| 1998    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 1999    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2000    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2001    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2002    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2003    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2004    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| MODIS   | 5  |        |   |   |   |   |   |   |   |    |    |    |         |     |     |        |    |
| 2002    |    |        |   |   |   |   | 7 | 8 | 9 | 10 | 11 | 12 |         |     | sum | aut    | an |
| 2003    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2004    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2005    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2006    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2007    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |
| 2008    | 1  | 2      | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | win     | spr | sum | aut    | an |

METU-IMS (Erdemli, Turkey) participated in MOMA (Meteorology and Oceanography Pilot Network, http://moma.ims.metu.edu.tr/), aiming at:

- Improvement of remote and local observing systems
- Real time data acquisition and Modeling
- Forecasting and disaster planning
- End user data services

Satellite based vessel monitoring system (VMS) in support of fisheries control is developed in all beneficiary countries (though vessels over 10 and/or 12-m are not all equipped with the VMS device), as well as vessel traffic monitoring system (VTMS) based on AIS (Automatic Identification System<sup>128</sup>) is in place. There is no official exchange of AIS data in the Black Sea region, however, BG, RO and TR are members of the Common Mediterranean AIS Network.

<sup>126</sup> One of the 128 authorised NASA (national Aeronautics and Space Administration of the USA) research stations.

<sup>127</sup> Mission of SeaWIFS has finished in February 2011 due to instrument failure. As a result, earlier elaborated Black Sea regional algorithms and related methodologies became unusable for future application requiring adjustment to other instruments (MODIS, MERIS). The ongoing NATO SfP project "Bio-Optical Characterization of the Black Sea for Remote Sensing Applications" (http://www.natosps.io-bas.bg/) targets development of Black Sea regional algorithms for MODIS, expected to be delivered by the end of 2012. Black Sea satellite data and parameters obtained with standard algorithms can be extracted from NASA OceanColorWEB (http://oceancolor.gsfc.nasa.gov/), ESA MERIS products web site (http://www.enviport.org/meris/lv3\_main.htm) and GMES MyOcean web site (http://www.myocean.eu/).

<sup>128</sup> The Automatic Identification System (AIS) is an automatic tracking system used on ships and by vessel traffic services (VTS) for identifying and locating vessels by electronically exchanging data with other nearby ships and AIS Base stations. AIS information supplements marine radar, which

### **VMS (Vessel Monitoring System)**

The system visualises the movement of fishery vessels. The data are stored (name of vessel, coordinates, date, time...), checked and analysed. The system has a module designed for communication between the Monitoring Center and the Master of the fishing vessel (transfer of text messages). Suspecting IUU fishing activity the operator from the VMS center could generate request for reporting the current position, which will be responded automatically by the vessel's equipment, preventing data corruption by third parties.

Example of an VMS is given below (the system in Bulgaria, sustained by NAFA).



Figure 24. The Bulgarian Fishery VMS (sustained by NAFA)

The system (VMS) provides an indication of the fishing activity and records the vessel's track pattern. It enhances control efficiency and is a tool for detailed analysis of the vessels fishing activities. The fish catch could be checked and registered even in case that the vessel is not discharged at it's homeport.

### **Conclusion:**

Further development of operational observing systems and networks in the Black Sea is much needed to better address diagnosis and prognosis of circulation and ecosystem state, in general, under climate and anthropogenic forcing of various temporal and spatial scales. VMS is a powerful tool for control over IUU fishing activities, its capacities should be further developed and integrated within MSFD monitoring programmes.

continues to be the primary method of collision avoidance for water transport. An AIS-equipped system on board a ship presents the bearing and distance of nearby vessels in a radar-like display format. Information provided by AIS equipment includes unique identification, position, course, and speed of a vessel. Thus, AIS is intended to assist a vessel's watchstanding officers and allow maritime authorities to track and monitor vessel movements. Vessels fitted with AIS transceivers and transponders can be tracked by AIS base stations located along coast lines or, when out of range of terrestrial networks, through a growing number of satellites that are fitted with special AIS receivers.

# 7. On-going projects with monitoring component

Black Sea cooperation in the field of monitoring and data management has been supported by many projects funded by different donors like EU, UNDP/GEF, NATO, WB, EBRD, UNEP, IMO, OSCE, ACCOBAMS, and SIDA. Herewith, in the beneficiary countries monitoring is often better planned in the frames of such projects as they provide clear time-frame and the needed funding. Previous overviews of monitoring-related projects have been provided in the SAP Implementation Report of the BSC (http://www.blacksea-commission.org/\_publ-BSSAPIMPL2009.asp) and in the Diagnostic Report I (http://www.blacksea-commission.org/\_publ-BSDiagnosticReport2010.asp).

Recently finalised projects and those still acting in the Black Sea region are mainly EU-funded, they are 48 (Table 60, as re-drawn from Milieu Ltd<sup>129</sup> and complemented by missing important projects) out of about 100 projects financed by EC DG Research since 2003 under FP5, FP6 and FP7, Life+, Intereg, etc. EC DG DEVCO (EuropeAid), EC DG MARE and EC DG Env. Projects have also financed a number of projects, which substantially contributed to the Black Sea environmental protection, such (http://81.8.63.74/ecbsea/en/documents/relevant/index.html), as (www.sasepol.eu), EMODNET (http://ec.europa.eu/maritimeaffairs/emodnet\_en.htm)<sup>130</sup>, MONINFO (http://www.blacksea-commission.org/\_projects\_MONINFO.asp)<sup>131</sup>, etc.

As mentioned above, operational monitoring has been further developed under EC EuroARGO project (part of GOOS<sup>132</sup>, Global Ocean Observing System, http://www.ioc-goos.org/) deploying argo (robotic) floats in the Black Sea to support GMES (Global Monitoring for Environmental Security, http://www.gmes.info/) services. Combining in situ and satellite data, with models, the project delivers regular and systematic reference information on the state of the oceans and regional seas, including the Black Sea. The Black Sea Argo program is published at: http://www.euroargo.eu/news\_and\_events/euro\_argo\_black\_sea\_meeting.

<sup>129</sup> Private company. Postal address: Milieu Ltd., Rue Blanche n° 15, 1050 Brussels, Belgium, Tel: +32 (0)2 506 1000 Fax: +32 (0)2 514 3603; webpage: http://www.milieu.be/

<sup>130</sup> The European Marine Observation and Data Network (EMODNET) is an initiative of the EC to assemble fragmented and inaccessible marine data into interoperable, contiguous and publicly available data streams for complete maritime basins.

<sup>131</sup> The project aimed to enable the Black Sea coastal states to better prevent and respond to operational/accidental/illegal oil pollution. One of the objectives was to establish operational Regional Database and Information Platform (RDIP), as a component of BSIS, including expert system for oil pollution mitigation and counteraction activities.

<sup>132</sup> At the Eighteenth Session of the Intergovernmental Oceanographic Commission of UNESCO (IOC), the Assembly adopted a resolution (Resolution XVIII-17, UNESCO, Paris, 7-9 June 1995) which established an IOC Black Sea Regional Committee (BSRC). The First Session of the BSRC was held in Varna, Bulgaria, (10-13 September 1996). Two Pilot Projects "The Assessment of Sediment Fluxes in the Black Sea" and "The Black Sea GOOS (Global Ocean Observing System)" were discussed extensively and programs were developed. The Black Sea GOOS MoU was signed by all Black Sea countries, in 2001. This MoU serves as the initial document for the Black Sea GOOS, as an informal association whose members seek to foster co-operation with the Global Ocean Observing System. The Black Sea GOOS was established with the participation of Bulgaria, Georgia, Romania, Russia, Turkey and Ukraine with the recognition of the importance of existing systems in research and operational oceanography. By signing, the MoU, countries become members of the Black Sea GOOS, and agree to co-operate in promoting the GOOS in the Black Sea basin. Black Sea GOOS activities are designed to foster cooperation in operational oceanography in the Black Sea basin. To collaborate with and to maximise the benefits from the existing activities of the EuroGOOS and the Med-GOOS, promoting the integration of these activities within the framework of the GOOS. The first Black Sea GOOS Strategic Action and Implementation Plan (IOC/INF-1176) was adopted in 2003 and the second in 2010.

Operational monitoring has been also supported by NATO, in the frames of the project "Bio-optical Characterization of the Black Sea for Remote Sensing Applications", NATO SfP project no. 982678, period: 2010-2013, objective: to implement a support tool for remote sensing applications aimed at operational environmental monitoring and climate studies in the Black Sea. Partner organizations from – Bulgaria (IO-BAS, Varna), Romania (Romanian Space Agency), etc.

Monitoring of ML and marine mammals has been also supported by various projects, most of them small-scale. For instance, ACCOBAMS and UNEP financed a couple of projects implemented in the beneficiary countries to sustain the Black Sea Cetaceans Stranding Network and to investigate the ML problem (ML Report, http://www.blacksea-commission.org/\_publ-ML.asp). The BSC supported in 2009-2010 the project "Cetacean strandings on the TR Black Sea western coast between September 2009 and August 2010'. Mainly NGOs have been very active in implementing of ML and Cetaceans-related projects (e.g. Green Balkans in Bulgaria (Federation of Nature-conservation NGOs, http://greenbalkans.org/index.php?language=en\_EN), TUDAV in Turkey (Turkish Marine Research Foundation, http://www.tudav.org/) and Mare Nostrum in Romania (http://www.marenostrum.ro/).

MATRA Projects<sup>133</sup> supported environment protection/monitoring in the Black Sea and contributed to investigations on habitats. For instance, the project 'Development of an Indicative Ecologically Coherent Network of sub-tidal Marine Protected Areas (MPAs) in Bulgaria and Romania' was implemented under the leadership of the EUCC-the Coastal Union (http://www.eucc.net/en/index.htm) in 2006-2008.

Projects related to operational monitoring developed in the field of air pollution were PROMOTE, PASODOBLE, MACC, etc. These projects provided ATMOSPHERIC MONITORING SERVICES as part of the EARTHWATCH GMES SERVICES. For instance from PROMOTE, through the BSC, the Black Sea region was receiving on a regular basis the following information:

### Table 69. Air Quality Records

| Criterion           | Performance level to be achieved  |
|---------------------|-----------------------------------|
| Information content | O3, CO, NO2, SO2, PM10            |
| Service level       | 1 year: 12 month record 2002-2005 |
|                     | 2 year:36 month record 2002-2005  |
|                     | 3 year:36 month record 2006-2008  |

Table 70. Black Sea –related scientific projects under EC DG Research Framework Programmes

|   |                                                                                                                                                    | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                      | Classification                                                          |                    |                        |                                                  | Timescale     |             | EC                   | Marine    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------|------------------------|--------------------------------------------------|---------------|-------------|----------------------|-----------|
| N | Acronym                                                                                                                                            | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                      | Main Topic                                                              | MSFD<br>Descriptor | Additional<br>Key word | Function                                         | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions   |
| 1 | ARENA (A Regional<br>Capacity Building<br>and Networking<br>Programme to<br>Upgrade Monitoring<br>and Forecasting<br>Activity in the Black<br>Sea) | ARENA initiated a co- operative ocean programme to assess and identify the Black Sea resources, the needs for operational oceanography, to formulate a Data-Base Management System and to build capacity through training and improving the communication and other essential facilities, for the monitoring, understanding, modelling/prediction and forecasting for the entire basin. | Biological<br>oceanography,<br>Environment,<br>Physical<br>oceanography | Multiple           |                        | Capacity<br>building,<br>information<br>exchange | 2003          | 2006        |                      | Black Sea |

<sup>&</sup>lt;sup>133</sup> Matra is an assistance programme of the Netherlands that aims to support social transformation and environment protection in countries neighbouring the European Union.

|   |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Classification            |                    |                        |                                                     | Timesc        | ale         | EC                   | Marine                               |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|------------------------|-----------------------------------------------------|---------------|-------------|----------------------|--------------------------------------|
| N | Acronym                                                                                                                                                                                                                                                       | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Main Topic                | MSFD<br>Descriptor | Additional<br>Key word | Function                                            | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
| 2 | ASCOBOS <sup>134</sup> (A<br>Supporting<br>Programme for<br>Capacity Building in<br>the Black Sea<br>Region Towards<br>Operational Status<br>of Oceanographic<br>Service)                                                                                     | ASCABOS increased public awareness and stimulated and motivated the utilization of operational oceanographic information in management and decision-making practices. Considerable work has been performed on compiling meta-databases on the Black Sea environmental data, information and research within previous international initiatives and projects. To support and to strengthen the exchange between scientists, governmental managers and other users ASCABOS developed a Black Sea information system, containing all available metadata, validated and efficiently updated through the Internet. ASCABOS organized a costeffective VOS pilot programme, applying modern technologies and developments for data collection, transmission, storage, use and dissemination. The VOS programme responded to the GOOS demand for long-term monitoring of the marine ecosystems. | Operational<br>monitoring | Multiple           |                        | Capacity<br>building,<br>information<br>exchange    | 2005          | 2008        |                      |                                      |
| 3 | CLAMER <sup>135</sup> (Climate<br>Change Impacts on<br>the Marine<br>Environment:<br>Research Results<br>and Public<br>Perception),<br>(Netherlands, UK,<br>Greece, France,<br>Belgium, Spain,<br>Norway, Denmark,<br>France, Ireland,<br>Norway)             | Compilation and summary of all existing scientific material & outreach products on the topic of the gap between what is known through research and what policy makers and the public know and understand about the effects of climate change on the oceans; Carryingout a pan-European poll to investigate the awareness/perception in various European coastal regions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Climate<br>Change         | Multiple           |                        | Awareness<br>Raising                                | 2010          | 2011        | 991,357.00           | All<br>European<br>marine<br>regions |
| 4 | CLIMSAVE <sup>136</sup> (Climate change integrated assessment methodology for cross-sectoral adaptation and vulnerability in Europe), (UK; Belgium; Germany; Austria; Czech Republic; Greece; Netherlands; Spain; Sweden; Hungary; China; Romania; Australia) | The overall aim of the CLIMSAVE project is to deliver an integrated methodology to assess cross-sectoral climate change impacts, adaptation and vulnerability. It will put science in the service of stakeholders and policymakers by providing a common platform for an improved integrated assessment of climate change impacts, vulnerability and related cost-effective adaptation measures covering key sectors in Europe.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Climate<br>Change         | Multiple           | Adaptation             | Impact<br>assessment                                | 2010          | 2013        | 3,150,000            | N/A                                  |
| 5 | COCONET <sup>137</sup> (Towards coast to coast network of marine protected areas coupled with Sea-based Wind Energy)                                                                                                                                          | The project proposes large scale env. Protection and management considering the establishment of MPAs networks and Offshore Wind Farms. It develops a scheme of maritime spatial planning aimed at maximizing gains and minimizing losses for both humans and environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MPAs                      | Multiple           | Wind farms             | Capacity<br>building,<br>exchange of<br>information | 2012          | 2015        |                      | Med and<br>Black Sea                 |

 <sup>134</sup> http://www.ascabos.io-bas.bg
 135 http://www.clamer.eu/component/clamerprojects/?search=
 136 http://www.climsave.eu/climsave/index.html
 137 http://www.coconet-fp7.eu/

|   |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Classification           |                    |                        |                      | Timesc        | ale         | EC                   | Marine                               |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------------|----------------------|---------------|-------------|----------------------|--------------------------------------|
| N | Acronym                                                                                                                                                                                                                                                                                                                                                | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main Topic               | MSFD<br>Descriptor | Additional<br>Key word | Function             | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
| 6 | CONSCIENCE <sup>138</sup> (Con<br>cepts and Science<br>for Coastal Erosion<br>Management),<br>(Netherlands, Spain,<br>Ireland, UK,<br>Romania, Poland,<br>Croatia)                                                                                                                                                                                     | Aims to develop and test concepts, guidelines and tools for the sustainable management of coastal erosion based on the best available scientific knowledge and on existing practical experience. It will contribute to the implementation of a common European coastal erosion management policy. We will use and define four coastal management concepts: coastal resilience, coastal sediment cell, strategic sediment reservoir and favourable sediment status. Relevant parameters and thresholds to qualify and quantify coastal resilience and favourable sediment status will be developed. | Coastal<br>erosion       | Multiple           | Coastal<br>management  | Capacity<br>building | 2007          | 2010        | 609,970              | N/A                                  |
| 7 | CREAM <sup>139</sup> (Coordinating research in support to application of EAF (Ecosystem Approach to Fisheries) and management advice in the Mediterranean and Black Seas), (Spain, Greece, Italy, France, Morocco, Tunisia, Turkey, Romania, Bulgaria, Russia, Ukraine, Egypt, Croatia, Lebanon, Malta, Cyprus)                                        | CREAM will establish an effective collaboration network among key role players in Mediterranean and Black Sea fisheries research and management. The project will have a strong training and capacity building component in order to help harmonize data collection and methodologies used in fisheries assessment and management in the Mediterranean and Black Sea. The project will serve to establish the guidelines for the application of the Ecosystem Approach to Fisheries in the Mediterranean and Black Sea, both in EU member states and third countries.                              | Research<br>coordination | Fisheries          | Ecosystem<br>Approach  | Capacity<br>building | 2011          | 2014        | 999,137              | Mediterra<br>nean and<br>Black Sea   |
| 8 | DEDUCE <sup>140</sup> (Sustainable development of European Coastal Zones)                                                                                                                                                                                                                                                                              | Its main objective is to evaluate the utility of indicators for optimal decision making on the coast, following the principles and criteria established by the EU Recommendation on ICZM.                                                                                                                                                                                                                                                                                                                                                                                                          | Research<br>coordination | ICZM               | Ecosystem approach     | Capacity<br>building | 2004          | 2007        |                      | All<br>European<br>regions           |
| 9 | ECOOP <sup>141</sup> (European Coastal-shelf sea Operational observing and forecasting system), (Denmark, Germany, Greece, France, Norway, Turkey, Italy, UK, Belgium, Bulgaria, Spain, Israel, Finland, China, Malta, Ireland, Croatia, Georgia, Tunisia, Mongolia, Portugal, Romania, Ukraine, Estonia, Netherlands, Russia, Sweden, Cyprus, Poland) | Consolidate, integrate and further develop existing European coastal and regional seas operational observing and forecasting systems into an integrated pan-European system targeted at detecting environmental and climate changes, predicting their evolution, producing timely and quality assured forecasts, providing marine information service's (including data, information products, knowledge and scientific advices) and facilitate decision support needs.                                                                                                                            | Climate<br>Change        | Multiple           |                        | Forecasting          | 2007          | 2010        | 6,990,251            | All<br>European<br>marine<br>regions |

<sup>138</sup> http://www.conscience-eu.net/
139 www.cream-fp7.eu
140 http://www.deduce.eu/
141 http://www.ecoop.eu

|    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Classification                   |                    |                        |                                                  | Timesc        | ale         | EC                   | Marine                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|------------------------|--------------------------------------------------|---------------|-------------|----------------------|---------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                      | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Main Topic                       | MSFD<br>Descriptor | Additional<br>Key word | Function                                         | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                               |
| 10 | ELME <sup>142</sup> (European<br>Lifestyles and<br>Marine<br>Ecosystems), (UK,<br>the Netherlands,<br>Spain, Belgium,<br>Germany, Portugal,<br>Lithuania, Italy,<br>Norway, Sweden,<br>Finland, Poland,<br>Greece, Bulgaria,<br>Romania)                     | Model the consequences of alternative scenarios for human development in post-accession Europe on the marine environment, through improved understanding of the relationship between European lifestyles and the state of marine ecosystems. Multidisciplinary approach integrating relevant information on: the current major state changes affecting Europe's marine ecosystems in four major sea areas; the pressures (anthropogenic and from natural variability) on the environment producing these state changes; the underlying social and economic drivers that lead to these pressures; and the plausible scenarios for social and economic change across Europe during the next two decades. | Sustainability                   | Multiple           | Ecosystem<br>approach  | Modelling                                        | 2003          | 2006        | 2,499,989            | All<br>European<br>marine<br>regions  |
| 11 | ENCORA and<br>ENCORA TTC <sup>143</sup><br>(European Network<br>for Coastal<br>Research),<br>(Netherlands,<br>Belgium, Denmark,<br>France, Germany,<br>Greece, Ireland,<br>Italy, Poland,<br>Portugal, Spain,<br>Sweden, UK,<br>Ukraine, Russia,<br>Morocco) | Strengthening the interaction between science, policy and practice is another important objective of the ENCORA networking mechanisms. These services include, firstly, sharing knowledge among research institutes, to increase the quality and efficiency of research programmes and to stimulate cooperation. Secondly, sharing expertise among coastal management organisations, to spread best coastal practices throughout Europe. Thirdly, sharing experience among policy organisations, to harmonise coastal policies in Europe for sustainable development.                                                                                                                                  | Research<br>coordination         |                    | Coastal<br>management  | Information<br>Exchange                          | 2006          | 2009        | 3,440,000            | All<br>European<br>marine<br>regions  |
| 12 | ENVIROGRIDS <sup>144</sup> (Building Capacity for a Black Sea Catchment Observation and Assessment System supporting Sustainable Development)                                                                                                                | The project is to assemble an observation system of the Black Sea catchment that will address several GEO Societal Benefit Areas within a changing climate framework. This system will incorporate a shared information system that operates on the boundary of scientific/technical partners, stakeholders and the public. It will contain an early warning system able to inform in advance decision-makers and the public about risks to human health, biodiversity and ecosystems integrity, agriculture production or energy supply caused by climatic, demographic and land cover changes on a 50-year time horizon.                                                                             | Shared<br>observation<br>systems | Multiple           |                        | Capacity<br>building,<br>information<br>exchange | 2009          | 2013        |                      | Danube<br>catchmen<br>t, Black<br>Sea |

http://www.elme-eu.org/http://www.encora.eu/http://envirogrids.net/

|    |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Classification            |                                      |                        |                         | Timesc        | ale         | EC                   | Marino                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|------------------------|-------------------------|---------------|-------------|----------------------|--------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                                                                  | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Main Topic                | MSFD<br>Descriptor                   | Additional<br>Key word | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Marine<br>Regions                    |
| 13 | ESONET <sup>145</sup> (European Seas Observatory Network), (France, Belgium, Bulgaria, Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Serbia, Turkey, UK)                                                                                                                                        | To create an organisation capable of implementing, operating and maintaining a network of ocean observatories in deep waters around Europe from the Arctic Ocean to the Black Sea connected to shore with data and power links via fibre optic cables. The fundamental scientific objective is to make continuous real-time observations of environmental variables over decadal, annual, seasonal, dial and tidal time scales.                                                                                                                                                               | Oceanographic<br>research | Hydrograp<br>hical<br>conditions     |                        | Information<br>Exchange | 2007          | 2011        | 7,000,000            | All<br>European<br>marine<br>regions |
| 14 | EUROARGO (A new<br>European Research<br>Infrastructure), (                                                                                                                                                                                                                                                               | Focus on the development of global in-situ ocean observing system, deploying robotic floats worldwide measuring water temperature and salinity to a depth of 2000 m.                                                                                                                                                                                                                                                                                                                                                                                                                          | Oceanographic<br>research | Hydrograp<br>hical<br>conditions     |                        |                         |               |             |                      |                                      |
| 15 | EURO-OCEANS <sup>146</sup> (European network of excellence for Ocean Ecosystems Analysis), (Algeria, Belgium, Denmark, Estonia, France, Germany, Greece, Italy, Latvia, Netherlands, Norway, Poland, Russia, Spain, Switzerland, Turkey, UK, Chile, Finland, Morocco, Portugal, South Africa, Tunisia, Mauritania, Peru) | Focus on the impact of climate/global change on marine ecosystems and biogeochemical cycles, and the construction of scenarios relevant to the emerging international Platform on Biodiversity and Ecosystem Services (ipBes). Funds projects/activities (activities, workshops, training, etc.)                                                                                                                                                                                                                                                                                              | Climate<br>Change         | Biodiversit<br>y                     | Ecosystem<br>services  | Modelling               | 2005          | 2009        | 10,000,000           | N/A                                  |
| 16 | EUROGEL <sup>147</sup> (EUROpean GELatinous zooplankton: mechanisms behind jellyfish blooms and their ecological and socio-economic effects)                                                                                                                                                                             | Focus on basic biological and ecological factors that govern reproduction, growth, and survival for a number of different gelatinous species, commonly occurring in high abundance.                                                                                                                                                                                                                                                                                                                                                                                                           | Hydrobiology              | Non-<br>natives,<br>biodiversit<br>y |                        | Information<br>exchange | 2002          | 2005        |                      | All<br>European<br>marine<br>regions |
| 17 | EUROMARINE <sup>148</sup> (Int<br>egration of<br>European Marine<br>Research Networks<br>of Excellence),<br>(Sweden, Germany,<br>Portugal,<br>Netherlands,<br>Belgium, France,<br>Denmark, UK, Italy)                                                                                                                    | Develop and implement an agreed framework for the long-lasting and durable co-operation between research institutions that were partners in FP6 marine Networks of Excellence in order to achieve further integration of marine research in Europe. Particular areas for cooperation will be: research programming, joint development and use of data bases, training and mobility of researchers, joint programming and use of research infrastructures. The ultimate aim will be the sustainable integration of marine research and a significant contribution to the structure of the ERA. | Research<br>coordination  |                                      |                        | Information<br>Exchange | 2011          | 2013        | 999,636              | N/A                                  |

<sup>http://www.esonet-noe.org/
http://www.eur-oceans.eu/
http://www.bio.uib.no/eurogel/
http://www.euromarineconsortium.eu/vision</sup> 

|    |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Classification        |                       |                        |                         | Timesc        | ale         | EC                   | Marine                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------|-------------------------|---------------|-------------|----------------------|--------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                       | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Main Topic            | MSFD<br>Descriptor    | Additional<br>Key word | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
| 18 | GEO-SEAS <sup>149</sup> (Paneuropean infrastructure for management of marine and ocean geological and geophysical data ), (UK, Belgium; Denmark; Germany; Bulgaria; Estonia; France; Greece; Ireland; Italy; Lithuania; Netherlands; Poland; Portugal; Spain; Norway; Latvia) | To effect a major and significant improvement in the overview and access to marine geological and geophysical data and data-products from national geological surveys and research institutes in Europe by upgrading and interconnecting their present infrastructures.                                                                                                                                                                                                                                                                                                                                                                                                  | Geology               | Seafloor<br>integrity |                        | Information<br>Exchange | 2009          | 2012        | 4,976,476            | N/A                                  |
| 19 | HERMES <sup>150</sup> (Hotspot<br>Ecosystem Research<br>on the Margins of<br>European Seas)                                                                                                                                                                                   | (1) Understand better the natural drivers that control ocean margin ecosystems and forecast changes in biodiversity and ecosystem functioning linked to global change. (2) Understand better the biodiversity and ecosystem function of "hotspot" ecosystems and develop concepts and strategies for the sustainable use of marine resources. (3) Provide an integrated framework for data management, training, education and outreach                                                                                                                                                                                                                                  | Ecosystem<br>research | Biodiversit<br>y      | Hotspots               | Information<br>Exchange | 2005          | 2009        | 15,000,000           | All<br>European<br>marine<br>regions |
| 20 | HYPOX <sup>151</sup> (In situ<br>monitoring of<br>oxygen depletion in<br>hypoxic ecosystems<br>of coastal and open<br>seas, and land-<br>locked water<br>bodies), (Germany,<br>Switzerland,<br>Ukraine, Italy<br>Turkey, UK,<br>Romania, Greece,<br>France)                   | A better understanding of global changes in oxygen depletion requires a global observation system continuously monitoring oxygen at high resolution, including assessment of the role of the seafloor in controlling the sensitivity of aquatic systems to and recovery from hypoxia. Hypox will monitor oxygen depletion and associated processes in aquatic systems that differ in oxygen status or sensitivity towards change: open ocean, oxic with high sensitivity to global warming (Arctic), semienclosed with permanent anoxia (Black Sea, Baltic Sea) and seasonally or locally anoxic land-locked systems (fjords, lagoons, lakes) subject to eutrophication. | Pollution             | Eutrophica<br>tion    |                        | Monitoring              | 2009          | 2012        | 3,500,000            | All<br>European<br>marine<br>regions |
| 21 | IASON <sup>152</sup> (International Action for Sustainability of the Mediterranean and Black Sea), (Greece, Turkey, Norway, Bulgaria, Germany, UK, Romania, Denmark, Russia, Israel, Italy, Cyprus, Ukraine, USA)                                                             | Two main objectives: (1) Provide comprehensive state-of-the-art information regarding (i) the current state of the marine and coastal environment of the Mediterranean and Black Sea system; (ii) the carrying capacity of the system and (iii) the marine resources and (2) contribute to the preparation of future activities (FP 7 etc.) with a view to build a platform for cooperation with partners from EU Member States, Associated States and Newly Independent States.                                                                                                                                                                                         | Sustainability        | Multiple              |                        | Capacity<br>building    | 2005          | 2006        | 452,550              | Mediterra<br>nean and<br>Black Sea   |

<sup>149</sup> http://www.geo-seas.eu/
150 http://www.eu-hermes.net
151 http://www.hypox.net/
152 www.iasonnet.gr

| N  | A aram.m                                                                                                                                                                                                                                                                                                                          | Torris / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Classification                           |                    |                        |                         | Timeso        | ale         | EC Combuibanti       | Marine                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|------------------------|-------------------------|---------------|-------------|----------------------|--------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                                                                           | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Main Topic                               | MSFD<br>Descriptor | Additional<br>Key word | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
| 22 | INCOFISH <sup>153</sup> (International Research Cooperation Restores Ecosystems for Sustainable Fishing)                                                                                                                                                                                                                          | To conduct specifically targeted strategic research suitable to contribute to the goals set by the World Summit for Sustainable Development in Johannesburg, such as restoring healthy fish stocks and ecosystems by 2015. Use of new research tools (large fish databases, interactive maps, and ecosystems modelling, etc.) to implement concrete solutions, including the extension of marine protected areas and the promotion of sustainable fish markets and selective fishing activities               | Sustainability                           | Fisheries          | Stock<br>recovery      | Modelling               | 2005          | 2008        |                      | N/A                                  |
| 23 | KNOWSEAS <sup>154</sup> (Knowledge-based Sustainable Management for Europe's Seas), (UK, Germany, Sweden, Italy, Spain, Netherlands, Portugal, Bulgaria, Turkey, Denmark, Poland, Norway, Finland, France, Ireland)                                                                                                               | Comprehensive scientific knowledge base and practical guidance for the application of the Ecosystem Approach to the sustainable development of Europe's regional seas                                                                                                                                                                                                                                                                                                                                         | Sustainability                           | Multiple           | Ecosystem<br>approach  | Modelling               | 2009          | 2013        | 5,764,200            | All<br>European<br>marine<br>regions |
| 24 | LifeWatch <sup>155</sup> (Life<br>Watch e-Science<br>and Technology<br>Infrastructure for<br>biodiversity data<br>and observatories),<br>(Netherlands;<br>Belgium; United<br>Kingdom; Romania;<br>Sweden; Norway;<br>Hungary; Germany;<br>Finland; Slovakia;<br>Slovenia; Italy;<br>France; Greece;<br>Denmark; Poland;<br>Spain) | The Life Watch e-Science and Technology Infrastructure for biodiversity data and observatories will be a large-scale European research infrastructure bringing together: -a system of marine, terrestrial and freshwater observatories; -common access to a huge amount of interlinked, distributed data from databases and monitoring sites; -computational facilities in virtual laboratories with analytical and modelling tools; -targeted user and training support and a programme for public services. | Research<br>coordination                 | Biodiversit<br>y   |                        | Information<br>Exchange | 2008          | 2011        | 5,000,000            | All<br>European<br>marine<br>regions |
| 25 | MACC <sup>156</sup><br>(Monitoring<br>Atmospheric<br>Composition and<br>Climate)                                                                                                                                                                                                                                                  | Mission: To deliver the Atmosphere GMES Service Element a sustainable and reliable operational service to support informed decisions on the atmospheric policy issues of stratospheric ozone depletion, surface UV exposure, air quality and climate change. (Follow-up of PROMOTE)                                                                                                                                                                                                                           | Operational<br>monitoring/at<br>mosphere | Multiple           |                        | Capacity<br>building    | 2010          | 2013        |                      | All<br>European<br>marine<br>regions |

http://cordis.europa.eu/fetch?CALLER=FP6\_PROJ&ACTION=D&DOC=1&CAT=PROJ&QUERY=0134422e2e93:4a7a:25391f07&RCN=79797
 www.knowseas.com
 http://www.lifewatch.eu/
 http://www.gmes-atmosphere.eu/services/raq/raq\_nrt/

|    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Classification           |                    |                                |                         | Timeso        | ale         | EC                   | Marine                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|--------------------------------|-------------------------|---------------|-------------|----------------------|--------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                                                                               | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Main Topic               | MSFD<br>Descriptor | Additional<br>Key word         | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
| 26 | MARBEF <sup>157</sup> (Marine<br>Biodiversity and<br>Ecosystem<br>Functioning ),<br>(Netherlands,<br>France, Germany,<br>UK, Norway,<br>Estonia, Croatia,<br>Russia, Lithuania,<br>Bulgaria, Romania,<br>Italy, Spain, Ireland,<br>Poland, Portugal,<br>Denmark, Slovenia,<br>Sweden, Belgium,<br>Finland, Ukraine,<br>Greece, Malta) | MarBEF unites eminent marine scientists under one network to: 1) Understand how marine biodiversity varies across spatial and temporal scales, and between levels of biological organisation, in order to develop methods to detect significant change; 2) Further understand the relationship between marine biodiversity (at different levels of organisation) and ecosystem functioning and functions through the integration of theoretical and modelling exercises, comparative analyses and carefully designed experimental tests; 3) Understand the economic, social and cultural value of marine biodiversity. | Ecosystem<br>research    | Biodiversit<br>y   | Socio-<br>economic<br>analysis | Modelling               | 2004          | 2009        | 8,707,000            | All<br>European<br>marine<br>regions |
| 27 | MARCOM+ <sup>158</sup> (Towa<br>rds an Integrated<br>Marine and<br>Maritime Science<br>Community),<br>(Denmark, Monaco,<br>Netherlands,<br>France, Belgium,<br>Greece)                                                                                                                                                                | The goal is to establish a sustainable and long-lasting partnership forum (European Marine and Maritime Forum), based on shared interests and shared leadership, and to test it on regional seas and pan-European basis. The process will contribute to developing interactions between partners (the research community, industry, regional authorities, civil society and other stakeholders) starting from regional scales to broader issues shared with EU-neighboring countries.                                                                                                                                  | Research<br>coordination |                    | Governance                     | Information<br>Exchange | 2010          | 2012        | 998,455              | All<br>European<br>marine<br>regions |
| 28 | MARLISCO <sup>159</sup> (MARine Litter in Europe Seas: Social Awareness and CO- Responsibility), (Belgium, UK, Ireland, Portugal, Greece, Netherlands, Turkey, Bulgaria, France, Germany, Slovenia, Cyprus, Romania, Denmark)                                                                                                         | The project will develop and evaluate an approach that can be used to address the problems associated with marine litter and which can also be applied more widely to other societal challenges where there are substantial benefits to be achieved through better integration among researchers, stakeholders and society.                                                                                                                                                                                                                                                                                            | Marine Litter            | Marine<br>Litter   |                                | Capacity<br>building    | 2012          | 2015        |                      | All<br>European<br>regions           |
| 29 | MEECE <sup>160</sup> (Marine<br>Ecosystem<br>Evolution in a<br>Changing<br>Environment), (UK,<br>Germany, Greece,<br>Norway, Italy,<br>Denmark, Spain,<br>France, Lithuania,<br>Netherlands,<br>Turkey)                                                                                                                               | Combination of data synthesis, numerical simulation and targeted experimentation to further knowledge of how marine ecosystems will respond to combinations of multiple climate change and anthropogenic drivers, in a holistic manner, rather than driver by driver as has been done in the past. Exploration of the impacts of climate drivers (acidification, light, circulation and temperature) and anthropogenic drivers (fishing, pollution, invasive species and eutrophication).                                                                                                                              | Climate<br>change        | Multiple           |                                | Impact<br>assessment    | 2008          | 2012        | 6,500,000            | All<br>European<br>marine<br>regions |

http://www.marbef.org
 www.marinemaritimescienceforum.eu
 http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ\_LANG=EN&PJ\_RCN=12868673&pid=5
 http://cordis.eu/search/index.cfm?fuse action=proj.document@PJ RCN=10373739

|    | _                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Classification                  |                    |                        |                         | Timeso        | ale         | EC                   | Marine                               |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|------------------------|-------------------------|---------------|-------------|----------------------|--------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                                                                                                                                                                              | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Main Topic                      | MSFD<br>Descriptor | Additional<br>Key word | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
| 30 | MESMA <sup>161</sup> (Monitoring and Evaluation of Spatially Managed Areas), (Netherlands, UK, Germany, Belgium, Greece, Norway, Italy, Denmark, Malta, Spain, Ireland, Bulgaria)                                                                                                                                                                                                                                                    | Production of guidance and tools to support the implementation of maritime spatial planning in Europe's seas. These will include advice, tools and information on human uses, biotope classifications / distributions (including examples of geospatial data systems), governance processes and different approaches to conflict management. Firm basis for implementation of marine spatial planning policies, in particular MSFD.                                                                                                                                                             | Maritime<br>Spatial<br>Planning | Biodiversit<br>y   | Governance             | Monitoring              | 2009          | 2013        | 6,568,842            | All<br>European<br>marine<br>regions |
| 31 | MONRUK <sup>162</sup> (Aeronautics and Space project developing marine monitoring services for Russia, Ukraine and Kazakhstan)                                                                                                                                                                                                                                                                                                       | The overall objective was to develop and implement satellite Synthetic Aperture Radar (SAR) monitoring of the marine environment in Russia, Ukraine and Kazakhstan (the RUK area) as a component of GMES. Satellite SAR images for the three study areas were collected in order to develop and validate retrieval algorithms for ocean and sea ice parameters. The SAR data collection was done by: (a) using existing ERS and ENVISAT SAR data retrieved from ESA archives; (b) new acquisition of ENVISAT ASAR data, including alternating polarization images, and (c) RADARSAT SAR images. | Operational<br>monitoring       | Pollution          |                        | Capacity<br>building    | 2007          | 2009        |                      | Black Sea<br>and<br>Caspian          |
| 32 | MYOCEAN <sup>163</sup> (Development and pre-operational validation of the "Ocean Monitoring and Forecasting" component of the future GMES Marine Core Service), (France; Israel; Ukraine; Russia; Canada; Poland; Lithuania; Spain; Slovenia; Greece; Belgium; United Kingdom; Romania; Malta; Ireland; Italy; Estonia; Denmark; Germany; Cyprus; Norway; Latvia; Finland; Sweden; Bulgaria; Moroccc; Netherlands; Portugai; Turkey) | - To set up infrastructures, services and resources to prepare the operational deployment of first Marine Core Services (MCS) - To provide the major building blocks and umbrella to allow the operational deployment of a full MCS in cooperation with external providers (National Met services, EMSA).                                                                                                                                                                                                                                                                                       | Oceanographic<br>research       |                    | Marine Core<br>Service | Monitoring              | 2009          | 2013        | 33,800,000           | N/A                                  |
| 33 | ODEMM <sup>164</sup> (Options<br>for Delivering<br>Ecosystem-Based<br>Marine<br>Management), (UK,<br>Netherlands,<br>Greece, Denmark,<br>Bulgaria, Finland,<br>Ireland, Romania,<br>Denmark, Israel,<br>Ukraine, Turkey,<br>Poland)                                                                                                                                                                                                  | Development of a set of fully-costed ecosystem management options that would deliver the objectives of the MSFD, the Habitats Directive, the European Commission Blue Book and the Guidelines for the Integrated Approach to Maritime Policy. Creation of metadatabase of environmental assessment reports summarizing current knowledge based on environmental, ecological and socioeconomic issues or factors prepared for regional seas across Europe.                                                                                                                                       | Sustainability                  | Multiple           | Ecosystem<br>Approach  | Information<br>Exchange | 2010          | 2013        | 6,499,132            | All<br>European<br>marine<br>regions |

<sup>161</sup> www.mesma.org 162 http://monruk.nersc.no/ 163 http://www.myocean.eu/ 164 www.liv.ac.uk/ODEMM

|    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Classification           |                    |                              |                      | Timesc        | ale         | EC                   | Marine                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------------------|----------------------|---------------|-------------|----------------------|-----------------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                                             | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Main Topic               | MSFD<br>Descriptor | Additional<br>Key word       | Function             | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                                       |
| 34 | PASODOBLE <sup>165</sup> (PROMOTE Air Quality Services Integrating Observations - Development of Basic Localised Information for Europe), (Germany, Bulgaria, UK, France, Italy, Finland, Netherlands, Belgium, Ireland)                                                                            | In the context of Europe's initiative for Global Monitoring of Environment and Security (GMES), the PASODOBLE project seeks to provide information and support for regions and cities that are affected by air pollution. By combining space-based data, in-situ measurements and modelling, the Myair service portfolio is being developed and demonstrated in 4 thematic areas: Health community support Public forecasting and assessment Compliance monitoring support Local forecast model evaluation support | Atmospheric pollution    | Multiple           |                              | Capacity<br>building | 2010          | 2013        |                      |                                               |
| 35 | PEGASO <sup>156</sup> (People<br>for Ecosystem<br>Based Governance<br>in Assessing<br>Sustainable<br>Development of<br>Ocean and Coast),<br>(Spain, France, UK,<br>Tunisia, Egypt,<br>Switzerland,<br>Greece, Malta,<br>Romania, Croatia,<br>Egypt, Italy, Turkey,<br>Belgium, Lebanon,<br>Ukraine) | To build on existing capacities and develop common novel approaches to support integrated policies for the coastal, marine and maritime realms of the Mediterranean and Black Sea Basins in ways that are consistent with and relevant to the implementation of the ICZM Protocol for the Mediterranean.                                                                                                                                                                                                           | Sustainability           | Multiple           | Coastal<br>management        | Capacity<br>building | 2010          | 2014        | 6,999,684            | Mediterra<br>nean and<br>Black Sea            |
| 36 | I. PERSEUS <sup>167</sup> (Protecting European Seas and borders through intelligent use of surveillance), (Spain, France, Italy, Portugal, Greece, Finland, Ireland, Luxembourg, Norway, Sweden, Switzerland, Netherlands)                                                                          | Its purpose is to build and demonstrate an EU maritime surveillance system integrating existing national and communitarian installations and enhancing them with innovative technologies. By means of two large scale demonstrations PERSEUS will prove its feasibility and will set the standards and grounds for the future development of EU maritime surveillance systems.                                                                                                                                     | Novel security<br>system |                    | Smart use of<br>technologies | Innovation           | 2012          | 2015        |                      |                                               |
| 37 | II. PERSEUS (Policy-<br>orientated marine<br>Environmental<br>Research for the<br>Southern European<br>Seas)(21 countries)                                                                                                                                                                          | It is a research project that assesses the dual impact of human activity and natural pressures on the Mediterranean and Black Seas. PERSEUS merges natural and socioeconomic sciences to predict the long-term effects of these pressures on marine ecosystems. The project aims to design an effective and innovative research governance framework, which will provide the basis for policymakers to turn back the tide on marine life degradation.                                                              | MSFD                     | Multiple           |                              | Capacity<br>building | 2012          | 2015        |                      | Mediterra<br>nean and<br>Black Sea            |
| 38 | PlanCoast <sup>168</sup> (Spatial<br>Planning in Coastal<br>Zones), (Germany;<br>Bulgaria; Italy;<br>Poland; Ukraine;<br>Romania; Slovenia;<br>Croatia; Albania;<br>Serbia and<br>Montenegro; Bosnia<br>and Herzegovina)                                                                            | To develop the tools and capacities for an effective integrated planning in coastal zones and maritime areas in the Baltic, Adriatic and Black Sea regions: Introduce Maritime Planning; Link ICZM and Maritime Planning with the processes of statutory spatial planning in selected number of pilot projects; Spread the use of modern                                                                                                                                                                           | Sustainability           | Multiple           | Coastal<br>management        | Capacity<br>building | 2006          | 2008        | 1,488,000            | Baltic,<br>Mediterra<br>nean and<br>Black Sea |

<sup>165</sup> www.myair-eu.org
166 http://www.pegasoproject.eu
167 http://www.perseus-fp7.eu/
168 http://www.plancoast.eu/index.php?id=1#

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Classification                           |                    |                        |                         | Timesc        | ale         | EC                   | Marine                               |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------|------------------------|-------------------------|---------------|-------------|----------------------|--------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Main Topic                               | MSFD<br>Descriptor | Additional<br>Key word | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | geographical information systems (GIS) for an effective transnational planning; Contribute to the creation and implementation of EU policy on coastal zones and maritime areas, such as the Green Book and Blue Book, and led to creation of numerous national laws and strategies.                                                                                                                                                                                                                                                                                               |                                          |                    |                        |                         |               |             |                      |                                      |
| 39 | PROMOTE <sup>169</sup><br>(PROtocol<br>MOniToring for the<br>GMES Service<br>Element:Atmospher<br>e)                                                                                                                                                                                                                                                                                                                                                                                          | Mission: To deliver the Atmosphere GMES Service Element a sustainable and reliable operational service to support informed decisions on the atmospheric policy issues of stratospheric ozone depletion, surface UV exposure, air quality and climate change.                                                                                                                                                                                                                                                                                                                      | Operational<br>monitoring/at<br>mosphere | Multiple           |                        | Capacity<br>building    | 2006          | 2009        |                      | All<br>European<br>marine<br>regions |
| 40 | SeaDataNet <sup>170</sup> (Pan-<br>European<br>Infrastructure for<br>Ocean & Marine<br>Data Management),<br>(France,<br>Netherlands, United<br>Kingdom, Germany,<br>Sweden, Spain,<br>Greece, Italy,<br>Russia, Turkey,<br>Belgium, Norway,<br>Denmark, Ireland,<br>Portugal, Iceland,<br>Finland, Poland,<br>Estonia, Latvia,<br>Lithuania, Ukraine,<br>Bulgaria, Romania,<br>Georgia, Morocco,<br>Croatia, Albania,<br>Slovenia, Malta,<br>Cyprus, Israel,<br>Lebanon, Algeria,<br>Tunisia) | Construction of a standardized system for managing the large and diverse data sets collected by the oceanographic fleets and the new automatic observation systems. Network and enhance currently existing infrastructures, i.e. the national oceanographic data centres and satellite data centres of 35 countries, active in data collection. Provide integrated data sets of standardized quality online.                                                                                                                                                                      | Oceanographic<br>research                |                    |                        | Data<br>managemen<br>t  | 2006          | 2011        | 8,750,000            | All<br>European<br>marine<br>regions |
| 41 | SEAS-ERA <sup>171</sup> (Towards Integrated Marine Research Strategy and Programmes), (Spain, Georgia, Romania, Belgium, France, Ukraine, Bulgaria, Greece, Italy, Portugal, Turkey, UK, Iceland, Norway, Ireland, Netherlands, Malta, Germany)                                                                                                                                                                                                                                               | SEAS-ERA will constitute a platform for developing a European integrated policy oriented structure to promote knowledge and expertise in any sea related area; the overarching element of SEAS-ERA, its ambition to embrace the whole spectrum of marine and maritime research, makes it an open forum for knowledge sharing, a real arena where all the sea related knowledge can meet.                                                                                                                                                                                          | Research<br>coordination                 |                    |                        | Information<br>Exchange | 2010          | 2014        | 2,000,000            | All<br>European<br>marine<br>regions |
| 42 | SESAME <sup>172</sup> (Southern European Seas: Assessing and Modelling Ecosystem Changes), (Greece, France, Russia, Turkey, Belgium, Spain, Italy, Bulgaria, Israel, Lebanon, Italy, Romania, France, Ukraine, Croatia, Tunisia, Slovenia, Egypt, Cyprus, Germany, UK, Georgia, Denmark, Malta)                                                                                                                                                                                               | Assess and predict changes in the Mediterranean and Black Sea ecosystems as well as changes in the ability of these ecosystems to provide goods and services. Study the effect of the ecosystem variability on key goods and services with high societal importance like tourism, fisheries, ecosystem stability through conservation of biodiversity and mitigation of climate change through carbon sequestration in water and sediments. Close merging of economic and natural sciences to study the changes in the western and eastern Mediterranean and the Black Sea within | Ecosystem<br>research                    | Multiple           |                        | Modelling               | 2006          | 2011        | 10,000,000           | Mediterra<br>nean and<br>Black Sea   |

<sup>169</sup> http://www.gse-promote.org/
170 http://www.seadatanet.org/
171 www.seas-era.eu
172 http://www.sesame-ip.eu/public/SESAME-public-home

|    |                                                                                                                                                                                                                                                                                                               | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Classification                                            |                    |                        |                         | Timescale     |             | EC                   | Marine                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------|------------------------|-------------------------|---------------|-------------|----------------------|--------------------------------------|
| N  | Acronym                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Main Topic                                                | MSFD<br>Descriptor | Additional<br>Key word | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                              |
|    |                                                                                                                                                                                                                                                                                                               | the period from 50 years in<br>the past to 50 years in the<br>future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           |                    |                        |                         |               |             |                      |                                      |
| 43 | SIMORC <sup>173</sup> (System<br>of Industry<br>Metocean Data for<br>the Offshore and<br>Research<br>Communities),<br>(Netherlands, UK,<br>Belgium)                                                                                                                                                           | Development, together with the oil & gas industry, of a sustainable SIMORC internet service, which manages and operates a central index and database of metocean data sets, collected by the oil & gas industry at various sites on the globe in the past and continuing at present.                                                                                                                                                                                                                                                                                                                                                         | Oceanographic<br>research                                 |                    |                        | Information<br>Exchange | 2005          | 2007        | 500,000              | All<br>European<br>marine<br>regions |
| 44 | SPICOSA <sup>174</sup> (Science<br>and Policy<br>Integration for<br>Coastal System<br>Assessment ),<br>(Norway, Spain,<br>France, Denmark,<br>Estonia, Italy, UK,<br>Greece, Belgium,<br>Poland,<br>Netherlands,<br>Denmark, Bulgaria,<br>Latvia, Turkey,<br>Sweden, Ireland,<br>Israel, Romania,<br>Ukraine) | To develop a self-evolving, holistic research approach for integrated assessment of Coastal Systems so that the best available scientific knowledge can be mobilized to support deliberative and decision-making processes aimed at improving the sustainability of Coastal Systems by impenting Integrated Coastal Zone Management (ICZM) policies.                                                                                                                                                                                                                                                                                         | Sustainability                                            | Multiple           | Coastal<br>management  | Assessment              | 2007          | 2011        | 10,000,000           | All<br>European<br>marine<br>regions |
| 45 | THESEUS <sup>175</sup> (Innovative technologies for safer European coasts in a changing climate), (Italy, Spain, UK, Denmark, Netherlands, Germany, France, Poland, Bulgaria, Greece, Latvia, Belgium, Ukraine, Russia, Mexico, China, Taiwan)                                                                | THESEUS will develop a systematic approach to reduce the risks to the coasts and maintain their benefits for human use together with healthy coastal habitats. Risk assessment, policy management and planning strategies will be worked out in cooperation with stakeholders and local authorities through applications in eight study sites, with specific attention to the most vulnerable environments such as estuaries, wetlands and deltas.                                                                                                                                                                                           | Climate<br>Change                                         | Biodiversit<br>y   | Coastal<br>management  | Assessment              | 2009          | 2013        | 6,530,000            | All<br>European<br>marine<br>regions |
| 46 | THRESHOLDS <sup>176</sup><br>(Spain, France,<br>Bulgaria, Italy,<br>Denmark, Norway,<br>Finland, Germany,<br>Belgium, Sweden,<br>Estonia)                                                                                                                                                                     | The project THRESHOLDS emphasized the formulation of a generic theory of thresholds in nature, encompassing the understanding of alternative stable states and regime shifts in ecosystems, nonlinear and cascading responses in ecosystems. It brought together leading researchers in an attempt to develop integrated approaches to coastal zone management. Thresholds contributed to the development of Sustainability Science by developing, improving and integrating tools and methods that can deal with complex behaviour of ecosystems. The tools developed will be applied to several case studies in the European coastal zone. | Integrated<br>approaches to<br>coastal zone<br>management | Multiple           | Regime shifts          | Research                | 2005          | 2008        |                      | All<br>European<br>marine<br>regions |

<sup>173</sup> www.simorc.org 174 http://www.spicosa.eu 175 www.theseusproject.eu 176 http://www.thresholds-eu.org

|    | _                                                                                                                                                                                                                            | Topic / Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Classification           |                    |                        |                         | Timescale     |             | EC Contailbuti       | Marine                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|------------------------|-------------------------|---------------|-------------|----------------------|----------------------------|
| N  | Acronym                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Main Topic               | MSFD<br>Descriptor | Additional<br>Key word | Function                | Start<br>Year | End<br>Year | Contributi<br>on (€) | Regions                    |
| 47 | UP-GRADE BS-<br>SCENE <sup>127</sup> (Up-Grade<br>Black Sea Scientific<br>Network),<br>(Netherlands;<br>Belgium; Bulgaria;<br>Greece; Poland;<br>Russia; United<br>Kingdom; Ukraine;<br>Romania; Turkey;<br>Cyprus; Georgia) | The project implemented the results of the Joint Research Activities of the FP6 RI SeaDataNet project (common communication standards and adapted technologies to ensure the datacenters interoperability). Objectives:  - To network the existing and new Black Sea datacenters, active in data collection, and provide integrated databases of standardized quality online.  - To realize and improve on-line access to in-situ and remote sensing data, meta-data and products. | Research<br>coordination | Multiple           | Capacity<br>building   | Information<br>Exchange | 2009          | 2012        | 3,400,000            | Black Sea                  |
| 48 | WISER <sup>178</sup> (Water<br>bodies in Europe:<br>Integrative Systems<br>to assess Ecological<br>status and<br>Recovery)                                                                                                   | WISER supported the implementation of the Water Framework Directive (WFD) by developing tools for the integrated assessment of the ecological status of European surface waters.                                                                                                                                                                                                                                                                                                   | WFD                      | Multiple           | Capacity<br>building   | Information<br>Exchange | 2009          | 2012        |                      | All<br>European<br>regions |

<sup>177</sup> http://www.blackseascene.net/ 178 www.wiser.eu

Information is further provided on the most important initiatives which are currently taking place at the national or international level in the beneficiary countries.

#### **BULGARIA**

Table 71. Ongoing projects in Bulgaria

| Implementing  | Name of                                                                                  | Financed | Duration      | Cruises                                                     | Reporting and                                                                    |
|---------------|------------------------------------------------------------------------------------------|----------|---------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|
| organization  | Project                                                                                  | by       |               | (Stations/Parameters)                                       | storage of data                                                                  |
| IFR-Varna     | Investigations<br>on the winter<br>breeding fish<br>species and<br>their trophic<br>base |          | 2011-<br>2013 | 15 stations/ Fish,<br>plankton, benthos,<br>water chemistry | Detail given in footnote <sup>179</sup>                                          |
|               | Investigations<br>on the summer<br>breeding fish<br>species and<br>their trophic<br>base |          | 2011-2013     | 15 stations/ Fish,<br>plankton, benthos,<br>water chemistry |                                                                                  |
|               | Marine<br>cetaceans off<br>the Bulgarian<br>Coast                                        |          | 2011-<br>2013 | Cetaceans strandings                                        |                                                                                  |
|               | Changes in the<br>Varna Lake<br>ecosystem                                                |          | 2011-<br>2013 | 6 stations/ Plankton,<br>benthos, water<br>chemistry        |                                                                                  |
| IO-BAS, Varna | National<br>monitoring for<br>MSFD and<br>WFD                                            | MOEW     | 2012-<br>2013 | Detail given in Table 62                                    | Hydrophysics,<br>chemistry, biology<br>data are reported to<br>the corresponding |
|               | DEVOTES                                                                                  | FP7      | 2012-<br>2016 | No details                                                  | ministry/Project in the respective                                               |
|               | PERSEUS, EC<br>FP7 <sup>180</sup>                                                        | FP7      | 2012-<br>2016 | Detail given in Table 62                                    | format, stored at IO-BAS/ corresponding database                                 |

\_

<sup>179</sup> In IR-Varna a standard procedure is followed for all steps in creating, transferring and storing of reported data. On board each sample is given a unique and permanent identification number which allows the staff to link all records to the relevant sample from its arrival to issue of a final report. A *standard counting worksheets* (initial sampling protocol, hardcopy and electronic form) are used for all samples to be recorded. The hardcopy (protocols, tables) gives full information about the sample and contains record of the species composition and counting results (date and site of collection, number of the counting chamber used, magnification used, the volume of sub-sample for sedimentation or filtration, area counted and factors used to calculate the final cell count etc.). The sheets also contain the name of the person identifying and counting the sample and of the person entering the counting results onto the database. The worksheet provides a space for general comments and records from the databases. Since 1991 the most of the data have been computerized in a special data base. For every step of transferring data from one medium to another (from hardcopy to electronic form), a person other than the operator verifies the step. For example, count results, recorded on paper, are transferred from the original data sheet to the electronic database for storage and reporting. A person other than the data entry operator verifies the correctness of the data entered. Typing errors during data entry of count results are minimised by this careful check of all entries. The database is established with the help of experienced specialists to ensure an adequate taxonomic system is used and special considerations for algal enumeration are incorporated. Effective data storage is provided by permanent database maintenance, including regular back-up, checks for correctness of entries, and incorporation of changes in taxonomy. Such maintenance is critical during our long-term monitoring program, in particular, in order

<sup>180</sup> The overall scientific objectives of PERSEUS are to identify the interacting patterns of natural and human-derived pressures on the Mediterranean and Black Seas, assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. Well-coordinated scientific research and socio-economic analysis will be applied at a wide-ranging scale, from basin to coastal. The new knowledge will advance our understanding on the selection and application of the appropriate descriptors and indicators of the MSFD. New tools will be developed in order to evaluate the current environmental status, by way of combining monitoring and modelling capabilities and existing observational systems will be upgraded and extended. Moreover, PERSEUS will develop a concept of an innovative, small research vessel, aiming to serve as a scientific survey tool, in very shallow areas, where the currently available research vessels are inadequate. In view of reaching Good Environmental Status (GES), a scenario-based framework of adaptive policies and management schemes will be developed. Scenarios of a suitable time frame and spatial scope will be used to explore interactions between projected anthropogenic and natural pressures. A feasible and realistic adaptation policy framework will be defined and ranked in relation to vulnerable marine sectors/groups/regions in order to design management schemes for marine governance. Finally, the project will promote the principles and objectives outlined in the MSFD across the SES.

Table 72. Cruises planned in the projects of IO-BAS, Varna, Bulgaria

| Project                                  | Number of cruises planned | Timing   | Stations  | Parameters         |
|------------------------------------------|---------------------------|----------|-----------|--------------------|
| National monitoring for MSFD             | 6 cruises in 2012-2013    | V-IX     | 35        | Hydrophysics,      |
| (Ministry of Environment) <sup>181</sup> |                           |          |           | chemistry, biology |
| National monitoring for WFD              | 2 cruises in 2012-2013    | V; VII   | 25        | Species structure, |
| (Ministry of Environment)                | (macrophytobenthos)       |          | transects | biomass, percent   |
|                                          |                           |          |           | coverage,          |
|                                          |                           |          |           | proportion of      |
|                                          |                           |          |           | tolerant and       |
|                                          |                           |          |           | sensitive species  |
| PERSEUS, EC FP7                          | 2 cruises in 2012-2016    | VII-VIII | 2         | Hydrophysics,      |
|                                          |                           |          |           | chemistry, biology |

### **ROMANIA**

Table 73. Ongoing projects in Romania

| Implementing organization | Name of Project                                                                                                    | Financed<br>by                                                                                                           | Duration      | Cruises<br>(Stations/Parameters)                                                                                                                                                                                                                                                     | Reporting and storage of data |
|---------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Mare Nostrum<br>NGO       | Dolphins<br>conservation                                                                                           |                                                                                                                          |               | N/A (observations on dolphin strandings)                                                                                                                                                                                                                                             | Excel,<br>www.delfini<br>.ro  |
| GeoEcoMar                 | GeoEcoMar's<br>core program –<br>Project PN 09 41<br>01 01<br>Geoecological<br>monitoring of the<br>Romanian shelf | Ministry of<br>Education,<br>Research,<br>Youth and<br>Sports<br>/National<br>Authority<br>for<br>Scientific<br>Research | 2009-2013     | 30 stations/Parameters - Temperature, salinity, sigma theta, dissolved oxygen, oxygen saturation, pH, Eh, light transmission/ absorption, fluorescence, turbidity, nutrients, H <sub>2</sub> S, chlorophyll a, seabed substrate, biodiversity (phytoplankton, zooplankton, benthos): |                               |
|                           | BSERA-NET –<br>MARCY                                                                                               | EC                                                                                                                       | 2011-2013     | 31 stations/ Parameters -<br>Temperature, salinity, sigma<br>theta, dissolved oxygen,<br>oxygen saturation, pH,<br>transparency, nutrients,<br>chlorophyll a                                                                                                                         |                               |
|                           | FP7 – COCONET                                                                                                      | EC                                                                                                                       | 2012-<br>2015 | 20 stations/Parameters - Temperature, salinity, sigma theta, dissolved oxygen, oxygen saturation, pH, Eh, light transmission/absorption, fluorescence, turbidity, nutrients, H <sub>2</sub> S, chlorophyll a, seabed substrate, biodiversity (phytoplankton, zooplankton, benthos)   |                               |

<sup>&</sup>lt;sup>181</sup> Under MFSD monitoring IO-BAS conducted on 32 stations in front the BG coast fisheries survey; Under this monitoring in June-November 2012 Cetaceans sightings have been carried out as well.

| Implementing organization                           | Name of Project                                                                                                                     | Financed<br>by | Duration       | Cruises<br>(Stations/Parameters)   | Reporting and storage of data                                                             |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------------------------------------|-------------------------------------------------------------------------------------------|
| NIMRD                                               | PERSEUS                                                                                                                             | EC             |                |                                    |                                                                                           |
|                                                     | COCONET                                                                                                                             | EC             |                |                                    |                                                                                           |
|                                                     | MISIS                                                                                                                               | EC             |                |                                    |                                                                                           |
|                                                     | CBC Programme/Fishe ry project                                                                                                      | EC             |                |                                    |                                                                                           |
| SC AQUASERV<br>SA                                   | Rehabilitation<br>and extension of<br>water and<br>wastewater in<br>Tulcea County                                                   | EC             |                | No cruises                         |                                                                                           |
| Romanian<br>Space Agency                            | IMAGIS - Complex application of GIS and remote sensing techniques to support integrated management activities Romanian coastal area | PNCDI II       | 2008-<br>2011  | No cruises                         | IMAGIS:<br>http://www<br>.rmri.ro/RM<br>RI/National<br>Programs/I<br>MAGIS/inde<br>x.html |
|                                                     | OCEAN COLOUR – "Bio-optical Characterization of the Black Sea for Remote Sensing Applications"                                      | NATO SfP       | 2010-<br>2013  | No cruises                         |                                                                                           |
|                                                     | TanDEM-X DATA FOR ENVIRONMENTAL AND DISASTER MONITORING                                                                             | ???            | 2009           | No cruises                         | TanDEM-X:<br>https://tand<br>emx-<br>science.dlr.<br>de/                                  |
| Environmental<br>Protection<br>Agency,<br>Constanta | No name                                                                                                                             | National       | continuo<br>us | 52 (1 station and 1+31 parameters) | The data are stored on HDD in Excel sheets, DVD, printed on paper                         |

Note: More details on the EC FP7 Projects can be found on their webpages, which are included in the Table 70.

The national programme called NUCLEU, financed by the Ministry of Research and Education, includes project dedicated to fisheries, which is presently ongoing.

<sup>182</sup> The overall objective is to improve water and wastewater infrastructure to benefit the environment and population to meet compliance obligations established by the Treaty of Accession and SOP Environment, Priority Axis 1. The project mainly consists of measures for drinking water sector, which refers to rehabilitation abstraction from surface and underground culvert pipes, transport and water distribution, water treatment plant (rapid sand filters, sedimentation units by coagulation-flocculation, granular activated carbon filters, ozonation and chlorination units, sludge treatment systems), rehabilitation and construction of storage reservoirs and pumping stations, implementation of SCADA systems and implementation of water metering system and rehabilitation and expansion of collection system and wastewater treatment, including the establishment of three wastewater treatment plants - equivalent to a population of 100,000, 5,000 and 10,000 respectively. Project beneficiary population will be about 106,000 inhabitants in the county of Tulcea.

No ongoing projects have been specified by Ondokuz Mayis University, Ataturk University, Canakkale Onsekiz Mart University, Institute of Marine Science and Technology (Izmir), and Istanbul University (Faculties of Marine Sciences&Management and of Fishery).

### The IMS METU projects are presented at:

http://www.ims.metu.edu.tr/Sayfa.php?icerik=Makale&mid=19. The main projects they participate are EC FP7 (COCONET, PERSESUS) and a national one, named: "National Fisheries Data Collection Programme. Acoustic Method for the Determination of the Black Sea anchovy stocks and Continuous Monitoring - Model Creation", financed by TUBITAK (TÜBITAK 110G124 project).

Table 74. Ongoing projects in Turkey

| Implementing organization                            | Name of<br>Project                                                    | Financed by                                       | Duration         | Cruises<br>(Stations/Parameters)                                                                                                                                                                                                                | Reporting and storage of data                                                                                                                                                                                  |
|------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Central Fisheries Research Institute (CFRI, Trabzon) | Black Sea and<br>Büyükdere<br>Environment<br>al Monitoring<br>Project | Not<br>specified                                  | Not<br>specified | 4 per year /7 to 20 stations/ Water temperature, pH, salinity, conductivity, sigma-t, light transmission, chlorophyll-a, alkalinity, hydrogen sulphide, TSS, metals (cupper, iron, zinc, lead, cadmium, mercury, arsenic, manganese), nutrients | Raw data and graphs                                                                                                                                                                                            |
| Sinop<br>University,<br>Faculty of<br>Fishery        | COCONET                                                               | EC                                                | 2012-<br>2015    | Pilot area: Şile coast :                                                                                                                                                                                                                        |                                                                                                                                                                                                                |
| TUBITAK – the<br>Marmara<br>Research<br>Center       | DECOS                                                                 | Ministry of<br>Environment<br>and<br>Urbanization |                  | The Project DEKOS focuses on the assessment and classification of coastal (transitional) and marine waters, including data mining, gaps identification and filling them through field surveys.                                                  | http://dekos.mam.g ov.tr/ (In Turkish and under development. By 2013 it is planned to have a data link and English version). The data are reported as raw and graphs, reports can be achieved at the Institute |
| IMS/METU<br>(Erdemli)                                | COCONET                                                               | EC FP7                                            | 2012-<br>2015    | 2 cruises in 2013/<br>Physical, chemical,<br>biological,<br>meteorological                                                                                                                                                                      | Raw data to the project data base                                                                                                                                                                              |
|                                                      | PERSEUS                                                               | EC FP7                                            | 2012-<br>2015    | 2 cruises in 2013/<br>Physical, chemical,<br>biological                                                                                                                                                                                         | Raw data to the project data base                                                                                                                                                                              |
|                                                      | TÜBITAK<br>110G124<br>project                                         | TUBITAK                                           |                  | 2 cruises in 2012-<br>2013/ Physical, Fish<br>morphology,<br>abundance, biomass,<br>reproduction, fishing<br>by-catch, acoustic<br>backscatter                                                                                                  |                                                                                                                                                                                                                |

Note: TUBITAK – the Marmara Research Center will soon start a new Project on Beach quality and prepare a database to respond to the needs of the Beach Profile Scheme of EU.

Note: The Trabzon Institite (CFRI) has specified additional 24 cruises, fortnight (fortnight is not clear) at 2 stations to study: water temperature, pH, salinity, conductivity, density, light transmission, chlorophyll-a and oxygen.

### To conclude on the contribution of projects.

The projects are a powerful tool, addressing specific questions, and advancing scientific knowledge, in general, however, most of them share none of their data compiled, and often the reports prepared under their activities are available for the partner-organizations only (password protected).

## 8. Gaps, missing monitoring requirements

BG, RO and TR have strong legal/policy and scientific foundations on to develop integrated monitoring/assessment programmes following the DPSIRR model. Much of the work will involve building on, or adapting already existing monitoring arrangements. Additional monitoring requirements are listed in the Table below.

Table 75. Specification of additional monitoring requirements

| Descriptor                                | Additional monitoring requirements               |
|-------------------------------------------|--------------------------------------------------|
| Descriptor 1, 4 and 6 – functional groups | Marine mammals: 5 yearly census of dolphins      |
|                                           | populations                                      |
|                                           | Birds: seabirds colonies and seabird by-catch    |
| Descriptor 1, 4 and 6 - habitats          | Deep sea biogenic structures                     |
|                                           | Improving information on the seabed, mapping     |
|                                           | of habitats, tracing of habitat change and loss  |
| Descriptor 2 - NIS                        | Abundance and distribution of NIS, especially in |
|                                           | high risk locations                              |
| Descriptor 5 - eutrophication             | Primary production (phytoplankton and            |
|                                           | macroalgae), areas of hypoxia, change in         |
|                                           | macroalgal communities                           |
| Descriptor 7 – hydrographical conditions  | Changes in water temperature and salinity        |
|                                           | related to human activities                      |
| Descriptor 8 - contaminants               | Screening for new pollutants                     |
| Descriptor 9 – contaminants in seafood    | Commercial fish                                  |
| Descriptor 10 – marine litter             | Floating and seafloor litter, microplastics      |
| Descriptor 11 – underwater noise          | Underwater noise level                           |

Note: There was a recommendation to detail this Table 'exactly like in the Directive', however, such details should go to the revised Monitoring Programmes, based on expets opinion, the objective of this report was to gather stakeholders opinions on gaps, in general. About data availability as per the MSFD Descriptors (to cover their indicators) details are given in Chapter VI.

In all beneficiary countries land-based pressures are defined as part of pollution source monitoring programs. These programmes are well financed and implemented. However, the methods and results of the pressures monitoring programs are seldom coordinated with, or used in, the ambient monitoring programs in the same areas. Hence, impacts are poorly related to pressures, and especially scarce is the knowledge on cumulative effects.

The destruction of habitats represents a serious threat to the biological diversity in the Black Sea and needs special attention. It affects the water quality and status of living resources and is due to activities in various sectors of economy. The construction activities and the infrastructure projects cause serious damages to the habitats. They include the transport corridor constructions – highways around the Black Sea, platforms (exploitation of gas and petrol resources), dredging for transport purposes; ports development; construction of large touristic complexes and facilities on the seaside; incorrect management of the wetlands areas; extraction of inert material from the sea bed, illegal bottom trawling and others. **Hot spots of habitats destruction** should be identified (similar to hot spots of land-based sources of pollution) and relevant monitoring should be developed.

Biodiversity of the Black Sea is insufficiently attended in the routine monitoring programmes. Especially important is to better study: bacteria, phytoplankton, Protozoa and meiobenthos.

Genetic investigations are scarce. Better knowledge of the Black Sea gene pool is required. Acidification and carbon storage studies need to be advanced.

Operational monitoring development is basically poorly attended. There is much to desire in the introduction of automated systems of observation in the sea, as well as in the development of remote sensing.

There are domains of the Black Sea-related monitoring which are covered by several organizations, sometimes overlapping their observations. The capacities of different institutions are not properly used. Frequency of observations might be hampered due to delays in providing funding. Proper geographical coverage is not ensured due to insufficient funding. Mandatory parameters are not covered due to lack of capacity. The few institutions involved in national monitoring programmes are overloaded and unable to properly manage the data produced. Networking of institutions controlling pressures with those which deal with state and impacts observed in the Black Sea is crucial, yet obviously absent in the beneficiary countries.

No ecosystem-based management is possible without inter-sectoral cooperation, including such cooperation when building the National Monitoring Programme, following the scheme of the DPSIR model, as shown below on the example for Eutrophication and Fishery decline (being priorities among other important Black Sea environmental problems):

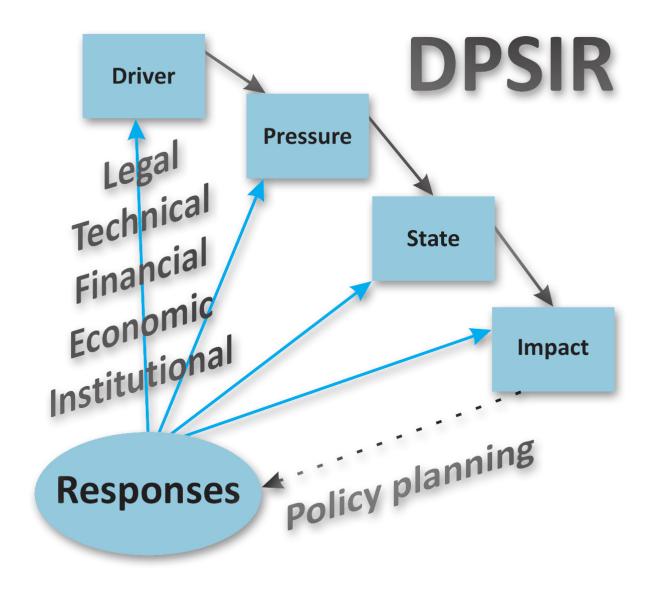



Figure 25. The general DPSIR Scheme

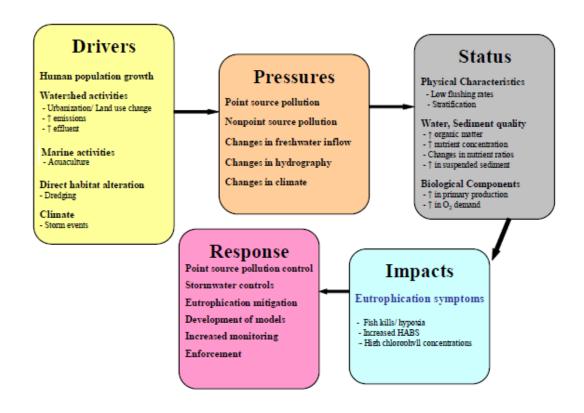



Figure 26. DPSIR: Eutrophication

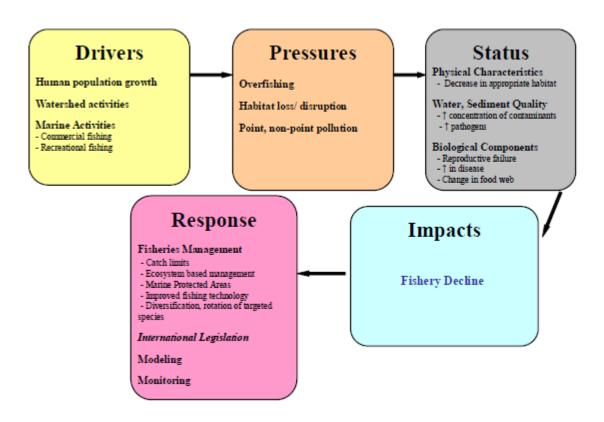



Figure 27. DPSIR: Fish decline

# II. Data management, data products, QA/QC, assessments

The generation of data in itself by various monitoring activities is not sufficient, there must be an associated data management, generation of data products, and communication infrastructure. This infrastructure needs to provide data/information freely and within certain time limit to both researchers and policy makers. Unfortunately, there is no regional on-line data base for the Black Sea which would provide comprehensive information on the availability and accessibility of data/information collected and managed in the beneficiary countries. BSC BSIS is not on-line, the data bases of different projects are either inaccessible or provide only scarce meta-data.



The only regional free data bases are the NATO –NATO SfP ODBMS Black Sea Data base, which contains historical data collected prior 1997<sup>183</sup> and the Black Sea Oceanographic Data Base (BSOD)<sup>184</sup>.

The *Mnemiopsis leidyi* Data Base (http://ps-blacksea-commission.ath.cx/MLDB/), created under the umbrella of the BSC, is also not completely free for access (there are terms specified).

Global and European level data bases containing data/information and data products for the Black Sea, have been described in the Diagnostic Report I, Annex I, http://www.blacksea-commission.org/\_publ-BSDiagnosticReport2010.asp. To this list CleanSeaNet<sup>185</sup> and SafeSeaNet<sup>186</sup> should be also added.

183 Link: http://sfp1.ims.metu.edu.tr/

Brief description: Black Sea inter-disciplinary multivariable historical database was created in framework of the NATO TU-Black Sea project in 1994-1997 and is maintained in framework of the NATO SfP ODBMS Black Sea Projects. It includes all main physical, chemical and biological variables for the entire Black Sea basin. Database covers the most crucial period in the history of the Black Sea ecosystem starting from the "background" situation in 1960 till the drastic changes occurred in 90s. All data included into the database were quality checked by qualified groups of regional experts, well acquainted with the Black Sea data. Each value of physical, chemical and bio-optical data is accompanied with the quality flag.

Released: 2002 Time period: 1956-2001 Resolution: stations Coverage: Black Sea

Areas of application: ecosystem studies and assessment

Accessibility: free Format: ASCII (csv)

Data source link: http://sfp1.ims.metu.edu.tr/ODBMSDB/

184 **Brief description**: The Black Sea Oceanographic Database (BSOD) was compiled on the base of the NATO TU-Black Sea database and MEDAR-MEDATLAS. The BSOD includes main physical, chemical and biological variables for the entire Black Sea basin (148 variables). The database includes data obtained at 74,532 oceanographic stations.

For more information contact: Sukru Besiktepe, Director of IMS METU, sukru@ims.metu.edu.tr.

Released: 2005 Time period: 1890 - 2003 Resolution: stations Coverage: Black Sea

Areas of application: ecosystem studies and assessment

Accessibility: free, provided by request by Institute of Marine Sciences, Middle East Technical University (www.ims.metu.edu.tr)

Format: Paradox Database distributed on CD

<sup>185</sup> CleanSeaNet is a near-real-time satellite-based oil spill and vessel monitoring service. It entered into operation on 16 April 2007. The service is continually being expanded and improved and provides a range of different products to the Commission and to EU Member States, and to other governmental and institutional partners as appropriate. Webpage: http://cleanseanet.emsa.europa.eu/

SAFESEANET (https://safeseanet-sso.emsa.europa.eu/ssn-login/login.jsp), is a European Platform for Maritime Data Exchange between Member States' maritime authorities, is a network/Internet solution based on the concept of a distributed database. The SAFESEANET system has been developed for supporting the requirements of the Directive 2002/59/EC of the European Parliament and of the Council of 27 June 2002 establishing A Community vessel, traffic monitoring and information system. The system is accessible to the National administration of the Member States of the European

## 1. Availability of permanent data bases and terms of access

## **National level**

# TOTOLE STREET

## **BULGARIA**

IO-BAS is the National Oceanographic Data Center (NODC)<sup>187</sup>. The Institutions in Bulgaria do not have unified data bases, which would store all the various types of data collected. The data bases of different projects have been quoted, however, the on-line accessible ones contain meta data only, not the data themselves. There is no national data base which would provide for free access to historical and recent environmental data.

Table 76. Permanent data bases in Bulgaria

| Theme                                                       | Owner         | Name of the data base<br>(if any)        | Link (if any)                                           | Year of<br>launch | Type of<br>data<br>base | Is the data base linked to models? | Terms of access            |
|-------------------------------------------------------------|---------------|------------------------------------------|---------------------------------------------------------|-------------------|-------------------------|------------------------------------|----------------------------|
| Oceanography<br>data <sup>188</sup>                         | IO-BAS        | National<br>Oceanographic Data<br>base   | http://www.bgodc.i<br>o-bas.bg/                         | 2002              | MSSQL2<br>008           | YES,<br>hydro<br>physical          | Upon<br>request            |
| Hydrochemistry Hydrobiology (phytoplankton and zooplankton) | IFR-<br>Varna | No name<br>Amfora (for<br>phytoplankton) | No<br>No                                                | 1994<br>1993      | dbf<br>dbf              | No<br>No                           | negotiation<br>negotiation |
| CTD                                                         |               | CTD data base                            | http://seadatanet.<br>maris2.nl/v_cdi_v2/<br>search.asp | 2001              | ODV                     | no                                 | negotiations               |
| Bacteria<br>biomass                                         |               | Bacteria C-biomass                       | http://seadatanet.<br>maris2.nl/v_cdi_v2/<br>search.asp | 2001              | ODV                     | no                                 | negotiations               |
| Zooplankton<br>biomass                                      |               | Zooplankton wet biomass                  | http://seadatanet.<br>maris2.nl/v_cdi_v2/<br>search.asp | 1968              | ODV                     | no                                 | negotiations               |
| Macrozooplankt on abundance                                 |               | Macrozooplankton                         | no                                                      | 2002              | excel                   | no                                 | negotiations               |
| Water<br>Temperature                                        |               | Surface water temperature                | no                                                      | 1968              | ODV                     | no                                 | negotiations               |
| Fish abundance                                              |               | Sprat trawl surveys<br>2007-2009         | http://seadatanet.<br>maris2.nl/v_cdi_v2/<br>search.asp | 2007              | ODV                     | Yes, MSY<br>calculatio<br>ns       | negotiations               |

exchange of maritime data. The network assists communication between authorities at local/regional level and central authorities thus contributing to prevent accidents at sea and, by extension, marine pollution, and that the implementation of EU maritime safety legislation will be made more efficient. 187 The IODE Ocean Data Portal is at: odp.oceandataportal.ne. At the Nineteenth Session of the IOC Committee on International Oceanographic Data and Information Exchange (IODE-XIX, Trieste, Italy, 12-16 March 2007) a project document for the establishment of the Ocean Data and Information Network for the Black Sea Region (ODINBLACKSEA, a network of NODC, in other words) was adopted. Recognising that the lives of at least 160 million people are profoundly influenced by the Black Sea and considering that all riparian countries depend to a large extent on marine and coastal resources, the ability to acquire, manage, archive and disseminate data, as well as the capacity to generate products and services in support of decision making and management of the Sea and Coastal Zones is of vital importance. The Ocean Data and Information Network for the Black Sea Region (ODINBLACKSEA) Project is proposed to respond to these needs through: (i) providing assistance in the development, operation and strengthening of National Oceanographic Data (and Information) Centres and to establish their networking in the region; (ii) providing training and education in marine data and information management, taking into account the requirements of operational oceanography; applying standard formats and methodologies as defined by the IODE; (iii) enhancing national and regional awareness of Marine Data and Information Management; (iv) assisting in the development and maintenance of national and regional marine data, metadata and information databases; (v) assisting in the development and dissemination of marine data and information products and services, meeting the needs of user communities at the national and regional levels, and responding to national and regional priorities; (vi) undertaking the ODINBLACKSEA activities in close collaboration and networking with other relevant organizations, programmes and projects operating in the Black Sea region; and (vii) undertaking the above activities applying modern technologies for data collection, processing, storage and dissemination.

Community and of the European Free Trade Association States. SAFESEANET main objective is to aid the collection, dissemination and harmonised

Information on the Bulgarian National Oceanographic Data Center (BGODC), Institute of Oceanology can be found at: http://www.bgodc.io-bas.bg/ and https://www.bodc.ac.uk/data/information\_and\_inventories/edmed/org/692/

<sup>&</sup>lt;sup>188</sup> There are data sets provided by IO-BAS (metadata of monitoring physical, chemical and biological parameters) to the Black Sea SCENE/SeaDataNet database, the Geo-SEAS data base is hosted by IO-BAS, chemical data is reported to EMOD-Net.

## Fishing vessels database (NAFA)

A special database is created within the VMS (fishery vessel monitoring system) to serve the operators and inspectors, allowing faster identification of the fishing vessel. In this database are stored such vessel's characteristics like:

- Name of the vessel
- Registration number
- Call sign (vessel's main identification elements)
- MMSI (vessel's main identification elements)
- Technical parameters like length, width, etc.
- Actual picture of the fishing vessel
- Contact details of the Master of the vessel
- Contact details of the vessel's owner

Additional software products are incorporated in the NAFA database, such as WebOverMap and 'ZoneMaker". The number of inspections at sea are recorded and the data is used to improve and/or expant control, where necessary. 'ZoneMaker' displays forbidden fishing areas and allows monitoring offence. The offenders appear in red (in the VMS system) and sound signalization is also provided.

Thus the NAFA information system is web server based system, working in real time and the data stored is renewed up to date by authorized operators. The access to the system is secured by individual password assigned to the relevant authorized operator. The system is a combination of information modules related to the different directions in the fishing statistics. The data collected could be transferred from one information module to another automatically or depending on the user's classification criteria.

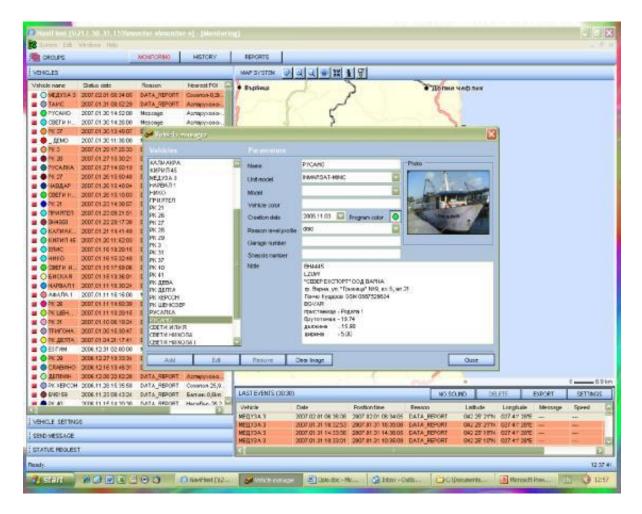



Figure 28. The Fishing vessels data base of NAFA

## Information modules

- Fishing fleet register: the data collected includes registration number, name of the vessel, technical parameters, producer information, personal details of the vessel's owner;
- Commercial Fishing licenses register the information collected in this information module is for the fishing licenses issued by the agency: the number of the license, the type of the fishing gears, the number of the logbooks etc. This module corresponds with the fleet register automatically;
- Recreational fishing register
- Catch register: contains information like: landing declarations, take over declarations, transport documents – corresponds with Commercial Fishing licenses register;
- Branch organizations register. Contains: list of main data of branch organizations and operational program list of projects;
- Register of Producer Organizations. Contains: Registration of Producer organizations. Production and processing data. Operational program list of projects.

## Subsystems of the NAFA database:

- Quota expiry reports
- Scientific data available resources and catches
- effected
- Fishing effort
- Catches effected (different species)
- Fishing fleet capacity
- Warning for delayed submission of landing declarations and sales notes

Note: Log books of fishery vessels and VMS data are not freely accessible.

IFR-Varna gives reference to the data bases created under the Upgrade BS Scene project:

| Name of the data base (if any) | Link (if any)         | Year of launch | Type of data<br>base | Is the data base linked to models? | Terms of access |
|--------------------------------|-----------------------|----------------|----------------------|------------------------------------|-----------------|
| Abiotic Data series            | www.blackseascene.net | 2006           | Excel                |                                    | negotiations    |
| Biotic Data<br>Series          | www.blackseascene.net | 2006           | Excel                | yes                                | negotiations    |
| Ichthyology<br>Data            | www.blackseascene.net | 2006           | Excel                | yes                                | negotiations    |
| Marine<br>Cetaceans            | www.blackseascene.net | 2006           | Excel                |                                    | negotiations    |

**IBER-BAS** gives reference to the data bases created under the SeaDataNet project and NATURE2000 data base. The organization also mentioned keeping data in Excel sheets, however, they are not organized in a specialized data base.

| Name of<br>the data<br>base<br>(if any) | Link (if any)                                   | Year of<br>launch | Type of data base     | Is the data base linked to models? | Terms of access |
|-----------------------------------------|-------------------------------------------------|-------------------|-----------------------|------------------------------------|-----------------|
| Sozopol<br>01-05                        | http://seadatanet.maris2.nl/v_cdi_v2/result.asp | 2010              | Data<br>View<br>ASCII | No                                 | negotiation     |
| Natura<br>2000 MPA<br>GIS<br>database   |                                                 | 2011              | Excel,<br>DBF         | No                                 | negotiation     |

The **Black Sea NGO Network** gives references to the data bases created under SeaDataNet and Upgrade BS Scene projects.

| Name of the    | Link (if any)                | Year of | Type of data | Is the data    | Terms  |
|----------------|------------------------------|---------|--------------|----------------|--------|
| data base      |                              | launch  | base         | base linked to | of     |
| (if any)       |                              |         |              | models?        | access |
| Socio economic | scene.bsnn.org               | 2009    | Excel        | No             | No     |
| data           |                              |         |              |                |        |
| EDMERP         | SeaDataNet                   | 2009    | Excel        | No             | No     |
|                | (http://www.seadatanet.org/) |         |              |                |        |

IO-BAS gives reference to regional data bases created under different projects, such as follow:

| Name of the<br>data base<br>(if any)              | Link (if any)                                   | Year of<br>launch   | Type of data base | Is the data base linked to models?                    | Terms<br>of<br>access |
|---------------------------------------------------|-------------------------------------------------|---------------------|-------------------|-------------------------------------------------------|-----------------------|
| NATO –NATO<br>SfP ODBMS<br>Black Sea Data<br>base | http://sfp1.ims.metu.edu.tr/texts/datab ase.htm | 1997 <sup>189</sup> |                   | No                                                    | free                  |
| SESAME data-<br>base                              | No link provided                                | 2011                |                   | YES - 3-D<br>Hydrophysical<br>and Ecological<br>model | Upon<br>request       |
| Black Sea<br>Mnemiopsis<br>leidyi database        | http://ps-blacksea-<br>commission.ath.cx/MLDB   | 2011                |                   |                                                       | Upon<br>request       |

Data bases for habitats and for birds data storage have not been reported.

None of the Institutions has reported on a data base, which would store all meta data and data stemming from observations under national monitoring programmes and projects together. Besides, there is no mechanism for exchange of data between different institutions.

## **ROMANIA**

In Romania, there are data bases in the different Institutions, however, they are with restricted access.

Table 77. Permanent data bases in Romania

| Theme                                | Owner                                                                  | Name of the<br>data base<br>(if any) | Link (if any) | Year of<br>launch | Type of data<br>base | Is the data base linked to models? |
|--------------------------------------|------------------------------------------------------------------------|--------------------------------------|---------------|-------------------|----------------------|------------------------------------|
| Bathing<br>waters                    | Constanta<br>county<br>department of<br>public health                  | REGISTRATIONS                        | No            | 2010              | Word Excel           | No                                 |
| Radioactivity                        | Environment Protection Agency of Constanta                             | BD_RNSRM                             | No            | 2000              | Excel                | No                                 |
| Statistics on<br>flow of<br>tourists | National<br>Institute for<br>Research and<br>Development<br>in Tourism | No name <sup>190</sup>               | No            | 2011              | Excel                | No                                 |
|                                      | National<br>Company<br>Maritime Ports<br>Administration                |                                      |               |                   |                      |                                    |

<sup>189</sup> The Data base has been created in 1997 and collected historical data, however, it has been never sustained. It is distributed on CD and contains scarce data from Black Sea Bulgarian waters. <sup>190</sup> For internal use only

| Theme                                                                | Owner                                                | Name of the<br>data base<br>(if any) | Link (if any)                                                              | Year of<br>launch                                          | Type of data<br>base                         | Is the data base linked to models?                       |
|----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|
| Dolphins,                                                            | Mare Nostrum                                         | Dolphins <sup>191</sup>              | www.delfini.ro                                                             | 2011                                                       | Excel                                        | No                                                       |
| Litter                                                               | NGO                                                  | Litter<br>Coastwatch <sup>192</sup>  |                                                                            | 2003                                                       | Doc                                          | No                                                       |
| Chemistry,<br>geology,<br>biology                                    | GeoEcoMar                                            | GEM-MN <sup>193</sup>                |                                                                            | 2011                                                       | MS Access                                    | No                                                       |
| Chemistry,<br>geology,<br>biology                                    | NIMRD                                                | Beach<br>dynamics <sup>194</sup>     |                                                                            | 2007-<br>data have<br>been<br>stored<br>electronic<br>ally | Excel                                        | No                                                       |
|                                                                      |                                                      | IMAGIS <sup>195</sup>                | http://www.r<br>mri.ro/RMRI/<br>NationalProgr<br>ams/IMAGIS/i<br>ndex.html | 2011                                                       | geodatabase                                  | No                                                       |
| Chemistry,<br>biology                                                | Dobrogea<br>Littoral                                 | No name<br>specified <sup>196</sup>  | On-line with limited access                                                | 2010                                                       | ARQ<br>Program<br>(Excel<br>sheets)          | No                                                       |
|                                                                      |                                                      | GIS                                  |                                                                            | 2011                                                       | SQL SERVER<br>2008-R2                        | GEOMEDI<br>A<br>PROFESSI<br>ONAL;<br>GEOMEDI<br>A MH G.1 |
|                                                                      |                                                      | SCADA                                |                                                                            | 2013                                                       | SQL SERVER<br>2008 – R2                      |                                                          |
| Aerial imagery, imagery (the optical / radar) data in vector format. | Romanian<br>Space Agency                             | IMAGIS <sup>197</sup>                | http://www.r<br>mri.ro/RMRI/N<br>ationalProgra<br>ms/IMAGIS/in<br>dex.html | 2011                                                       | geodatabase                                  | No                                                       |
| Noise,<br>salinity                                                   | Constanta<br>Maritime<br>Hydrographic<br>Directorate | BD DHM                               |                                                                            | 1963                                                       | Initially ACCES library data, in 2011 ORACLE |                                                          |
| Statistical<br>data                                                  | Constanta<br>County<br>Department<br>for Statistics  | No data base sp                      | ecified                                                                    |                                                            |                                              |                                                          |

Note: Tulcea County Department of Health reports data stored in Word, with links to www.dspjtulcea.ro, www.ispb.ro and www.ms ro, updated annually. NAFA, Romania has not reported on data base availability. The private companies OMV Petrom SA and ExxonMomilExploration&Production Romania Ltd have not specified any data bases as well.

191 User and password

<sup>192</sup> On request 193 On request based on access flags

<sup>194</sup> Upon request

<sup>195</sup> Free for maps

<sup>196</sup> Limited access (only for the Administrations water basins that realise the monitoring and ANAR Bucharest)

<sup>&</sup>lt;sup>197</sup> Free for maps

## **TURKEY**

There is a National Data Inventory in Turkey, published at the web page of the IMS/METU: http://www.ims.metu.edu.tr/inventory/.

No data bases were mentioned in the completed Questionnaires by Ondokuz Mayis University (Samsun), Ataturk University (Erzerum), Canakkale Onsekiz Mart University, Institute of Marine Science and Technology (Izmir), Central Fisheries Research Institute (Trabzon), Sinop University, and by the Istanbul University.

However, all marine science institutes have their own data bases and IMS METU sustains a national data base (not frequently updated, though). Ministry of Environment has its own database storing monitoring data. The TR National Oceanographic Data Center (recognized by IOC/IODE) is the Office of Navigation, Hydrography and Oceanography (ONHO) storing all types of data submitted to them. By Law all the organizations collecting marine related data have to annually submit data to ONHO. In practice the performance requires much improvement. ONHO is a partner to the SeaDataNet II Project as the subcontractor of the TUBITAK Marmara Research Center. Under the Project DeKoS (the TR national project for the WFD and MSFD transposition/initial implementation, funded by the Ministry of Environment and coordinated by TUBITAK-MRC) a special data base with mapping and reporting tools (ARC Marine Structure) is under preparation. It will include all data collected from monitoring projects, other projects carried out for the Ministry of Environment and Urbanization and data submitted by different institutes (already published). This will be delivered by TUBITAK to the Ministry of Environment and Urbanization by the end of 2013.

Table 78. Permanent data bases in Turkey

| Theme                | Owner                                   | Name of the data base                                             | Link (if any)         | Year<br>of | Type of data base | Is the data base<br>linked to |
|----------------------|-----------------------------------------|-------------------------------------------------------------------|-----------------------|------------|-------------------|-------------------------------|
| F .                  | D.4:                                    | (if any)                                                          | NI I' I               | launch     | F 1               | models?                       |
| Environm<br>ent data | Ministry of<br>Env. and<br>Urbanization | No name<br>(Coastal/territorial<br>waters monitoring<br>database) | No link               | 2004       | Excel             | No                            |
| Environm             | Institute of                            | No name                                                           | http://www.im         |            |                   |                               |
| ent data             | Marine                                  |                                                                   | s.metu.edu.tr/i       |            |                   |                               |
|                      | Sciences/                               |                                                                   | ms_inventory/i        |            |                   |                               |
|                      | Middle East                             |                                                                   | nvsrv.dll/query       |            |                   |                               |
|                      | Technical                               |                                                                   | ds. (meta data)       |            |                   |                               |
|                      | University                              |                                                                   |                       |            |                   |                               |
|                      | (IMS/METU)                              |                                                                   |                       |            |                   |                               |
| Biodiversi           | Nature                                  | National                                                          | Not specified         |            | GIS?              | Statistical                   |
| ty (on               | Conservation                            | biodiversity                                                      |                       |            |                   | models                        |
| coast)               | Center                                  | database, Noah's                                                  |                       |            |                   |                               |
|                      |                                         | Ark National                                                      |                       |            |                   |                               |
|                      |                                         | Biodiversity Database transfers                                   |                       |            |                   |                               |
| Environm             | TUBITAK –                               | No name                                                           | Under                 | 2013       |                   |                               |
| ent data             | the Marmara                             | No name                                                           | development           | 2013       |                   |                               |
| Land-                | Research                                | LBS                                                               | о о то то р т т о т о |            |                   |                               |
| based                | Center                                  |                                                                   |                       |            |                   |                               |
| sources of           |                                         |                                                                   |                       |            |                   |                               |
| pollution            |                                         |                                                                   |                       |            |                   |                               |
| Ballast              |                                         | Ballast water Risk                                                |                       |            |                   |                               |
| water                |                                         | Assessment                                                        |                       |            |                   |                               |
|                      |                                         | System                                                            |                       |            |                   |                               |

| Theme                                                 | Owner                 | Name of the data base                                                       | Link (if any)                                                                                                                                                        | Year<br>of | Type of data base             | Is the data base<br>linked to                                                                                                         |
|-------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                       |                       | (if any)                                                                    |                                                                                                                                                                      | launch     |                               | models?                                                                                                                               |
| Environm<br>ental<br>Safety<br>aspects of<br>Shipping |                       | Decision support<br>tool for emergency<br>situations <sup>198</sup>         |                                                                                                                                                                      |            |                               | Oil spill<br>modelling                                                                                                                |
| Environm<br>ental                                     | IMS/METU<br>(Erdemli) | Black Sea<br>Database <sup>199</sup>                                        | http://sfp1.ims<br>.metu.edu.tr/O<br>DBMSDB/                                                                                                                         | 2002       | PARADOX                       | No                                                                                                                                    |
| Oceanogr<br>aphy                                      |                       | IMS METU<br>Oceanographic<br>Data Inventory <sup>200</sup>                  | http://www.im<br>s.metu.edu.tr/l<br>MS_Inventory                                                                                                                     | 2002       | MS<br>Access                  | No                                                                                                                                    |
| Hydrology                                             |                       | Database of CTD data <sup>201</sup>                                         |                                                                                                                                                                      | 1988       | Excel,<br>ASCII<br>files, ODV | Yes (ecosystem model including following MSFD indicators: 1.2.1, 1.6.3, 1.7.1, 3.1.1, 3.2.1,4.1.1, 4.2.1, 4.3.1, 5.1.1, 5.2.1, 5.2.2) |
| Chemistry                                             |                       | Database of chemical data <sup>202</sup>                                    |                                                                                                                                                                      | 1986       | Excel,<br>ASCII<br>files, ODV | Yes (ecosystem<br>model - see<br>above)                                                                                               |
| Fishery                                               |                       | Database of fisheries data <sup>203</sup>                                   |                                                                                                                                                                      | 1986       | Excel,<br>ASCII files         | Yes (fish stock assessment)                                                                                                           |
| Mnemiop<br>sis                                        |                       | IMS METU<br>contribution to<br>Mnemiopsis Leidyi<br>Database <sup>204</sup> | The regional Black Sea Mnemiopsis leidyi database (http://docum ents.blacksea- commission.or g/MLDB) hosted by the Permanent Secretariat of the Black Sea Commission | 2008       | SQL<br>server                 | No                                                                                                                                    |

Note: TUBITAK - the Marmara Research Center plans to develop data base for the needs of the Beach Profile Scheme of EU.

<sup>&</sup>lt;sup>198</sup> YAKAMOZ. YAKAMOZ is a GIS based decision support system, developed for the management of oil spills within the Turkish seas. YAKAMOZ is able to querying, analysing and generating reports using available data as well as the integration of new data when necessary. YAKAMOZ has both stand alone and network modes. In the network mode, user is able to share maps and reports over the internet. The data base includes oil spill modeling, risk assessment, ESI (environment sensitivity index) mapping for all TU coasts and decision support system.

<sup>199</sup> Free

<sup>&</sup>lt;sup>200</sup> Free

<sup>&</sup>lt;sup>201</sup> SeaDataNet OG type: unrestricted to members of organization but restricted to anybody else.

<sup>&</sup>lt;sup>202</sup> OG

<sup>&</sup>lt;sup>203</sup> OG

<sup>&</sup>lt;sup>204</sup> Free

## Regional, European and International level

Two EC DG Research Projects, namely, SeaDataNet and Black Sea Scene (with its follow-up for 2008-20011) provide for inventories of data in the Black Sea region incorporating partner-institutions involved in monitoring of the Black Sea from the beneficiary countries, as shown in Table 79. It is not clear how Bulgaria participates in Wise-EIONET, in Romania NIMRD provides to it data. BSIS (Black Sea Information System, BSC data base) is well sustained by the beneficiary countries, however, it is not on-line and its data are not accessible or exchanged between the organizations providing data. The attempts to develop BSIS in the frames of several projects (BSERP, MONINFO, Baltic2Black, see http://www.blacksea-commission.org/\_projects\_observers\_partners.asp) have actually failed. The project Baltic2Black of the BSC is still ongoing, however, the progress made is far from the expected. BSIS is neither operational, no providing data products which would support indicator-based reporting and consequent decision-making.

Table 79. Regional, European and International data bases

| Country  | Organization                                                                                       | SeaDataNet<br>(on-line)                                 | BSIS | Wise-<br>EIONET<br>(on-line)                         | Black Sea<br>Scene<br>Network/Up<br>Grade BS<br>Scene (on-<br>line) | Others                                                                                                      |
|----------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Bulgaria | IFR-Varna                                                                                          | Yes (Link not<br>provided)                              | Yes  |                                                      | Yes<br>(www.blacks<br>eascene.net;<br>ODV Format)                   |                                                                                                             |
|          | IBER-BAS                                                                                           | Yes (http://seadatane t.maris2.nl/v_cdi_ v2/result.asp) |      |                                                      | Yes (Link not provided)                                             | LTER (no detail<br>provided)                                                                                |
|          | Black Sea<br>NGO Network                                                                           | Yes (Link not provided)                                 |      |                                                      | Yes<br>(www.scene.<br>bsnn.org)                                     |                                                                                                             |
|          | IO-BAS                                                                                             | Yes (Link not provided)                                 | Yes  |                                                      | Yes (Link not provided)                                             | Sesame/Perseus data base; BSC Mnemiopsis data base; NATO –NATO SfP ODBMS Black Sea Data base, ODINBLACKSEA  |
| Romania  | S.C. Thermo-<br>electric<br>factory Midia<br>S.A.<br>(S.C. Uzina<br>Termoelectric<br>ă Midia S.A.) | Yes (Link not provided)                                 |      |                                                      |                                                                     |                                                                                                             |
|          | NIMRD                                                                                              | Yes (Link not provided)                                 | Yes  | Yes<br>(cdr.eion<br>et.europa<br>.eu/ro/ee<br>a/me1) | Yes (Link not provided)                                             | Sesame/Perseus<br>data base; BSC<br>Mnemiopsis data<br>base; NATO –NATO<br>SfP ODBMS Black<br>Sea Data base |
|          | GeoEcoMar                                                                                          |                                                         |      |                                                      | Yes (Link not provided)                                             |                                                                                                             |
| urkey    | Ministry of<br>Env. and<br>Urbanization                                                            |                                                         | Yes  | Yes                                                  |                                                                     |                                                                                                             |

| Country | Organization                                               | SeaDataNet<br>(on-line)                                                          | BSIS | Wise-<br>EIONET<br>(on-line) | Black Sea<br>Scene<br>Network/Up<br>Grade BS<br>Scene (on-<br>line) | Others                                                                                                       |
|---------|------------------------------------------------------------|----------------------------------------------------------------------------------|------|------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
|         | Institute of Marine Science and Technology (Izmir)         | Yes (Link not provided)                                                          |      |                              | Yes (Link not provided)                                             |                                                                                                              |
|         | Central<br>Fisheries<br>Research<br>Institute<br>(Trabzon) |                                                                                  |      |                              |                                                                     |                                                                                                              |
|         | Istanbul<br>University                                     |                                                                                  | Yes  |                              |                                                                     |                                                                                                              |
|         | Sinop<br>University                                        | Yes (http://seadatane t.maris2.nl/webse rvices/edmerp/ge t_detail/n_code/1 1426) |      |                              | Yes (Link not provided)                                             | Emodnet                                                                                                      |
|         | TUBITAK-the<br>Marmara<br>Research<br>Institute            | Yes <sup>205</sup>                                                               |      |                              |                                                                     |                                                                                                              |
|         | IMS/METU<br>(Erdemli)                                      | Yes                                                                              | No   | No                           | Yes (Link not provided)                                             | Sesame/Perseus<br>data base; BSC<br>Mnemiopsis data<br>base; NATO – NATO<br>SfP ODBMS Black<br>Sea Data base |

Euroocean data base is existent, however, no information was provided by the stakeholders on reprtng to it.

EMODNET, a pilot component for a final operational European Marine Observation and Data Network launched by the European Commission (DG MARE) aims to assemble fragmented and inaccessible marine data into interoperable, continuous and publicly available data streams for complete maritime basins. In the Black Sea, a consortium of five riparian countries has assembled data on marine pollution in order to facilitate access to data by all users. More consortia should be created in the next phase of the project from 2011 and 2013 covering bathymetry, geological sediments and the distribution of marine life as well as chemical pollution.

In the field of operational monitoring EuroArgo created centers for data/information management and quality control. The data are freely and easily accessible for science and other uses. The communication system is presented in Fig. 29.

-

<sup>&</sup>lt;sup>205</sup> Together with the National Oceanographic Data Center.

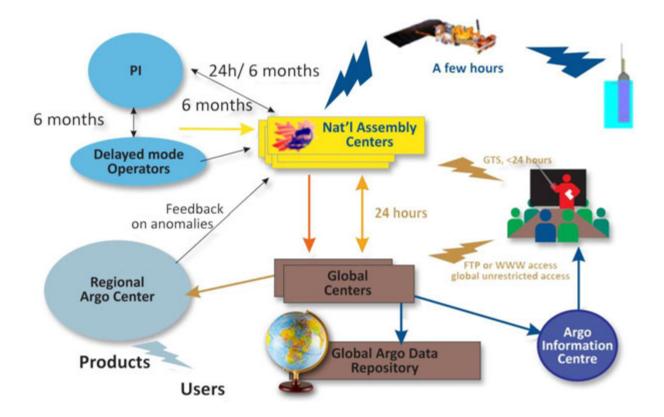



Figure 29. Communication system of EuroArgo.

The Argo Data Management System, as endorsed by the International Argo Science Team and its Data Management Group, is based on three levels of data centers:

- **a)** National Data Centres (NDC) in each country, which deploy Argo floats, receive the real-time quality-controlled data from Global Data Centers, perform delay mode quality check of Argo profiles and distribute the data to the users;
- **b)** Regional Data Centres (RDC) at selected locations for addressing each basin (Atlantic, Indian, Pacific, Southern Oceans, Mediterranean Sea);
- c) Global Data Centres (GDC) located in France and USA which received data from Global Telecommunication System (GTS), process Argo data, perform real-time quality control (RTQC) to remove spurious signals and spikes and disseminate the data to the NDACs and end users.

BulArgo data are received, stored and archived at the Bulgarian Oceanographic Data Center (BGODC), which plays the role of NDC, by automatic download from Coriolis database. Special efforts were made for the establishment and development of effective local tool for publishing of Argo data. The BulArgo management system (DMS) is based on relational database which provides an efficient way to manage and retrieve data. The local portal integrate also geographic information system (GIS) interface. During realization of the BulArgo DMS the existing information technologies and scientific standards are used. In the centre of the web portal general data dissemination architecture is a Web based middle-tier layer report server which receives incoming end users report requests, generates, renders, and delivers reports.

## To conclude on the lack of modern data bases with easy access.

Those which are available on-line such as SeaDataNet (incl. BS Scene Network) contain meta data, which is not regularly updated (depending on projects, not on regular financial assistance) and contain little information which would be useful for most of the MSFD descriptors and parameters in Annex III.

In Bulgaria and Romania the Ministries of Environment have not specified availability of data bases, though the scientific Institutions reported on data delivered to the Ministries.

## 2. Data products, indicators calculated, statistical methods used, models developed

The reporting on the subject has been poorly attended by all stakeholders contacted. This is partly due to the lack of data bases (if any) which would not only store electronically data/information but also work to generate data products (graphs, maps, etc.), and to automatically calculate indicators or provide input to models developed. Partly it is due to the busy schedule of the scientists involved in monitoring. Too many samples are usually collected, their processing is time-consuming, and too little time is left for data management. Most of the institutes do not have data centers where all the data would go for further

There are few examples of data products provided on a regular basis with free access. For instance, Black Sea climatic maps (T °C, Salinity, Density, O2, H2S) and satellite averaged maps for SST (surface water temperature) and Chl\_a can be found at:

http://www.ims.metu.edu.tr/SeaDataNet/indexclimat.asp?doc=inSituProductDescription.htm

Black Sea level anomalies are displayed at: http://www.aviso.oceanobs.com/en/data/products/seasurface-height-products/regional/m-sla-black-sea/index.html

The project MyOcean provides on a daily basis through the web page of the BSC maps of Black Sea water temperature, salinity and current velocity. More products can be found at: http://myocean.org.ua/ (Basin-scale analysis and forecast products for the Black Sea circulation and stratification (temperature, salinity, currents and sea level).

**BULGARIA** 

Statistical softwares used: Brodgar (2009), Excel, PRIMER, etc.

Softwares used for spatial and temporal visualization of data: ODV(2011)

Models developed: Ecopath (http://www.ecopath.org/) applied for the Black Sea, Black Sea circulation models (IO-BAS and Sofia University), ERSEM (http://www.meece.eu/library/ersem.html) applied for the Black Sea (in the frames of the daNUbs project<sup>206</sup>, etc.

Table 80. Statistical data products of IBER-BAS, Bulgaria

| Parameter/Indicator  | Unit       | Type of representation/product |
|----------------------|------------|--------------------------------|
| Nutrients            | ugAt/l     | graph                          |
| Chl-A                | Mg/l       | graph                          |
| Primary productivity | mgC/m3/day | graph                          |
| Water temperature    | °C         | graph                          |

Note: not clear whether they are automatically derived from a data base, as no data base is specified to be sustained in the Institute

Biodiversity and biotic Indices (e.g. Shannon, AMBI, M-AMBI etc.) are calculated based on available data by IFR-Varna and IO – BAS.

In the BulArgo project the spatial mode data dissemination is based on ESRI's ArcGIS Server by publishing the trajectory of the each Argo float (Fig. 30).

<sup>&</sup>lt;sup>206</sup> daNUbs – ECFP5, DG Research project (2001-2004) "Nurient management in the Danube .Basin and its impact on the Black Sea', http://danubs.tuwien.ac.at



Figure 30. Visualization of BulArgo floats trajectories by ArcGis Server and Report Server

The recently deployed in the BS Argo floats (March 2011) give an opportunity to study the spatial and temporal characteristics of the Black Sea temperature and salinity 3D fields and in particular the CIL evolution. Vertical profiles of temperature, salinity and dissolved oxygen measured by the floats are among the products prepared (demonstrated in Fig. 31). The data are available at the Institute of Oceanology website (http://www.gisserver.io-bas.bg/Web\_argo).

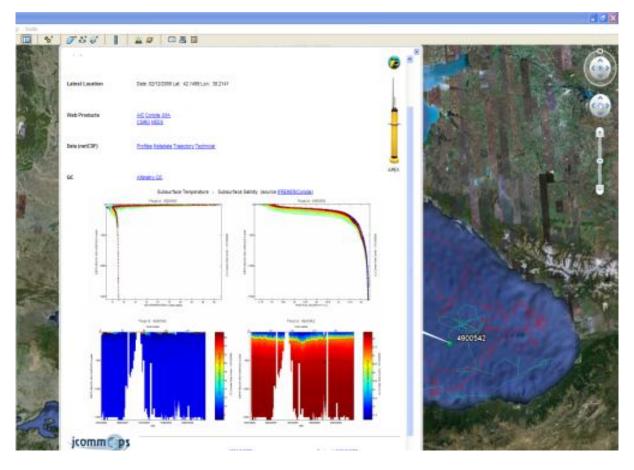



Figure 31. Argo products

Statistical softwares used: Brodgar (2009), Microsoft Excel, Statistica, OriginLab, MathLab

Softwares used for spatial and temporal visualization of data: Ocean Data View , Golden Software (Surfer, Grapher), Grads, Integrated Data Viewer (IDV)

Models: Regional model for Western Black Sea (based on Princeton Ocean Model) – outputs: sea level (at the 2,5 meters considered sea surface), currents, temperature and salinity (from 2,5 down to 2000 meters).

Table 81. Statistical data products (National Institute for Research and Development in Tourism, Romania)

| Parameter/Indicator                                 | Unit         | Type of representation/product |
|-----------------------------------------------------|--------------|--------------------------------|
| The average duration of the stay of tourists        | Days         | Tables                         |
| Average expense per tourist                         | Euro and LEI | Tables                         |
| The market share (for arrivals and overnight stays) | %            | Tables, graphics               |

Table 82. Data products automatically derived from data bases of NIMRD, Romania

| Indicator                | Unit                    | Type of                       |
|--------------------------|-------------------------|-------------------------------|
|                          |                         | representation/product        |
| Backshore with (average, | m                       | Table and figures (Annual and |
| max. min)                |                         | seasonal rate of shoreline    |
|                          |                         | change)                       |
| Erosion/accretion rate   | Meter                   | Tables, graphs, maps          |
| Beach width              | Meter                   | Tables, graphs, maps          |
| Eroded/accumulated areas | Square meter/kilometres | Tables, graphs, maps          |

No data products and indicators have been specified for bathing waters and radionuclides. Constanta County Department for Statistics (www.constanta.insse.ro) specified also no data products.

Table 83. Data products automatically derived from the data base of Dobrogea Littoral Water Directorate, Romania

| Indicator*        | Unit   | Type of                        |
|-------------------|--------|--------------------------------|
|                   |        | representation / product       |
| Air temperature   | °C     | Excel spreadsheet, for all the |
| Water Temperature | °C     | indicators analyzed in each    |
| рН                | -      | section, for the water body/   |
| Dissolved oxygen  |        | Product: ecological state of a |
| (concentration)   | mgO2/l | water body ( <i>sensu</i> WFD) |
| CBO5              | mgO2/l |                                |
| CCO-Mn            | mgO2/l |                                |
| N-NH4             | mg/l N |                                |
| NH4               | mg/l   |                                |
| N-NO2             | mg/l N |                                |

| Indicator*                   | Unit       | Type of                  |
|------------------------------|------------|--------------------------|
|                              |            | representation / product |
| NO2                          | mg/l       |                          |
| N-NO3                        | mg/l N     |                          |
| NO3                          | mg/l       |                          |
| Total N                      | mg/l N     |                          |
| P-PO4                        | mg/l P     |                          |
| PO4                          | mg/l       |                          |
| Total P                      | mg/l P     |                          |
| Salinity                     |            |                          |
| Fixed residue                | mg/l       |                          |
| Total suspended matter       | mg/l       |                          |
| Conductivity                 | (μS/cm)    |                          |
| Total phenols (phenol index) | µg/I       |                          |
| Chlorides                    | mg/l       |                          |
| Sulphates                    | mg/l       |                          |
| Calcium                      | mg/l       |                          |
| Magnesium                    | mg/l       |                          |
| Sulphides                    | mg/l       |                          |
| Dissolved Fe (Fe2+ + Fe3+)   | mg/l       |                          |
| Dissolved Cadmium            | μg/l       |                          |
| Dissolved Mercury            | μg/I       |                          |
| Dissolved Nickel             | μg/l       |                          |
| Dissolved Lead               | μg/l       |                          |
| Dissolved Cu                 | μg/l       |                          |
| Dissolved Zn                 | μg/l       |                          |
| Dissolved Cr (Cr3+ + Cr6+)   | μg/l       |                          |
| Dissolved As                 | μg/l       |                          |
| Total cyanide                | μg/l       |                          |
| Anion-active detergents      | μg/l       |                          |
| Extractable substances in    |            |                          |
| organic solvents             | mg/l       |                          |
| Transparency                 | cm         |                          |
| Quality class                |            |                          |
|                              | -          |                          |
| Quality class                | -          |                          |
| Quality class                | -          |                          |
| Quality class                | -          |                          |
| Quality class                | -          |                          |
| Final class                  |            |                          |
|                              | -          |                          |
| Biomass                      |            |                          |
| Chlorophyll a                | μg/l       |                          |
| Density                      | mln cell/l |                          |
| Density                      |            |                          |
| Rce biomass                  | -          |                          |
| Rce chlorophyll a            | -          |                          |
| Rce density                  | -          |                          |
| Number of taxons index       | -          |                          |
| Rce density                  | -          |                          |

<sup>\*</sup>Note: For all the analyzed indicators the minim, maxim, average is being calculated P10, P50, P15, P90, StDev.

Table 84. Data products automatically derived from the data base of SC AQUASERV SA, Romania

| Indicator                                    | Unit | Type of representation |
|----------------------------------------------|------|------------------------|
| BOD 5, SS, CC, NT, PT                        |      | REPORT                 |
| List and state of the PLC inputs and outputs |      | REPORT                 |
| Protection system                            |      | REPORT                 |
| Manage emergency alarm situations            |      | REPORT                 |
| Real-time display of operating parameters    |      | REPORT                 |
| Show trends trial                            |      | REPORT                 |
| Archiving data, commands, information        |      | REPORT                 |

The Romanian Space Agency provides the following data products derived from satellite observations and aerial monitoring: tables, charts, thematic maps, automatic categorization, thematic layers of land cover, vegetation indices, etc.

## **TURKEY**

No data products have been mentioned by Ondokuz Mayis University (Samsun), Ataturk University (Erzerum), Canakkale Onsekiz Mart University, Institute of Marine Science and Technology (Izmir), Central Fisheries Research Institute (Trabzon), Sinop University, and Istanbul University (Institute of Marine Science and Management).

Statistical softwares used: MatLab, PRIMER, etc.

Softwares used for spatial and temporal visualization of data: No information provided.

Models developed: No information provided.

## To conclude on data products.

The lack of well-developed data bases is closely related to the poor provision of data products in the beneficiary countries. Of course, the scientific community provides in different reports statistical analysis and indicators, but the statistical processing is not embedded in the available data bases and the indicators are mostly not automatically derived. Graphs and maps of distribution of various parameters are also produced by manual input of data into the used softwares, such as Ocean Data View, ArcGIS, etc. Consequently, most of the data remain poorly managed, statistically unprocessed, insufficiently visualised and not included in the calculation of. Much improvement is required in the field. Development of models (except hydrophysical) is poorly attended either.

## 3. QA/QC procedures in data management

QA/QC of data is poorly attended in the beneficiary countries. Almost no specific information has been provided by the stakeholders contacted. It is not clear whether any control is in place. At the regional level there are three manuals dealing with QA/QC of data, they were produced under the project Upgrade Black Sea SCENE with the support of the BSC. They are as follow:

- Goriup, P., Kideys, A., Abaza, V. 2010. Guidance on Data Quality Control for Marine Biodiversity in the Black Sea.
- Moncheva, S. 2010. Data Quality Control guidelines for Black Sea biological data phytoplankton.
- Korshenko, A;. Denga, Y., Velikova, V. (draft, 2011, 2012). QA and QC of chemical oceanographic data collections
- Iona, S., Zodiatis, G., Khaliulin, A., Zhuk, E. 2011. Data Quality Control Guidelines for physical and chemical parameters.

There is no reason to confirm that these manuals are used in practice, no matter they have been cited by the stakeholders or not. The issue of QA/QC of data is obviously pending in the beneficiary countries and requires measures to promote attention and consequent introduction into routine practices of data management.



## **BULGARIA**

Ocean Data View 4.5.0 2012 (http://odv.awi.de) with **DQC functions embedded in the software.** For chemical data the Guideline of Korshenko *et al.* (draft, 2011, 2012) is specified, however, it contains little directions on data management so far, it is more about chemical monitoring QA/QC. BulArgo data quality is ensured through the following procedures:

- a) Comparison with reference climatology (e.g. regional climatology published by SeaDataNet (http://www.seadatanet.org/)
- b) Comparison with CTD profiles
- c) BulArgo floats inter-comparison

No QA/QC procedures for data are specified by the stakeholders in Romania, except by SC AQUASERV SA, listing the same guidelines as specified in the field of monitoring QA/QC.

- ISO 9001:2008 Quality Management System Certification
- ISO 14001:2005 Environmental Management System Certification
- OHSAS 18001:2007 Health Management System Certification its Safety Management
- ISO 28000:2005 Food Safety Management System
- ISO 27001:2005 Certified Information Security Management System
- according to ISI 17025 Quality Assurance/Quality Control of Data System Certification

## **TURKEY**

No QA/QC for data management have been mentioned by Ondokuz Mayis University, Ataturk University, Canakkale Onsekiz Mart University, Institute of Marine Science and Technology (Izmir), Central Fisheries Research Institute (Trabzon), Sinop University, Istanbul University (Institute of Marine Science and Management and of Fishery), and TUBITAK. IMS/METU (Erdemli) mentioned the QC/QA Guidelines produced by the Upgrade BSS Project, and specifically the one for physical parameters.

## To conclude on QA/QC in data management.

Data management QA/QC is not paid due attention in the beneficiary countries. It is not clear how the reliability of data is checked and whether any of the available Guidelines is taken into consideration. This is especially valid for biological and fishery data.

## 4. Regular assessments

Many different reports are prepared in the beneficiary countries, though most of them remain for internal use and are not being communicated through on-line (electronic) publications. This is valid not only for the national level, but also for the various international projects funded by EC and other donors in the BS region. The projects release plenty of assessments which stay in their majority accessible only for the partner organizations. The annual reports of the BSC are also not public, only the 5-yearly SoE Report is published at the webpage of this Commission: www.blacksea-commission.org (for the period 2000-2006/7 is the last one: http://www.blacksea-commission.org/\_publ-SOE2009.asp)<sup>207</sup>. The scientific data/information are dispersed in scientific papers, most of them hardly accessible due to payment requirements of the electronic journals available. A good exception is Romania, where annual reports, containing assessments based on a regularly collected data/information, appear as electronic publications revealing the state of the Black Sea. However, none of the beneficiary countries publishes information on pressures and impacts related to the state of the Black Sea. Bathing water quality is reflected in annual reports of BG and RO, published electronically on the EEA webpage (http://www.eea.europa.eu/, see for 2011: http://www.eea.europa.eu/themes/water/status-and-monitoring/state-of-bathing-water).

<sup>207</sup> For comparison you can find the available assessments of other Regional Seas Conventions at: http://www.unep-wcmc-apps.org/GRAMED/viewRecord.cfm?AssID=669

## **BULGARIA**

The Black Sea-related reports in Bulgaria are almost all non-published and poorly communicated at any level.

Table 85. Information on regular assessment/reports prepared in Bulgaria

| Type of assessment                                                                       | Prepared<br>by                    | Name of assessment/Report                                                                                                                                                     | Frequency    | To whom the report is delivered                        | Where published<br>(link, if any)                                                                                                                                       |
|------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| State of the<br>environmen<br>t and<br>implementa<br>tion of<br>integrated<br>monitoring | IFR-Varna                         | Project – related reports: Changes in Biodivresity, Abundance of Fish species; Marine cetaceans abundance, Climate changes etc. full list of projects in SeaDataNet web-site. | Annual       | Agricultural<br>Academy,<br>Ministry of<br>Agriculture | Not published full reports except in scientific papers, list of projects names is published in the SeaDataNet: Metadata for Institute of Fishing Resources: EDMERP data |
| Seasonal<br>trends                                                                       | IBER-BAS                          | Assessments prepared for scientific papers and projects                                                                                                                       | Regular      | Not specified                                          | Not published except in scientific papers                                                                                                                               |
| Biodiversity                                                                             | IO-BAS                            | Black Sea Biodiversity<br>(CBD National Report)                                                                                                                               | Annual       | Ministry of Environment /Black Sea commission          | Not published                                                                                                                                                           |
| Fishery                                                                                  |                                   | Turbot and sprat reports                                                                                                                                                      | Annual       | National Agency of Fisheries and aquaculture           | Not published                                                                                                                                                           |
| Bathing<br>water                                                                         | RIPCPH                            | Quality of Bathing<br>Water                                                                                                                                                   | Annual       | Ministry of<br>Health and<br>EEA                       | At the webpage of EEA: http://www.eea.eu ropa.eu/themes/w ater/status-and-monitoring/state-of-bathing-water                                                             |
| State of the<br>Black Sea,<br>incl.<br>pressures                                         | Black Sea<br>Basin<br>Directorate | Major reports: related<br>to the WFD<br>implementation                                                                                                                        | Occasionally | Ministry of<br>Environment,<br>EC                      | http://www.bsbd.o<br>rg/v2/uk/index.htm<br>I                                                                                                                            |
| Fishery                                                                                  | NAFA                              | Fishing statistics reports, analysis of management decisions                                                                                                                  | Regular      | EC                                                     |                                                                                                                                                                         |

In Romania, the Black Sea-related reports are regularly published and accessible to any end-user.

Table 86. Information on regular assessment/reports prepared in Romania

| Type of assessment                                                    | Prepared by                                                             | Name of assessment/Report                                                                            | Frequency        | To whom the report is delivered                                      | Where published<br>(link, if any)                                                                      |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Bathing water quality                                                 | Constanta<br>and Tulcea<br>County<br>Departments<br>of Public<br>Health | National report on<br>the bathing water<br>quality assessment                                        | annual           | Public Health<br>Institute<br>Bucharest and<br>Ministry of<br>Health | www.ms.ro; EEA: http://www.eea.eu ropa.eu/themes/w ater/status-and- monitoring/state- of-bathing-water |
| Radionuclides<br>208                                                  | Environment Protection Agency of Constanta                              | Monthly report                                                                                       | monthly          | National<br>Environmental<br>Protection<br>Agency                    | http://apmct.anpm<br>.ro/articole/rapoart<br>e_lunare_anul_201<br>2-221                                |
|                                                                       |                                                                         | Activity report                                                                                      | monthly          | Regional<br>Environmental<br>Protection<br>Agency Galati             | http://apmct.anpm<br>.ro/articole/rapoart<br>e_lunare_anul_201<br>2-221                                |
|                                                                       |                                                                         | Annual reports<br>environmental<br>status                                                            | annual           | Regional<br>Environmental<br>Protection<br>Agency Galati             | http://apmct.anpm<br>.ro/Mediu/raport_<br>privind_starea_me<br>diului_in_romania-<br>15                |
| Environmenta<br>I Impact<br>Assessments                               | ExxonMobil                                                              | Company's projects<br>environmental<br>impact assessment<br>(drilling operations<br>for oil and gas) | For each project | Environmental<br>Protection<br>Agency<br>Constanta                   | Not published                                                                                          |
| Statistical<br>monitoring<br>report of<br>tourist flows<br>in Romania | National<br>Institute for<br>Research and<br>Development<br>in Tourism  | Statistical<br>monitoring report<br>of tourist flows in<br>Romania <sup>209</sup>                    | In 2012          | Ministry of<br>Regional<br>Development<br>and Tourism                | Study dlevered to<br>the Ministry of<br>Regional<br>Development and<br>Tourism                         |
|                                                                       | National<br>Company<br>Maritime<br>Ports<br>Administratio               |                                                                                                      |                  |                                                                      |                                                                                                        |
| Litter and dolphins                                                   | Mare<br>Nostrum<br>NGO                                                  | Coastwatch Report                                                                                    | annual           | Local<br>authorities<br>and funders /<br>sponsors                    | www.marenostrum<br>.ro                                                                                 |
|                                                                       |                                                                         | Dolphins Report                                                                                      | annual           | Funders /<br>Donors,<br>Accobams,<br>INCDM                           | www.delfini.ro                                                                                         |

<sup>208</sup> Global beta specific activity and specific activity of gamma emitting radionuclides: Be-7, K-40, Pb-210, Bi-212, Pb-212, Ac-228, Bi-214, Pb-214, Th-234, U-235, Mn-54, Co-58, Fe-59, Co-60, Zn-65, Nb-95, Zr-95, Ru-103, Ru-106, Sb-124, Sb-125, I-131, Cs-134, Cs-137, Ce-139, Ce-141, Ce-144, Eu-152, Gd-153, Eu-154, Eu-155

<sup>209</sup> The report is divided in two parts - a general report which analyzes the situation in Romania and a series of ten specialized reports for each of the ten source countries of origin for foreign tourists, countries considered to be a priority for Romania. In the general report the flow of foreign tourists and that of Romanian tourists is analyzed separately.

Data storage is in a predefined Excel files format.

| Type of assessment                                                    | Prepared by          | Name of assessment/Report                                                                                                                                                                 | Frequency       | To whom the report is delivered                                    | Where published (link, if any)                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geoecology                                                            | GeoEcoMar            | Geoecological<br>monitoring of the<br>Romanian shelf                                                                                                                                      | 1-2/year        | National<br>Authority for<br>Scientific<br>Research                | Not published                                                                                                                                                                                                                                                                                                                                             |
| State of the environment and implementati on of integrated monitoring | NIMRD                | Annual report regarding the State of the Marine and Coastal environment National contribution for the Black Sea regional                                                                  | Annual 5-yearly | The Ministry of Environment and Forests  BSC Permanent Secretariat | http://www.rmri.ro<br>/RMRI/RaportStare<br>aMediului/RaportSt<br>areaMediului_2011<br>.pdf<br>www.blacksea-<br>commission.org                                                                                                                                                                                                                             |
|                                                                       |                      | National contribution for the reports of the BSC Advisory Groups <sup>210</sup>                                                                                                           | Annual          | BSC<br>Permanent<br>Secretariat                                    | Not published                                                                                                                                                                                                                                                                                                                                             |
| State of the environment and implementati on of integrated monitoring | Dobrogea<br>Littoral | Management Plan<br>for the Danube<br>River, Danube Delta,<br>Dobrogea Area<br>River and Coastal<br>Waters                                                                                 | 1/6 years       | Romanian<br>Waters<br>National<br>Administration<br>, Bucharest    | http://www.rowate r.ro/dadobrogea/S CAR/Planul%20de% 20management.asp x?RootFolder=%2fd adobrogea%2fPlan ul%20de%20Management%20Bazinal% 2fPlan%20de%20M anagement%20al% 20Fluviului%20Dun area%2c%20Deltei %20Dunarii%2c%20 Spatiului%20Hidrog rafic%20Dobrogea %20si%20Apelor%2 0Costiere&FolderC TID=&View=%7b02 A39433-949F-40C6-9DF4-54F3511B7DA7%7d |
|                                                                       |                      | Contribution to WISE report according to Directive 91/676/EEC on the protection of waters against pollution caused by nitrates of agricultural sources amended by Regulation 1882/2003/CE | 1 / 4 years     | Romanian<br>Waters<br>National<br>Administration<br>, Bucharest    | 3 H 3311D / D / W / W / W                                                                                                                                                                                                                                                                                                                                 |
|                                                                       |                      | Contribution to WISE report according to Directive 91/271/EEC on urban wastewater                                                                                                         | 1/2 years       | Romanian<br>Waters<br>National<br>Administration<br>, Bucharest    |                                                                                                                                                                                                                                                                                                                                                           |

-

<sup>&</sup>lt;sup>210</sup> NIMRD contributes to reports in the field of pollution monitoring, biodiversity, fishery, ICZM and land-based sources of pollution.

| Type of assessment                                   | Prepared by                                | Name of assessment/Report                                                                   | Frequency | To whom the report is delivered                                 | Where published (link, if any) |
|------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------|--------------------------------|
|                                                      |                                            | treatment, Art. 15<br>and 17.<br>The operational<br>manual for the                          | annual    | Romanian<br>Waters                                              |                                |
|                                                      |                                            | Monitoring System for the Danube and Seaside hydrographic basin                             |           | National<br>Administration<br>, Bucharest                       |                                |
|                                                      |                                            | Synthesis of Water<br>Quality Protection<br>for hydrographic<br>basin Seaside and<br>Danube | annual    | Romanian<br>Waters<br>National<br>Administration<br>, Bucharest |                                |
| Impact<br>assessment<br>(oil and gas<br>exploration) | OMV Petrom<br>SA                           | Monitoring the environmental quality of the production activity of X Petromar               | Quarterly | Environmental<br>Protection<br>Agency<br>Constanta.             |                                |
|                                                      |                                            | Constanta Area                                                                              |           | National Guard environmental - Constanta County Commissioner    |                                |
| Socio-<br>economy                                    | Constanta County Department for Statistics | No assessments speci                                                                        | fied      |                                                                 |                                |

## **TURKEY**

No regular reports were mentioned in the completed Questionnaires by the contacted stakeholders. However, assessments of monitoring data are being prepared by the institutes participating in different Projects on annual basis. These are submitted to the Ministry of Environment. Annual assessment incorporating all data collected by an Institute is not asked and is not evaluated.

## To conclude on the available assessments.

Various assessments are produced on a regular or irregular (for projects) basis, however, except in Romania the reports stay unpublished and undistributed for wider and public use. The reason for the latter is rooted in the historical legacy of secrecy in the field of environmental issues, and also in the habitual attitude of the scientific community to not disclose data which are not published in peer reviewed journals. The reports prepared by scientists are not qualified the same as the publications in journals with impact factor, which predetermines their keeping for internal use only or most often for no use.

## 5. Gaps in data management and assessments preparation, missing requirements

To create in minds the vision of tomorrow, scientists<sup>211</sup> have visualised the ideal multicomponent system of Black Sea state control, which requires sophisticated data management and relevant infrastructure, as shown below (Fig. 32, 33).

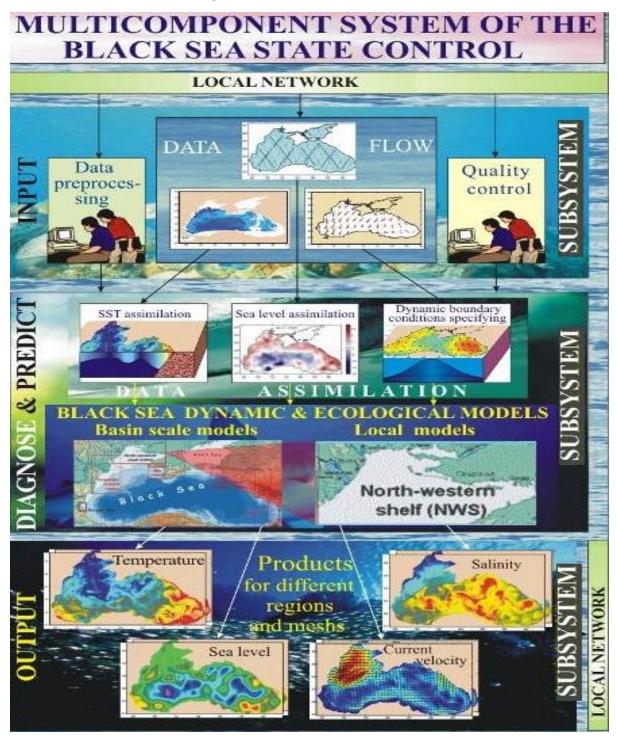



Figure 32. Multicomponent system of BS state control (a vision of data management and examples of products delivered), (re-drawn from MHI, Korotaev et al., 2010 presentation at the Black Sea Day, based on the Pilot version of the Black Sea Marine Forecasting Center (MFC) created by the FP7 Project "MyOcean").

<sup>&</sup>lt;sup>211</sup> Marine Hydrophysical Institute, Sevastopol, Ukraine.

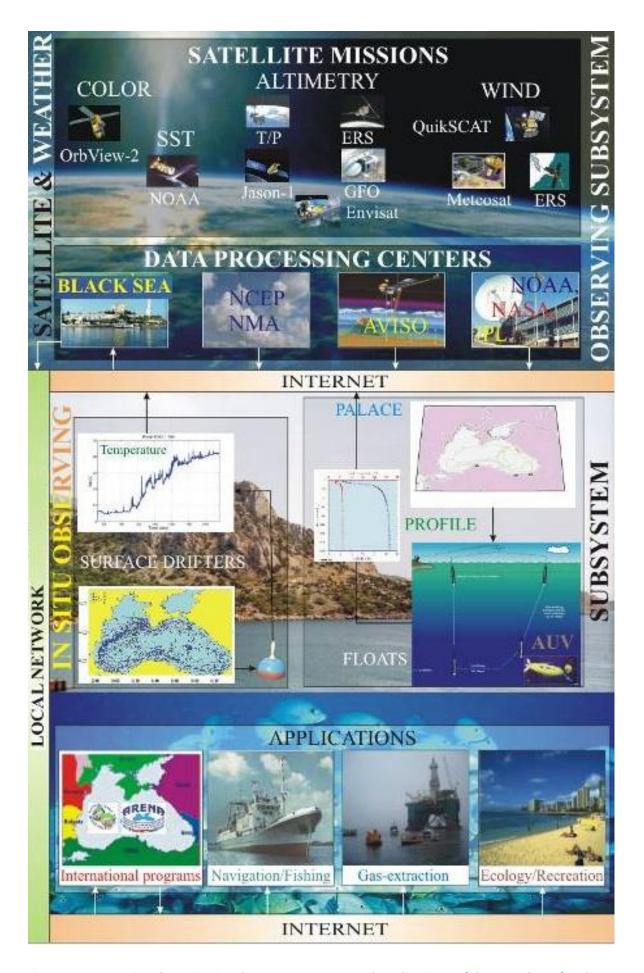



Figure 33. Operational monitoring data management and applications of data products (re-drawn from MHI, Korotaev et al., 2010 presentation at the Black Sea Day, based on the Pilot version of the Black Sea Marine Forecasting Center (MFC) created by the FP7 Project "MyOcean").

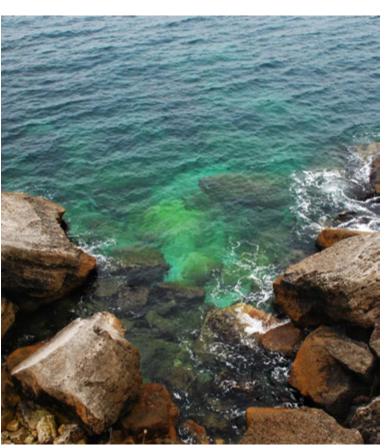
## None of the organizations in the beneficiary countries works at such a level of data management as displayed in Fig 32 and 33.

Despite of obvious efforts, the monitoring itself in the beneficiary countries stays with certain gaps, however, those in the data management are even more serious. The bulk of data generated remains in Protocols, poorly processed further from initial records and is thus never properly used. Data products are often absent (especially those which are produced on a regular basis), even less are those which are publicly communicated. Stakeholders in the region and outside of the region poorly know what data bases are available.

Coordination arrangements between the various Ministries, their institutes, laboratories and agencies, including data/information/assessments exchange procedures, are not covered by the existing environmental regulations in the beneficiary countries. This prevents the creation of an effective Data Management System at the national level, which may provide to decision makers the reliable indicator-based reporting needed for management that might have an impact on the marine water quality or marine biodiversity.

Besides, national data bases are poorly developed, they are not unified even at the level of a single institution so that to incorporate all the data/information generated in the course of monitoring.

A number of international data bases, created in the frames of different projects, are available, however, they are poorly nourished with data (even at the level of meta data), and do not reflect the real data availability. Most of the project data bases are not accessible for use other than by partner-organizations, they have never been incorporated into national data bases which would disclose the data to management authorities.


QA/QC of data are not attended, no specific procedures have been identified. A few Guidelines have been mentioned by the stakeholders contacted but the compliance with them is doubtful.

Reporting is generally poorly published, except in Romania.

Thus missing requirements are:

- 1. Mechanism for exchange of data/information between the various organizations managing environment data;
- 2. QA/QC in data management in all organizations dealing with generation of environment data;
- 3. Availability of a national data-base which would generate indicator-based reporting to management authorities;
- 4. Development of models;
- 5. Transparency of reporting;
- 6. Recognition of the reports prepared as peer-reviewed publications.

Further development of the report is scheduled. To be completed till the end of 2012.



## III. Progress in water quality/GES classifications

This chapter briefly discusses the delays in GES identification and the lack of common understanding of 'water quality' in the Black Sea region.

## **BULGARIA**

The Initial Assessment is under preparation in Bulgaria, until end of May 2013 IO-BAS in cooperation with experts from other organizations plans to deliver it together with the GES and environment targets identification.

## **ROMANIA**

NIMRD has prepared the Intial Assessment in Romania, and has identified GES for some of the MSFD Descriptors. Work is ongoing to cover all MSFD Descriptors *sensu* GES and to identify environment targets.

## **TURKEY**

In TR, MRC/TUBITAK in cooperation with IMS/METU and IMS/Istanbul University (or Faculty of Marine Sciences and Management, as named also) works on an assessment, which takes into consideration the MSFD IA requirements as well as GES and related targets identification. This is an activity under the already mentioned project DeKoS. As a first step capacity and gap analysis has being performed for each GES descriptor referring to the standards and criteria of EU (2010). The aim is to identify data and information available for proposed indicators, diagnose where the main gaps are and test some of the indicators with available data in different regions to identify GES and set targets, where possible. These efforts will be finally reported at the end of 2013 together with the proposal of a monitoring system and priority research topics. In the same study, reference sites and/or conditions especially for certain biological elements are proposed and being investigated with field studies and applying statistical tools on previous long-term data sets<sup>212</sup>.

## **Regional dimension**

At the regional level there were many attempts to develop common understanding of water/ecological quality, and in general of GES, as well as to elaborate indicators to also harmonise the assessments of the Black Sea state. There are lists of BlackSea-priority substances both for loads from point sources and for water quality identification, however, there is no regionally agreed methodology how to calculate indicators and to identify classes from poor to good water quality. The draft regional Methodology for water quality contains no biological elements and is still under discussion. There are case studies of application of such indicators as TRIX (trophic index, introduced by Vollenweider *et al.*, 1998) and HEAT<sup>213</sup> (HELCOM tool for evaluation of eutrophication status, created in support of the WFD implementation), however, this is not a regionally agreed practice to evaluate the trophic status of the Black Sea.

<sup>&</sup>lt;sup>212</sup> This is basically done for the WFD classification system. However, these might be used for GES identification for certain descriptors.

<sup>&</sup>lt;sup>213</sup> HEAT was adjusted to the data availability in the Black Sea region by J. Anderson in the frames of the BSC B2B Project, however, the testing of the tool, named BEAST, is in a very initial stage. First results show, that BEAST is no more indicative than TRIX, having in mind the data available to feed the assessments of eutrophication.

# IV. Laboratory Infrastructure, Equipment, Vessels

Marine research infrastructure, in general terms, include research vessels, submersibles and unmanned vehicles, research aircraft, moored instruments, tide gauges, Lagrangian observations facilities, coastal and marine observatories, marine laboratories, satellite oceanography centers, modelling and data centers, and ships of opportunity. The existence of, and access to a complex and modern research infrastructure is a prerequisite to a successful research strategy for the Black Sea and its implementation.

This chapter further develops the findings of the EC SeasEra Project on laboratory infrastructure, equipment and vessels available in the Black Sea coastal states contributing to more efficient use of them in the region.



## 1. Infrastructure: general

## **BULGARIA**

The Ministry of Environment and Water (MoEW) is responsible for the control of the environmental protection in Bulgaria including the Black Sea and implementation of Monitoring programs, EC policy initiatives and their transposition into the national legislation. The Executive Environment Agency (ExEA) is the administrative unit within the Ministry of Environment and Water which functions as a coordination body for the protection of the environment in Bulgaria. It is also the national coordination center to EEA and a member of the EPA Network. ExEA has a reference laboratory for setting environmental methodological standards. Related to Black Sea monitoring, the responsible units for chemical analysis including contaminants are the regional Environmental Agencies in the cities of Burgas and Varna, which are under the coordination of the Black Sea Basin Directorate.

(http://www.bsbd.org/v2/uk/index.html)



**IO-BAS** is a scientific institution, based in Varna, with several departments: Marine physics, Marine chemistry, Marine biology and ecology with molecular taxonomy/genetics lab, Coastal zone dynamics, Marine geology and archaeology, Ocean technologies and the NODC. Marine biology and ecology department integrates several subdivisions: phytoplankton, zooplankton, macrophytobenthos, macrozoobenthos, ichthyology and genetic and molecular laboratory. It has a marine station (Shkorpilovtzi), located on the coast near the village of Shkorpilovtzi, 50 km south of Varna. The building and the pier were built between 1980 and 1983. There are conditions for work and living of 35 persons. The pier is 230m long, 7m high and is used for mounting of research gauges. The base is suitable for training of students, scientific meetings and coastal studies.



**IBER-BAS** is a scientific institution, based in Sofia, with the following departments: Department of Plant and Fungal Diversity and Resources; Department of Animal Diversity and Resources; Department of Aquatic Ecosystems; Department of Ecosystem Research, Environmental Risk Assessment and Conservation Biology. It has a marine station in Sozopol (nearby the city of Bourgas.

**Executive Agency "Maritime Administration"** (EAMA)<sup>214</sup> is a legal entity on budget support to the **Ministry of transport**, information technology and communications, based in Sofia with regional offices in Bourgas, Varna, Lom and Rousse. It organizes and coordinates activities related to the safety of shipping in the sea spaces and inland waterways of the Republic of Bulgaria; Responsible for actual liaison between the government and ships flying the Bulgarian flag; exercise control on: the observation of shipping safety requirements by Bulgarian and foreign ships; provision of services for traffic management and information of shipping maritime spaces, inland waterways, canals, ports in Bulgaria and other duly defined regions; the supervision and organization of the protection of the marine environment and the Danube River from pollution from ships; Maintenance of registers of ships, seafarers, ports and port operators in the Republic of Bulgaria.

**NAFA** have not specified their infrastructure, the Agency is based in Sofia. Inspectorates are functioning in different coastal cities.

**NIMH** has the following departments: Dep. Meteorology, Dep. Hydrology, Dep. Prognoses, Dep. Atmospheric Physiscs and Ecology. Its headquaters are in Sofia, there is a branch in the city of Varna.

The **Regional Health Inspectorate** (**RHI**) has two Directorates with several laboratories. The Directorate dealing with bathing water comprises sanitary microbiology (*E.colli* and intestinal enterococci) and chemical laboratories. The Directorate of surveillance of infectious diseases has laboratories of clinical microbiology, virology and parasitology.

In **IRF** (scientific institution) there are three main departments – hydrobiology and hydrochemistry (limited parameters observed), ichthyology, and laboratory of population genetics. The Institute owns a public Aquarium (very old fashioned) and a Library being sustained since 1932.



<sup>214</sup> Postal address: 9, Diakon Ignatii str., 1000, Sofia; Contact person: Sergey Kirilov Tzarnakliyski; Phone: (+359 2) 930 09 10; e-mail: bma@marad.bg

## **ROMANIA**

**NIMRD** is a scientific institution, based in Constanta, it has the following departments:

- Oceanography, Marine and coastal engineering
- Ecology and environmental protection
- Living marine resources
- National Center for oceanographic and environmental data
- Custody of marine protected areas
- Information dissemination department

**GeoEcoMar** is a scientific institution, based in Bucharest with a branch in Constnata, with the following departments:

- Marine Geology and Sedimentology
- Seismo-Acoustic, Digital Cartography, GIS, Data Base
- Geophysical Methods of Deep Investigation
- Geochemical, Geoecological and Sedimentological Analysis
- Coastal Zone Research and Management
- Environmental Quality Investigation

The **Constanta Maritime Hydrographic Directorate** has the following units: hydrographic and oceanography laboratories, classic marine cartography, and electronic maritime cartography.

## Constanta County Department of Public Health has the following units:

- Department for assessing the risk factors from living and work environmental;
- Laboratory for diagnosis and investigation in Public Health (microbiology laboratory and laboratory for sanitary chemistry and toxicology)
- Ionizing radiation hygiene laboratory

**Border Police General Inspectorate**<sup>215</sup>, based in Bucharest, has territorial inspectorates of Border Police and Coast Guard (e.g. Constanta Coast Guard and others), which are internally organised into Departments speciliazing in different fields of activities (e.g. Department of Marine and Riverine Environmental Protection within the Coast Guard, and others).

**Naval Academy** has departments of Marine Engineering and Navigation.

Note: Constanta City Hall has responded to the Qusetionnaire Part II, however, no information has been provided to be presented in Chapters IV-VII of this report.

\_

<sup>&</sup>lt;sup>215</sup> Governmental organization. Postal address: Bucuresti, str. Razoare no. 5, Sector 6, code 050506 Telefon: 021.316.25.98 int. 19338, Fax: 021.312.11.89, E-mail: pfr@igpf.ro.; webpage: http://www.politiadefrontiera.ro/; Contact person: Police commissar eng. Adrian SBARCEA; Telefon: 021.316.25.98, int. 19535, Fax: 021.311.18.56; E-mail: adrian.sbarcea@igpf.ro

The Marmara Research Center (MRC) of TUBITAK is a public research organization which constitutes of 6 Institutes: Environment, Energy, Material, Food, Genetics and Chemistry. All institutes have their advanced equipment, infrastructure developed and human capacity.

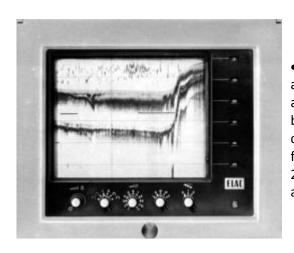
The Karadeniz Technical University, Faculty of Marine Science (Trabzon) includes chemistry, biology, fish diseases, molecular biology, fish processing, seafood and analytical chemistry, aquatic toxicology, oceanography, genetic and computer laboratories, geographical information system, fishing net design, and aquaculture research units. Additionally: sport hall, Navigation, Safety at sea, medical care and first aid, seamanship, oil spill laboratories. Full mission bridge simulator (ship handling sim), liquid cargo handling, GMDSS, and engine simulator are available.

The Central Fisheries Institute (Trabzon) comprises the following units: Fisheries management, Environmental and Resource Management, Breeding and Genetics, Processing and Handling, Fisheries Health, and Aquaculture. The Institute owns a Hatchery (Sea water/Freshwater). The sea water hatchery was established as a flatfish seed production facility under cooperation with JICA. This facility consists of seawater intake system, system of filtering, sterilizing and heating, and rearing facility including three laboratories for broodstock, feed and larvae/juvenile. The freshwater fish hatchery is located in Maçka-Altındere. In the facility, production and rearing research studies of some species like trout and sturgeon are carried out.

IMS/METU (Institute of Marine Sciences -Middle East Technical University, Erdemli) consists of the following departments: Marine Biology and Fisheries, Chemical and Physical Oceanography and Marine Geology and Geophysics. IMS/METU has also an Atmospheric **Tower** for studying atmospheric aerosols (bulk and size segregated) properties in a continuous mode. The atmospheric tower, constructed close to the Aegean coast, is 20 m in height. Sampling devices are installed on its platforms.



Figure 34. Atmospheric Tower in Erdemli


## 2. Equipment

## **BULGARIA**

A few stakeholders have given information on their equipment available, as presented further. **IO-BAS** 

• Sea-Bird Electronics **CTD SBE** 911 plus - SBE 32 carosel - 12 barometers (Niskin) 5 litres each. Main housing: computer communications port location. The downcast data are binned to 1-m depth intervals using SBE Data Processing Software version 7.18 (Sea-Bird Electronics, Bellevue, Washington, USA). Attached – Fluorometer. Parameters recorded *in situ*: conductivity 0-7 Sm, temperature -5 +35°C, pressure 0-2000 dBar, and chlorophyll\_a concentration (in situ fluorescence)





• Echosounder Simrad EK60 - hull mounted 38, 120 and 200 kHz split-beam transducers. The transducers are located at 4.5 m depth. The raw data are logged by Simrad ER60 software (20 log R TVG). Main characteristics: Low frequency: 12- 50 kHz; High frequency: 100,150,200 kHz; Resolution: — 0,1m at 200 kHz; Accuracy: ± 1 figure or 1% (which one appears the bigger); Range: 0,00 — 9990 m

• Side scan sonar system: Model Klein 530, Frequency: 100 kHz, Acoustic beam pattern:1° in horizontal plane, 40° in vertical plane, Pulse duration: 100 mS, Subbotom profiler: Model Klein 530, Frequency: 3.5 kHz, Acoustic beam pattern: 50° conical, Pulse duration: 0.4 mS, Graphic recorder: Model EPC 4800S, Channels: up to 3, Paper roll: Dry electro-sensitive, L/D 24m/50cm, Computer (PC) with 12 bit A/D converter



• Current meter - Model AANDERAA RCM 4





• Research Submersible PC-8 - The research submersible PC -8 has been operated since 1987. Main characteristics: Operating depth - 250m, Deadweight - 5t, Length - 6,5m, Crew - 2+1, Range of underwater cruise - 5 n miles, Endurance underwater - 5 hours, Scientific equipment - photocamera, video-camera, manipulator, sampling devices

- Phytoplankton net (mesh size 20μm)
- Juday plankton nets (d=0.36 m, mesh size 150μm and 200 μm)
- Hensen-egg net (d=0.70 m, mesh size 300 μm)
- Ring-Trawl plankton net (d=1.1 m, mesh size 500 μm)
- Nansen closing plankton net (d=0.70m, mesh size200 μm)
- Grab "Van-Veen" (opening 0.1 m<sup>2</sup>)
- **Microscopes:** Nicon TE2000-U connected to a video-interactive image analysis system OLYMPUS—BS41 with camera, Olympus SZ30 Stereoscopic Zoom Microscope
- Spectrophotometers, UV-VIS
- Fluorometer NOVA 400
- Well equipped new laboratory for genetic and molecular taxonomy analysis

Note: IO-BAS deploys Argo floats (in situ data acquisition equipment) in the frames of the BulArgo project, as mentioned in Chapter I.

## **IBER-BAS**

- Gas chromatograph for the analysis of organic pollutants (PAHs, PCBs, etc.)
- Atomic absorption spectrophotometer for analyses of heavy metals
- LS-counter
- Molecular ecology PCR machines
- ELPHO (electrophoresis system?)
- Photodocumentation system
- Compound microscopes (Olympus and Leitz) for DIC, stereomicroscopes and a digital system for image processing and analysis
- 2M Multimedia Studio

## Regional Health Inspectorate (RHI)

- Gas chromatography
- Liquid chromatography
- Ion-exchange chromatography
- Spectrophotometer

### **IFR**

- CTD "Sea&Sun technology" CTD profiler is self-powered, capable of sampling in profiling mode. Main housing: 250 meters, I/O computer communications port location. Attached Fluorometer Mini Back Scat I model 1010 P, pH-meter redox sensor, oxygen sensor. Parameters recorded *in situ*: conductivity, temperature, pressure, pH, and oxygen and chlorophyll *a* concentration. Derived parameters: salinity, depth, density, dissolved oxygen saturation. Data averaged in 0.5m depth bins.
- Bathometers (Niskin bottles of 1l or 5 l volume)
- Bongo net (d=2X 0.6 m, mesh size 300 μm & 500μm)
- Plankton net (d=0.36 m, mesh size 150μm)
- Jedy net (d=0.36 m, mesh size 150μm)
- Grab "Van-Veen" (opening 0.1 m²)
- Echosounder Simrad EQ 33
- Underwater video-camera "Panasonic"
- Microscopes: stereomicroscopes and binoculars
- Spectrophotometer HITACHI Model U-2001 UV/Vis
- Electronic Balances Precisa XT 220A





Zooplankton net "Bongo", Niskin Bottles, "van Veen" Grab

The stakeholders in RO have declared the availability of the following equipment, however, some of them have specified no opportunities to be shared except with visiting scientists based on request.

### **NIMRD**

- Perkin Elmer CLARUS 500 gas chromatograph with ECD and MS detectors (can not be shared), Spectrophotometer UV-VIS SHIMADZU (can't be shared),
- Automated TOC Analyzer SHIMADZU (can not be shared),
- ThermoElectron Atomic Absorbtion Spectrometer Solaar M6 (can not be shared)

### GeoEcoMar

- X-STAR full Spectrum Digital Sub-Bottom Profiler (Edge Tech) with 216-D towfish working in 2-16 kHz domain (CHIRP System), multibeam systems for deep waters and for shallow ones;
- Dual Frequency Side-Scan Sonar (GeoAcoustics)
- Digital Side scan sonar GeoAcoustics
- Single beam digital scientific echosounder Ceeducer
- Onboard gravimeters GMN-K and GMN-KM
- G-856AX Memory -Mag TM Portable Proton Procession Magnetometer
- G-877 Marine Magnetometer
- ROV Vector M5 (1000m depth)
- ADCP
- Multi-Gas Analyser "INNOVA Bruel&Kjaer 1302" (using infrared photo-acoustic method, low detection limits, at present configuration able to measure five different gases and water vapour on the same air sample)
- SeaBird CTD with rosette sampler system and 12 Niskin bottles for water sampling
- Multicorer Mark II-400
- Van Veen Grab
- Computer controlled, double beam atomic absorption spectrometer SOLAAR 939 Em
- VRA 30 X-ray fluorescence spectrometer
- UV/VIS Spectrophotometer Lambda 35, PerkinElmer
- Microscope Zeiss Axio LabA1 and Primo Star
- Stereomicroscop StereoDiscoveryV8 and Stereo 2000C
- Laboratory facilities for ecotoxicological bioassays

## **Dobrogea Litoral**

- Field colorimetric kits for nutrients and toxicities
- UV-VIS spectrometers (laboratory)
- AAS and ICP-MS spectrometers for metals
- Analyzers for TOC/TN, and AOX
- Microscopes

# **Constanta County Department of Public Health**

• list of microbiology laboratory equipments for water microbiological determinations

| No   | Equipment name                           |
|------|------------------------------------------|
| crt. | Equipment name                           |
| 1    | VARIOCLAV AUTOCLAVE                      |
| 2    | ANTARES LAMINAR FLOW HOOD                |
| 3    | MEMMERT BE THERMOSTAT                    |
| 4    | SANYO DISTILLER                          |
| 5    | SANYO BIDISTILLER                        |
| 6    | PG 802 TECHNICAL BALANCE                 |
| 7    | FILTER INSTALLATION TYPE SARTORIUS       |
| 8    | VORTEX AGITATOR                          |
| 9    | BLF 132 ULTRAVILET LAMP                  |
| 10   | FRIOCELL 111COOLING INCUBATOR            |
| 11   | INCUCELL 111 INCUBATOR – 2 pieces        |
| 12   | INCUCELL 222INCUBATOR                    |
| 13   | RAYPA DOD DRYING STOVE                   |
| 14   | SELECTA WATERBATH                        |
| 15   | pH- METRU WTW                            |
| 16   | RAYPA AE AUTOCLAVE -110DRY - 2 pieces    |
| 17   | FILTER INSTALLATION TYPE MILLIPORE       |
| 18   | BACTERIOLOGICAL HOOD MICROFLOW 1500 EV/A |
| 19   | COLONY COUNTER WTW BZG 30                |
| 20   | UV LAMP TYPE KRUSS                       |
| 21   | ROTABIT ORBITAL SHAKER - 2 pieces        |
| 22   | BINOCULAR MICROSCOPE TYPE KRUSS          |
| 23   | REA RLPR REFRIGERATOR                    |

equipments list for physical and chemical water determinations

| No. crt. | Equipment name                                                            |
|----------|---------------------------------------------------------------------------|
| 1.       | Atomic absorption spectrophotometer SHIMAZU type AA 6650                  |
| 2.       | Atomic absorption spectrophotometer type AA-6300                          |
| 3.       | UV spectrophotometer - VIS tip T80+                                       |
| 4.       | spectrophotometer DAD MultiSpec -1501                                     |
| 5.       | Electronic balance METTLER – TOLEDO type AG 204                           |
| 6.       | Electronic balance METTLER-TOLEDO type PG 2002 :                          |
| 7.       | PH-meter METTLER-TOLEDO type MP 220                                       |
| 8.       | Memmert oven                                                              |
| 9.       | Turbidimeter type Turb 555 IR                                             |
| 10.      | Multiparameter analyzer type C860                                         |
| 11.      | Sand bath Caloris Type BNC 03                                             |
| 12.      | Cyclon Distilled device                                                   |
| 13.      | Cooling incubator FRIOCELL 111                                            |
| 14.      | Thermostated water bath CALORIS type BAC 45                               |
| 15.      | Measurement equipment of gamma activity with GeHp detector                |
| 16.      | Equipment of measuring small beta activity with liquid scintillations     |
| 17.      | Equipment of measuring alfa and beta activity with proportional detectors |

**Naval Academy** has equipment to measure underwater noise and pollutant emmissions.

Most of the stakeholders contacted did not give detail list of equipment. For instance, the Central Fisheries Institute mentioned the availability of equipment, which could be shared with visting scientists, mentioning only the microscopes in the Labs, as an example.

**MRC/TUBITAK:** All major equipment (oceanographic *in situ* equipment, marine laboratory equipment, auto analyzer (4-channel), CHN analyzer, AA-Flame, AA-Graphite, ICP-MS, GC-MS, HPLC, and others) of the Environment Institute as well as the infrastructure/equipment of the other MRC/TUBITAK institutes are accessible by public organizations, universities and international bodies upon written request to the MRC/TUBITAK.

**IMS/METU:** AA, GC, HPLC, CHN Analyzer, Autoanalyzer, Fluorometer, Zooscan, Light, Inverted and Epifloresans Microscopes, flow cytometry, PCR, high capacity computers, etc. In detail the major field and laboratory equipment of the Institute is described below:

- Atomic Absorption Spectrophotometer (GBC-906, Varian Techtron AA-6)
- Spectrophotometer (LKB Biochrom Ultrospec II) and Thermo-spectronic Model Hedios δ)
- UV-VIS Spectrophotometer (Cecil Model 5000)
- Spectrofluorometer (Hitachi F-3000)
- Gas chromatography (Agilent Technologies 6890N, Network GC system) High performance liquid chromatography (HP 1090)
- CHN elemental analyzer (Carlo Erba, Model-1108)
- Total organic carbon analyzer (Shimadzu, Model TOC-5000)
- Radioactive C-14 measuring system
- SA quanta meter (PAR)
- Underwater spectroradiometer (LI-1800 UW model)
- Integrated Nephelometer (Radiance Resaearch Model M903)
- pH meter (Chemcadet, NEL)
- pH Meter (Chemitrix M-400)
- Dissolved oxygen (DO) meter (YSI M-58)
- Freeze dry system (Labconco)
- Conductivity meter (WTW LF 530 Model)
- Portable incubator for fecal coliforms analysis
- Microscopes (Nikon Stereo, Nikon polarizing, Olympus stereo with photographic tube)
- Various scales, dryers, rotary vapor and vacuum pumps, pressure and vacuum filtration systems
- Water distillation and purification instruments
- Two CTD profilers (Sea Bird Electronics, Model 9/11) equipped with two CHELSEA Aquatrac II insitu fluorometers; two 25cm Sea-Tech Transmissiometers, GO-FLO Rosette Sampler, 12x5 It (General Oceanics), and one SBE 9 CTD probe with memory unit
- Fisheries echo sounder (JVC 28-200 kHz, 360o, color monitor)
- Fisheries sonar (JVC 180 kHz, color monitor)
- Remotely operated underwater vehicle (Benthos MiniRover MK II)
- Five channels autoanalyzer (Technicon Model A-II)
- Current meters (Aanderaa RCM-4, EG&G)
- Precision depth recorder 50 200 kHz JMC)
- Side scan sonar (EG&G IB systems)
- Uniboom (shallow seismic system EG&G)
- Gravity corer (Phleger)
- Grab sampler (Van Veen)
- Bottom sampler (InterOcean)
- Automatic Winkler titration system (Hydro Bios)
- Microwave digestion system (EnviroPrep Questron Q45)
- Filtering system (Milipore)
- High volume air samplers (General Metal Works, model GMWL-2000

- and Model PM10 with size selective sampling inlet and Hi-Vol cascade impactor)
- Andersen dry-wet deposition sampler
- Automatic weather station (Aanderaa and Davis Instruments Weather Monitor II)
- Plankton nets (Nansen closing net, Egg net, Naked Hai)
- Various fishing nets (bottom)

The Nature Conservation Center uses field equipment for observing and recording various species on coast, e.g. binoculars, telescopes, cameras, GPS devices, etc. For field trips they have 4X4 vehicles.

**The Istanbul University**, carrying out complex monitoring, obviously owns all necessary equipment, however, no list has been provided. The Fishery Faculty sustains a passive acoustic device fixed in the middle part of the Bosporus Strait. It detects acoustically active dolphins but also records ship noises.

# 3. Vessels

# **BULGARIA**

Two organizations have specified the availability of a research vessel (R/V).

**IO-BAS: Research Vessel "Akademik"**, Length – 55.5m; Breadth – 9.8m; Draught – 4.8.m; Speed – 9.5 knots; Crew – 22; Staff - 20 persons; R/V AKADEMIK has been operated since 1984 (constructed in 1979). In 1988 the ship was reconstructed and furnished with contemporary navigational and scientific equipment, for rent - 6000 EUR per day. Endurance at cruise 35 days, range at cruise speed 7500 n miles.





IFR: Research Vessel "Prof. Valkanov", Length - 34 m; Breadth - 7m; Speed - 9 knots; Crew and Staff - 10 persons; Build - Astrahan, Russia 1979, for rent - 1000 EUR per day. Note: the vessel is currently not available for renting.





# Kaliakra sail training vessel Owner: Naval Academy Varna

Address: N.Y.Vaptsarov Naval Academy, 73 V. Drumev St., Varna 9026 Bulgaria

Tel.: +359/52/552228; +359/52/552374 Public Relation Office; Fax: +359/052/303 163.

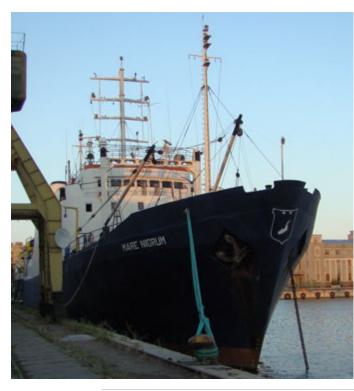
+359/052/552 225

**ROMANIA** 

E-mail: public-rel@naval.acad.bg info@naval.acad.bg;

interpart@naval-acad.bg Contact person: Boyan Mednikarov

Website: http://www.naval-acad.bg




#### **NIMRD**

• Vessel - *R/V Steaua de mare* – *I;* Length 25.8; Gross Tons -134; Fuel Capacity - 35 m³; Area Drylab – 12 m²; Speed – 7kt (max: 9 kt); Endurance (days) – 15; Accommodation: Officers 2, Crew 7, Scientists 10; Available AirCond. Navigational Equipment: ship's radar transponder; Communications: VHF radiotelephone station, MF radio DSC encoder, VHF EPIRB; Satellite Communications NAVTEX receiver; Global Positioning System Equipment GPS – KODEN. Scientific equipment: CTD Sea Bird 911plus; Core Grab 3; Acoustic Echosounder; Sea Surface Mapping System.

## GeoEcoMar

• R/V Mare Nigrum, 25 places for scientists, 7 laboratories with a total area of about 200 m<sup>2</sup>, different scientific and technical equipment, including a Multibeam system for water depth of 3,000 m (rent of the ship includes all facilities; price/12 working hours/day - 6800 Euro; price/24 working hours/day - 11500 Euro); Year of built 1971. Technical characteristics: Length: 82 m; Draught: 5 m; Displacement: 3200 t; Main propulsion: 2 SKL 8 NVD 48A- 2U from 1160 HP each; Main power: 1x50 2x320 kVA, 1x350 kVA, Telecommunications: NERA Fleet 55 satellite communication; Inmarsat C - GMDSS by VHF radiotelephone FM 8500 and facsimile Furuno D Fax; Navigation systems - Kelvin Hughes 5000 t 6000 A and Nucleus 5000 radar-two units; Gyrocompass Vega 2 M; log Furuno DS70; echosounder LAZ50 Ninas integrated navigation system.



Laboratories: Tomography; Hydrology; Gase mesurements; Biology; Geochemistry; Geophysics; Computer room; Seismo – acoustics; Photo bab; Wet lab.

# Marine equipment:

- ✓ Multibeam bathymetric system SEABEAM 1050 Elak Nautik
- ✓ Seism acoustics CHIRP Star Full Spectrum
- √ Magnetometer Geometrics G-87
- ✓ On-board (GMNKM) and bottom (GDK) gravimeters
- ✓ ROV (1000 m water deep)
- ✓ Sub-bottom profiler
- ✓ Side Scan sonar

# Geochemical, Geoecological and Sedimentological equipment:

- ✓ CTD SBE 25 Sealogger
- ✓ Gravity and piston corers
- ✓ Multi-corer Mark II-400
- ✓ Grab samplers
- ✓ Nets for biology

# Deck equipment:

- ✓ Hydraulically Winch 10 tf
- ✓ Electrical Winch 8 tf
- ✓ CTD Winch
- ✓ ROV winch
- ✓ Grab sampler winch
- ✓ Crane 3 tf/15 m
- ✓ A Frame on aft ship
- Fluvial research vessel "Istros" 147.8 t displacement, 8-10 places for scientists, Crew 7 persons; 2 laboratories, 800 km navigation autonomy, Multibeam system for shallow water (rent of the ship includes all facilities; price/day 1500 Euro). Technical characteristics: Length: 32 m; Breadth: 6.90 m; Draught: 1.25 m; Main propulsion: 2 engine with 420 HP each; Main power: 2x35 kVA.

#### Laboratories:

- ✓ Geochemistry
- ✓ Geophysics
- ✓ Multifunction lab

# Marine equipment:

- ✓ Multibeam bathymetric system SEABEAM 1050 Elak Nautik
- ✓ DGPS Sea Star 3200 LR 12
- √ Magnetometer Geometrics G-877
- ✓ On-board (GMNKM) and bottom (GDK) gravimeters

# Geochemical, Geoecological and Sedimentological equipments:

- ✓ Gravity and piston corers
- ✓ Grabs samplers

# Deck equipment:

- ✓ A-Frame on aft ship
- ✓ Side crane
- ✓ Hydrological winches
- ✓ 2 hand cranes





Floating laboratory/house boat "Halmyris" - 20 places for scientists, 3 laboratories, conference/dining, airconditioned hall (price/day – 1000 Euro). Technical characteristics: Length: 32 m; Breadth: 6,60 m; Draught: 0,60 m; Displacement: 90 t.

#### Laboratories:

- √ Geochemistry
- ✓ Biology

# Other Facilities:

- ✓ Electrical power generator
- ✓ Air condition intalations
- √ 14 cabins (single and doubles)
- √ Conference room (30 40 persons)
- ✓ Boats
- Research/inspection boat "Carina" 6 m long, 6 places, 150 CP diesel engine, speed up to 35 Mph (price/day 350 Euro).

# **Dobrogea Litoral**

Ship Marina 1 berth RO RO 2, available 24 hours, with marching order signed by the General Director; engine characteristics VOLVO PENTA 701 KW motor.

# **Constanta Maritime Hydrographic Directorate**

Hydrographic vessel (2 600 tonnes) for large and medium depths. It has hydrographic and oceanographic laboratories (in 2012-2014 being under modernization).

**Border Police General Inspectorate** owns vessels that can be used, based on collaboration protocols signed with interested institutions. Vessels characteristics can not be made public. Rental of ships or providing services can be arranged under orders of the Minister of Administration and Interior.

**Naval Academy** has vessels which are part of the Naval Squadron School of ANMB (Naval Academy "Mircea cel Batran").

# **TURKEY**

**TUBITAK:** The Environment Institute of MRC/TUBITAK operates two vessels: one (6m Lx 2,4m W) is for lakes, transitional and coastal waters having the capacity of 1300kg and a crane of capacity 250kg, and the second one is a regional class R/V of 41.2 m length (**R/V Marmara**) which is legally and technically capable of conducting research and sampling/measuring surveys in coastal, territorial and international waters. Both are eligible for rent, however, terms of rules for both will be set in 2013 since both are new and R/V Marmara will be operational in early 2013.

R/V Marmara (TÜBİTAK / MRC) Launching day (17 February 2013, ÇEKSAN Shipyard, Tuzla-İstanbul)



#### Main features

Length: 41.20 m Breadth: 9.55 m Draught: 4.50 m

Load displacement: 497 t

Operating cruising speed: 14 knot

Crew: 12

Scientific staff: 11 Endurance: 15 days Range: 5000 nmi

Propulsion:

Engines: 2 x 1040 kW, 1650 rpm marine diesel

DC Generators: 2 x 300 kWe diesel generators; 1 x 108 kWe emergency generator

Bow and stern thrusters: 95 kW Class 1 dynamic positioning **Deck equipment and facilities:** 

Aft deck space: 65 m2

Laboratory space: 62 m2, 5 labs (wet, dry, biology, computer, and heat-controlled)
A-frame (aft): hydraulic, 3 ton capacity, 4 m clearance, 45° total range inward/outward

Knuckleboom crane (aft): 3 ton capacity, 9 m range

Winches: 2 multipurpose winches (one with 3000 m data cable, the other with 2000 m steel cable

**Scientific Equipment:** 

Multibeam survey sounder system (SEA BEAM 1050D - 3000 m maximum depth) Single beam hydrographic survey sounder (HydroStar 4900 – 3000 m maximum depth) 2 x hull-mounted deep water ADCPs (Teledyne RDI Ocean Surveyor; 75 and 150 kHZ) CTD (SBE 25plus with a transmissometer, pH, fluorometer, turbidity, PAR, and DO sensors) Carousel water sampler (SBE 32C, 12 x 8 liter bottles) 18

Thermosalinograph (SBE 21)

**Istanbul University** (Faculty of Fishery) has reported the availability of **R/V Yunus** – 32 m (no other detail has been provided). Other vessels are described as follow:



R/V Avar: Built in 1951; Length 31.27 m; Draft 3,20m; Tonnage 173,68 gross tons; Length 31.27; Draft (m) 2.76; Gross Tons 178.0; Capacity Dry Cargo Area (m³) 3.0; Fuel Capacity (m³) 30.0; Area Wetlab (m²) 8.0; Area Drylab (m²) 10.0; Free Deck Area (m²) 55.0; Range (n mi) 5000.0; Speed Cruise (kt) 9.0; Speed Max (kt) 11.0; Endurance (days) 30.0; Accommodation - Officers 2, Crew 11, Scientists 15; Air

Cond; Navigational Equipment Radar SatNav Gyro; Satellite Communications DGPS; Acoustics and Profiling: Acoustic Sonar Fisheries; Oceanographic: Winches Winches (number): 1; Cranes - Stern and Midships.

R/V Arar 2: Length 16.0; Speed Cruise (kt) 12.0; Accommodation - Crew 3 and Scientists 9.



# **R/V ALEMDAR II**

| Turkish                                                           |
|-------------------------------------------------------------------|
| Istanbul University, Institute of Marine Science and Management   |
| Istanbul                                                          |
| Germany – 1966 / Adapted as R/V with renovation during 2011-      |
| 63.40m                                                            |
| 11.0 m                                                            |
| 5.20 m                                                            |
| 13 knt/6 knt                                                      |
| 967                                                               |
| 291                                                               |
| 20 Crew + 18 pers.                                                |
| 2 MWM (2x2500 BHP) Diesel (2*1840kW)                              |
| 3 MWM 210kWA (380V 3 phase 50Hz)                                  |
| 175lt/h (1 main machine) + 35lt/h (1 generator)                   |
| 2 pieces radar, Gyro compass (main gyro and repetears), AIS Class |
|                                                                   |

**Equipment** 

- A Frame swl 5tonnes
- Crain, swl 2t, 12m.
- 3 pieces mataforas (for oceanographic equipments)
- Winches for multi purpose

# Laboratory (60m<sup>2</sup>)

- Computer room
- Wet laboraory
- Instrumental analysis loboratory
- Multi purpose conference room

# **Oceanographic Equipment**

- Currentmeter vessel mounted, 150kHz BBADCP (Broad Band Acoustic Doppler Current Profiler)
- CTD, Conductivity, temperature and depth system.
- Rosette sampler 12x5lt
- Gravity Core
- Van Veen Grab (Hydro-bios, 0.1m2)
- Plankton Nets
- Trawl Net

The Karadeniz Technical University (Trabzon) has two vessels: RV/DENAR 1, length - 25 m and YAKAMOZ - 12 m.



R/V Denar I: Length 25; Draft (m) 2.7; Fuel Capacity (m³) 10.0; Area Wetlab (m²) 20.0; Range (n mi) 500.0; Speed Cruise (kt) 10.0; Speed Max (kt) 12.0; Endurance (days) 10; Accommodation - Crew 4 and Scientists 7; Data Processing Equipment: Computers IBM PC; CTD Make Aandrea, RCM 9, YSI 3800, Idronaut Ocean 7 316, Satlantic in water Hyperspectral Spectroradiometer (HP PRO II), LICOR; Spherical Quantum Sensor (For PAR); CTD Oxygen Sensor Idronaut- Oxygen Sensor (1500 m); CTD Fluorometer WETLabs ECO BB2F Combination Scattering Meter and Fluorometer; Navigation and Communication: Navigational Equipment Radar: Furuno and JRC, Communications VHF: Sailor and Furuno, Global Positioning System; Other equipment -LORENZ Chart Ploter, MACELLAN NAV 5000 D, MACELLAN 300; Acoustics: Acoustic Echosounder JVC V-10, JRC JFV-850, Acoustic Sonar SUZIKI S-1600 m -15, Acoustic Doppler Current; Profilers: AANDERA (RCM 9); Crane — Midship, Crane Max Load (tons): 1.0.

#### General Directorate of Mineral Research and Exploration – Istanbul<sup>216</sup>



**R/V Sismik 1**: Length 55.75; Draft (m) 3.96; Gross Tons 750.0; Fuel Capacity (m³) 88.3; Area Wetlab (m²) 40.0; Water Capacity (m³) 106.0; Free Deck Area (m²) 140.0; Range (n mi) 2400.0; Speed Cruise (kt) 11.0; Speed Max (kt) 12.0; Endurance (days) 25.0; Accommodation - Officers 7, Crew 18, Scientists 12; Air Cond; Data Processing Equipment: Computers and SeisNet software; Radars: Sperry, MK 10-3 and Furuno, 2010; Gyrocompass: Sperry MK 227; SeisNet Integrated navigation System; Communications SSB Radio: Sailor, HF SSB RE2100 Radiotelephony; Navtex: SHIPMATE RS6100; Telefax, Mobile Telephone; Equipment - Core Grab KAHLSICO Type 214WB250; Acoustics – Echosounder, 210kHz 33kHz. Other equipment - Core Grab KAHLSICO Type 214WB250.

# Turkish Navy, Department of Hydrography, Oceanography and Navigation – Istanbul<sup>217</sup>



• **R/V Cesme**: Length 87.00m; Freeboard to Work Deck (m) 3.0; Draft (m) 4.6; Gross Tons 2900.0; Fuel Capacity (m³) 346.0; Area Wetlab (m²) 30.0; Free Deck Area (m²) 150.0; Space Cont Labs Supported (m²) 100; Range (n mi) 8000.0; Speed Cruise (kt) 12.0; Speed Max (kt) 15.0; Endurance (days) 50.0;

Accommodation – Officers 11.0, Crew 72.0, Scientists 15.0; Data Processing Equipment: Computers; Data Processing Printers/Plotters; CTD -SBE-25, SBE-19 with Oxygen and Transmissivity Sensors, CTD Fluorometer and CTD Rosette; Equipment - Core Grab, Core Box, Core Gravity, Core Piston; Navigational Equipment - Radars: RAYTHEON Pathfinder St (ARPA-96nm.), KELVIN HUGES Nucleus2 6000A (ARPA-96nm.) Gyro: SPERRY Mk.23 Mod.4ECDIS: YNAVTEX; Communications -HF, MF, UHF,

VHF; Satellite Communications - INMARSAT C, Global Positioning System EquipmentRaytheon NAV 398, Trimble Navigation NT-100; Acoustic Echosounder ELAC LAZ 4700; Sidescan; Multibeam; Winches (number): 4.0; Crane Max Load (tons): 2.5.

<sup>&</sup>lt;sup>216</sup> Postal address: Üniversiteler Mahallesi Dumlupınar Bulvarı No:139 06800 Çankaya/ANKARA TURKEY; Tel: +90 312 201 11 51; Fax: +90 312 285 36 19; E-mail: mta@mta.gov.tr; Website: http://www.mta.gov.tr/v2.0/eng/index.php; Contact person: Dr. Yavuz Hakyemez E-mail: hakyemez@mta.gov.tr <sup>217</sup> Address: Turkish Navy, Department of the Hydrography, Oceanography and Navigation, Cubuklu Istanbul, 81647 Turkey; Telephone +90 216 322 25 80; Fax +90 216 331 05 25; Website: http://www.shodb.gov.tr/Eng\_index.html; E-mail: info@shodb.gov.tr; Contact person: Admiral Nazim Cubukcu E-mail: director@shodb.gov.tr



 R/V Cubuklu: Length 40.41; Freeboard to Work Deck (m) 1.2; Draft (m) 3.95; Gross Tons 660.0; Fuel Capacity (m<sup>3</sup>) 75.0; Area Wetlab (m<sup>2</sup>) 6.0; Area Drylab (m<sup>2</sup>) 30.0; Free Deck Area (m<sup>2</sup>) 40.0; Range (n mi) 5000.0; Speed Cruise (kt) 10.0; Speed Max (kt) Endurance 11.5; (days) 30.0; Accommodation - Officers 5, Crew 11, Scientists 8; Air Cond; Data Processing Equipment: Computers IBM PC; Data Processing Printers/Plotters; CTD -SBE-**SBE-19** with 25, Oxygen and Transmissivity Sensors, CTD

Fluorometer and CTD Rosette; Equipment - Core Grab, Core Box, Core Gravity, Core Piston; Navigational Equipment Radars: Decca RM-1226C (48 nm), Raytheon R40 (24 nm), Gyro: SG Brown Mk-1 Mod.5; Communications HF, MF, UHF, VHF; Global Positioning System Equipment SERCEL NR-103; Acoustic Echosounder ELAC LAZ 721, ELAC LAZ 4700; Acoustic Sonar Sector-scan; Sidescan; Multibeam; Winches (number): 4.0; Crane Max Load (tons): 1.



• **R/V Mesaha 1**: built in 1994; Length /Breadth : 21.28 mt/5.07 mt; Displacement: 47 ton; Draft: 1.33 mt; Maximum Speed: 10 KTS; Endurance: 400 mil; Accommodation - Crew 10 and Scientists 5.



• **R/V Mesaha 2**: built in 1994; Length/Breadth: 21.28 mt/5.07 mt; Displacement: 47 ton Draft: 1.33 mt; Maximum Speed: 10 KTS; Endurance:400 mil; Main Engine 2 x 1000 HP; Accommodation: Crew 10 and Scientists 5.

The Central Fisheries Institute (Trabzon) owns one vessel, which is 28 m long and 720 HP.



• R/V Surat Arastirma 1: Length 22.0m; Freeboard to Work Deck (m) 10; Draft (m) 1,75; Gross Tons 76,38; Capacity Dry Cargo Area (m³) 89,16; Fuel Capacity (m³) 10 000; Area Wetlab (m²) 60; Area Drylab (m²) 8; Water Capacity (m³) 8 000; Free Deck Area (m²) 60; Space Cont Labs Supported (m²) 8; Speed Cruise (kt) 8; Speed Max (kt) 10; Accommodation - Officers 2, Crew 4; Scientists 10; Air Cond (yes/no); Data Processing Equipment: Computers; Data Processing Printers/Plotters; CTD Capabilities: temperature salinity conductivity, sigma-t, pH, DO (oxygen),

chlorophyl-a, light transmission; Diving Capabilities: diving equipment for 4 persons, compressor; Navigational Equipment: JMC navigation plotter, JMC meteorologic monitoring system,GPS, ECHOSOUNDER,RADAR,VHF; Communications VHF RADIO TELEPHONE; Global Positioning System Equipment JMC V-127 P GPS; Acoustic Echosounder JMC V 122(50-200KHz) color echosounder; Acoustic Sonar JMS CS-100 Sonar+Echosounder; Winches (number): 2

# IMS/METU (Erdemli) operates the following vessels:



• R/V Bilim-2: built in 1985; Length: 40.36 m, Beam: 9.47 m; Tonnage: 433 Gross ton; Draft:3.80 m; Speed: 11.5 knot; Dry Cargo Area (m³)26.0; Fuel Capacity (m³)120.0; Area Wetlab (m²)15.0; Area Drylab(m²) 40.0; Free Deck Area (m²)20.0; Range (n mi) 6500.0; Speed (kt)9.5; Speed Max (kt)11.5; Endurance (days) 45; Accommodation – Officers 5, Crew 8, Scientists 14; Air Cond; Data Processing Equipment: Computers IBM-COMPAQ PS/320; CTD Specifications: CTD RosetteGeneral Oceanics Engineering Design; Fixed Equipment Navigation and Communication: Navigational EquipmentRadar DECCA RM 1226; Auto-pilot (DECCA 757), SatNav Gyro; Echo-sounder (ATLAS EDIG 10/DESO 10); Fax; Telephones; Radio Console SAIT-6 Global Positioning System EquipmentGPS Magnovax MX 100; Acoustics and Profiling: Acoustic Echosounder38kHz 120kHz; Acoustic SonarFisheries; Oceanographic equipment: Winches (number): 2; Crane: Stern, Midships



• R/V Lamas (wooden hull): built in 1981; Length: 16 m; Tonage: 28 Gross; Draft: 1.60 m; Speed: 11.5 knot; Accommodation – crew 3 and scientists 4. The Trawler is used mostly in biological and fisheries surveys but is also capable of oceanographic investigations. Equipment: JRC Fisheries echosounder (Fish finder) (50 & 200 kHz); Garmen GPS; Oceanographic winch; Sentinel Workhorse ADCP (300kHz); Wireless communication device.

• **R/V Erdemli** (wooden hull sail boat): built in 1979; Length:16 m; Tonage: 30 Gross ton; Draft: 1.80 m; Speed: 10 knots; Accommodation: crew 4 and scientists: 5; Equipment: JRC Echosounder; winch. This R/V is sed extensively for coastal oceanographic research.

The Institute has also remotely operated underwater vehicle (Benthos MiniRover MK II).

Note: last 2 R/Vs are operating from IMS METU habour (Mediterranean Sea)

#### Dokuz Eylül University - Institute of Marine Sciences and Technology - Izmir

**R/V Piri Reis**: Length 36.0m; Draft (m) 2.3; Gross Tons 280.0; Fuel Capacity (m³) 45.0; Water Capacity (m³) 23.0; Speed Cruise (kt) 10.0; Endurance (days) 20; Accommodation - Crew 10, Scientists 11; Air Cond; CTD Rosette; Core Gravity; Navigational Equipment - Decca Radar (12 n.mile); Decca Radar Bridge Master (Arpa - 96 n.mile); Decca 550 Autopilot; Microtechnica Mk Sirius II; Gyro; Debeg Mod. ITT 2200 Automatic Range Finder; Debeg 7313, Transreceiver, 400 MW; Communications - Amplidan 9000, 10 channels in board communication system; Telefax Portable; Telephone; Portable walkie – talkies (Aselsan - 3 ps); VHF/FM Radiotelephone 9100 (Ray Jefferson); Navtex Receiver, JRC NCR - 300 A; GPS Loran 10x (Trimple); DGPS (Trimple); Acoustic Echosounder EK-400 simrad; Sidescan.



**To conclude** on the availability of vessels, underwater vehicles, laboratory and vessels equipment, especially those which can be shared.

The inventory of equipment available in the Laboratories of the beneficiary countries shows a very high level of capacity to manage the various samplings and analyses required by the MSFD. Laboratory equipment can be shared with visiting scientists upon written request to the administrations of the institutes (**Note**: contact details of all organizations are given in Annex II).

Inventory of the Vessels, which have capacity to carry out monitoring, is given in Table 87. They are 26 of different class. The vessels of the Romanian Border Police and Naval Academy are not included in the Inventory (Table 87), as no information was provided on their number and capacity to participate in monitoring. However, the RO Border Police mentioned that rental of ships or providing services could be arranged under orders of the Minister of Administration and Interior.

The classification of the research vessels was proposed by the SeasEra Project, and it is according to the US Research Vessel fleet classification, namely:

> 65 m: **Global vessels** are large and currently operate on an at least multi-Ocean scale 55 m < L < 65 m: **Ocean vessels** are large enough to currently operate on an Ocean scale 35 m < L < 55 m: **Regional vessels** currently operate generally on a European Regional scale

10 m < L < 35 m: Local and/or coastal vessels for research only

L < 10 m: Coastal

The underwater vehicles are classified as follows:

**ROV:** Remote operated underwater vehicles

AUV: Autonomous unmanned vehicles

MS: Manned submersibles USV: Unmanned surface vehicle

Large exchangeable vessel equipment: multibeam and side scan sonars, echosounders, underwater video cameras, CTDs, etc.

Table 87. Research vessels number per country

| Country  | Research vessels |       |          |       |         | Under | water v | ehicle | es | Large<br>exchangeable<br>vessel<br>equipment |
|----------|------------------|-------|----------|-------|---------|-------|---------|--------|----|----------------------------------------------|
|          | Global           | Ocean | Regional | Local | Coastal | ROV   | AUV     | MS     | US |                                              |
|          |                  |       |          |       |         |       |         |        | V  |                                              |
| Bulgaria |                  | 1     |          | 2     |         |       |         | 1      |    | 6                                            |
| Romania  | 2                |       |          | 4     | 1       |       |         |        |    | 6                                            |
| Turkey   | 1                | 1     | 4        | 9     | 1       | 1     |         |        |    | 10                                           |
| Total    | 3                | 2     | 4        | 15    | 2       | 1     |         | 1      |    | 22                                           |

Table 88. Research vessels details

| Country/<br>Vessel name | Owner/operator and website        | Category | Length<br>(m) | Year | Rent per<br>Day(Euro) |
|-------------------------|-----------------------------------|----------|---------------|------|-----------------------|
| Bulgaria                |                                   |          |               | •    |                       |
| RV Akademik             | Institute of Oceanology –         | Ocean    | 55.5          | 1979 | 6000                  |
|                         | Varna, Bulgaria                   |          |               |      |                       |
|                         | www.io-bas.bg                     |          |               |      |                       |
| RV Prof. A.             | Institute of fishing resources –  | Local    | 34            | 1979 | 1000                  |
| Valkanov                | Varna, Bulgaria                   |          |               |      |                       |
|                         | www.ifrvarna.com                  |          |               |      |                       |
| Kaliakra Sail           | Naval Academy-                    | Local    |               |      |                       |
| Training                | Varna, Bulgaria                   |          |               |      |                       |
| vessel                  | www.naval-acad.bg                 |          |               |      |                       |
| Romania                 |                                   |          |               |      |                       |
| R/V Mare                | GeoEcoMar,                        | Global   | 82            | 1971 | 6800                  |
| Nigrum                  | Constanza, Romania                |          |               |      |                       |
|                         | www.geoecomar.ro                  |          |               |      |                       |
| R/V Istros              | GeoEcoMar,                        | Local    | 32            | 1986 |                       |
|                         | Constanza, Romania                |          |               |      |                       |
|                         | www.geoecomar.ro                  |          |               |      |                       |
| Halmyris –              | GeoEcoMar,                        | Local    | 32            |      |                       |
| Floating Lab            | Constanza, Romania                |          |               |      |                       |
| · ·                     | www.geoecomar.ro                  |          |               |      |                       |
| Boat Carina             | GeoEcoMar                         | Coastal  | 6             |      |                       |
| R/V Steaua de           | NIMRD "Grigore Antipa"            | Local    | 25.8          |      |                       |
| mare – I                | Constanza, Romania                |          |               |      |                       |
|                         | www.rmri.ro/menu.en.html          |          |               |      |                       |
| Marina                  | Dobrogea Litoral                  | Local    |               |      |                       |
| Hydrographic            | Constanta Maritime Hydrographic   | Global   |               |      |                       |
| vessel (NH)             | Directorate                       |          |               |      |                       |
| Turkey                  |                                   | 1        | -             |      |                       |
| Small boat              | MRC/TUBITAK                       | Coastal  | 6             | 2012 |                       |
| R/V Marmara             | MRC/TUBITAK                       | Regional | 42            | 2013 |                       |
| R/V Arar                | University of Istanbul,           | Local    | 31.27         | 1951 |                       |
| •                       | Istanbul, Turkey                  |          |               |      |                       |
|                         | www.istanbul.edu.tr/enstituler/   |          |               |      |                       |
|                         | denizbilimleri/turkce/turkish.htm |          |               |      |                       |
| R/V Arar 2              | University of Istanbul,           | Local    | 16            |      |                       |
|                         | Istanbul, Turkey                  |          |               |      |                       |
|                         | www.istanbul.edu.tr/enstituler/   |          |               |      |                       |
|                         | denizbilimleri/turkce/turkish.htm |          |               |      |                       |
| R/V Bilim               | Middle East Technical University, | Regional | 40.36         | 1983 |                       |
| •                       | Erdemli, Turkey                   |          |               |      |                       |
|                         | www.ims.metu.edu.tr               |          |               |      |                       |
| R/V Lamas-1             | Middle East Technical University, | Local    | 16            | 1981 |                       |
| •                       | Erdemli, Turkey                   |          |               |      |                       |
|                         | www.ims.metu.edu.tr               |          |               |      |                       |
| R/V Erdemli             | Middle East Technical University, | Local    | 17            | 1979 |                       |
| ,                       | Erdemli, Turkey                   |          |               |      |                       |
|                         | www.ims.metu.edu.tr               |          |               | 1    |                       |
| R/V Piri Reis           | Institute of marine Sciences and  | Regional | 36            | 1978 | 1                     |
| .,                      | Technology -                      |          |               |      |                       |
|                         | Izmir, Turkey                     |          |               |      |                       |
|                         |                                   |          |               |      |                       |

| R/V Denar 1  Yakamoz     | Karadeniz Technical University, Faculty of Marine Sciences – Trabzon, Turkey www.ktu.edu.tr Karadeniz Technical University, | Local    | 24.5  | 1992 |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------|-------|------|
|                          | Faculty of Marine Sciences –<br>Trabzon, Turkey<br>www.ktu.edu.tr                                                           |          |       |      |
| R/V Sismik 1             | General Directorate of Mineral<br>Research and Exploration –<br>Istanbul, Turkey<br>www.mta.gov.tr/                         | Ocean    | 55.75 | 1976 |
| R/V Cesme                | Turkish Navy, Istanbul, Turkey www.shodb.gov.tr/Eng_index.html                                                              | Global   | 87    | 1965 |
| R/V Cubuklu              | Turkish Navy, Istanbul, Turkey www.shodb.gov.tr/Eng_index.html                                                              | Regional | 40.41 | 1986 |
| R/V Mesaha 1             | Turkish Navy, Istanbul, Turkey www.shodb.gov.tr/Eng_index.html                                                              | Local    | 21.28 | 1994 |
| R/V Mesaha 2             | Turkish Navy, Istanbul, Turkey www.shodb.gov.tr/Eng_index.html                                                              | Local    | 21.28 | 1994 |
| R/V Surat<br>Arastirma 1 | Central Fisheries Research Institute  – Trabzon, Turkey www.sumae.gov.tr/en                                                 | Local    | 22    | 1984 |

# Table 89. Underwater Vehicles details

| Country/Vehicle   | Owner/operator and website | Category    | Depth | Year |
|-------------------|----------------------------|-------------|-------|------|
| name              |                            |             |       |      |
| Bulgaria          |                            |             |       |      |
| PC-8              | Institute of oceanology –  | Manned      | 600   | 1986 |
|                   | Varna, Bulgaria            | Submersible |       |      |
|                   | www.io-bas.bg              |             |       |      |
| Turkey            |                            |             |       |      |
| Benthos MiniRover | IMS/METU, Erdemli          | Remote      |       |      |
| MKII              | www.ims.metu.edu.tr        | operated    |       |      |
|                   |                            | underwater  |       |      |
|                   |                            | vehicle     |       |      |

# V. Training



This chapter deals with the level of capacity building and needs to provide for smooth implementation of the MSFD in a coordinated and harmonised manner.

(what kind of trainings are ensured on a regular basis, and what are the needs)

No regular trainings are conducted. Training programmes in **IO-BAS** are related to projects of external funding, such as those during the last 10-12 years conducted:

- 30 April -4 May 2012 Workshop/training course on Direct and Hollistic methods for stock assessment under (SRCSSMBSF)25 30 June 2012 Application of acoustic surveys in the assessment of pelagic fish stocks. Organized by Institute of Oceanology BAS, Varna under the Project "Strengthening the regional capacity to support the sustainable management of the Black Sea Fisheries (SRCSSMBSF)"
- 21 July 01 August 2008 Statistic Analysis of Biological Data and Time-Series, Organized by IO-BAS, Varna, funded by SESAME Project.
- November 2008, Fisheries acoustics training course, Data collection, analyses and fish stock assessment by applying of hydroacoustic method, Organized by IO-BAS, Varna, Bulgaria, Lecturer from IMR/MAREC, Norway
- 11-15 June 2007 GIS Training course "Geographic information systems Introduction in GIS applications, based on ArcGis Desctop", Organized by IO-BAS, Varna, funded by SIBEMA Project
- 28 September 06 October 2002 The socio-economic aspects of the regional sustainable development and the ecosystem of the Black sea region, Organized by IO-BAS, Varna, funded by the project "CESUM'BS
- 24 September 07 October 2001 Ecosystem health assessment and sustainable development of marine environment, Organized by IO-BAS, Varna, funded by the project "CESUM'BS.
- In **IBER-BAS** the trainings are also project-funded, they were:
- Integrated management and dynamics of wetlands 2012 (Project Wetlanet)
- Basics of molecular evolution and phylogenetics 2012 (Project Wetlanet)
- GIS in wetland conservation and management 2012 (Project Wetlanet)
- Molecular and biochemical markers for wetland ecotoxicology 2010 (Project Wetlanet)
- Molecular taxonomy, phylogenetics and ecology 2010 Project CEBDER
- Analysing biological and environmental data using univariate analysis 2007 (UNESCO)

In **IFR** a few trainings have been organised. For instance, in 2009 there was a training course for 2 weeks with selected lecturers from IFR and IO-BAS on Fisheries and Aquaculture. The course have been organized by the Training Center of BENA at IFR. The trainees: staff of NAFA-VARNA and VMS center of NAFA. In 2012 there was a training course on innovative methods for Cetaceans monitoring.

Since 2001, scientists of the institute have participated in the following trainings, which have been organised by other organizations under different projects:

- Training course: MIKADO, NEMO, Ocean View; Ostende, Belgium, 28.02 4.03.2011 (II part)
- Training course on software for meta-data maintenance: MIKADO, NEMO, Ocean View; Ostende, Belgium, 24 30.10.2009 (I part)
- Statistical analysis of biological data and time series: DIVA analysis tool; DINEOF Multivariate analysis etc., Varna, organized by the IO-BAS, 21.07 1.08.2008 (SESAME Project, as mentioned above by IO-BAS)
- Statistics course Brodgar & R, Sofia, Bulgaria, CLOE, 06.2007 (**Note**: CLOE is the previous name of IBER-BAS, the course is also mentioned by IBER above)
- Regime shifts workshop, Varna, Bulgaria, CLOE, 06.2005 (training for use of a relevant software to detect regime shifts; **Note**: IO-BAS scientists also participated)
- Training course on Cetacean monitoring in the Black Sea, NIMRD, Constanta, Romania, 12. 2001

**Recommended trainings** are: Phytoplankton and zooplankton taxonomy, Training in Statistics and use of new softwares applied in biology and ecology: STATISTICA, PRIMER 6, XLSTAT2012, as well as ArcView, Grapher, Surfer; Molecular taxonomy of microplankton and application in biodiversity.

# **ROMANIA**

**NIMRD** specified once training conducted during the last years by the institute: Training on quality assurance/quality control on chemistry parameters. However, specialists from the Institute have participated in the trainings specified above as organised during different projects (e.g. BlackSea SCENE, SESAME, UNESCO 'Regime shifts', statistical analysis trainings, etc.).

**GeoEcoMar** organizes regularly training activities on "Sediment and water sampling and sample processing at sea and in the laboratory for biology and geology students and graduated students" with the occasion of each expedition at sea. During the last 5 years GeoEcoMar organized six such trainings.

**Constanta County Department for Statistics** organizes annual training courses for their own staff, with topics in the statistical field.

**Constanta County Department of Public Health** participates in annual trainings organized by the Ministry of Health for the Romanian Radiation Hygiene laboratories. During the last 5 years this Department has organized one training on radiation protection specific to radionuclide activity.

Border Police General Inspectorate (specifically the Department of Marine and Riverine Environmental Protection, within the Coast Guard) carries out regular trainings in marine environmental protection. However, no trainings have been listed for the last 5 years, except those related to oil spill preparedness and response, as well as to search and rescue (e.g. RODELTA2009 and GEODELTA2012<sup>218</sup>). The organization recommended MISIS to organize workshops for exchange of experience/information and development of closer collaboration between Black Sea stakeholders, especially in the implementation of the MSFD. They mentioned the importance of the Common Information Sharing Environment (http://www.eskema.eu/defaultinfo.aspx?topicid=154&index=5) and the advantages to bring together the maritime surveillance (in its environmental component, especially) with the traditional monitoring activities tracing the state of the Black Sea.

Naval Academy organizes regular trainings in preventing environment pollution.

#### **Recommended trainings** are:

- training in ecotoxicological monitoring
- modern sampling and analytical techniques (chemical oceanography, pollutants, biological elements)
- oceanographic data statistical processing and analysis
- integrated chemistry and biology data assessment (according to WFD and MSFD requirements)
- measuring pollution effects upon marine ecosystems, biomarkers
- monitoring and assessment of quality of bathing water
- measuring cyanobacteria toxicity (and of other toxic species)
- measuring radioactivity and its quality control
- development of public awareness (e.g. for beach users preparation of communications on water quality, etc.)

<sup>&</sup>lt;sup>218</sup> RODELTA and GEODELTA are regional DELTA exercises, which are organised by the Black Sea coastal states with the support of the BSC. The 2009 DELTA was organised by Romania (RODELTA, http://www.blacksea-commission.org/\_rodelta.asp) and the 2012 DELTA – by Georgia (GEODELTA). These exercises are regularly conducted (each 2 years) in implementation of the Contingency Protocol and Regional Contingency Plan to the Bucharest Convention.

**TUBITAK/MRC (Istanbul):** There is one regular and relevant training in the Environment Institute: Water-Wastewater Laboratory ISO 17025 Accreditation Applications- Validation Methods and Uncertainty Calculations. In 2012 and with the experience gained in the DeKoS project, training was provided to the Ministry of Waters and Forestry experts to assist WFD technical settings on definition and typology identifications of coastal waters, quality classification for coastal waters and identification of EQSs for chemical status assessment. Another one will be soon provided on the sampling strategy in transitional waters.

**The Central Fisheries Institute** (Trabzon) organizes trainings in fisheries management and aquaculture.

**The Karadeniz Technical University (Trabzon)** provides trainings for students and PhD students during their education in the University.

**IMS/METU** (Erdemli) provides for summer schools to develop awareness for graduate, undergraduate and primary school students in the field of marine sciences. During the last 5 years the Institute has organised: "I Know My Sea and I Protect My Sea" (training on marine environmental protection for school kids and teachers and for the public); "IMBER ClimECO3 Summer School", for training on ecosystem modelling.

The Nature Conservation Center organizes trainings on monitoring of forest biodiversity. They have also carried out courses to introduce the concept of biodiversity conservation/protection, and the importance/role of biodiversity in forest ecosystems through communicating knowledge on different species groups available (i.e. birds, butterflies, small mammals, etc.), ecosystem functions and processes, and the value of a healthy forest ecosystem. More specific courses have been also provided, such as on the ecological consequences of hydro-electric power plants in Turkey.

# The Ministry of Environment and Urbanization and MRC/TUBITAK recommended:

Workshops on regional/global marine and climate policies and identification of research needs/issues. Diagnose the main gaps and main already advanced topics for the region and investigate how to make vertically detailed research.

Maritime and coastal economy as well as policy should be supported by researchers undertaking investigations on policy/economy oriented needs/issues.

New generation scientists have to be open minded, capabale of thinking and doing in an intersectorial way, and they should not be conservative about top-down approach. They should know how to deal with social and economic dimensions.

# Recommended trainings by TR are as follow:

- Optimization of field surveys, data analysis and assessment tools for benthic flora (macro algae, angiosperms)
- Training on techniques of habitat mapping
- International and national harmonisation of sampling, data collection and data analysis in fisheries investigations
- Socio economic analysis of environmental impacts and resource use to support maritime and coastal economies: Fisheries and aquaculture. Analysis of economic sector data with fisheries data
- MSFD-related training (On understanding of GES and possible tools to identify it: A descriptor based GES or combined)
- Biodiversity monitoring and indicators for MSFD implementation
- Learning about Biofuels, other products from micro and macro algae

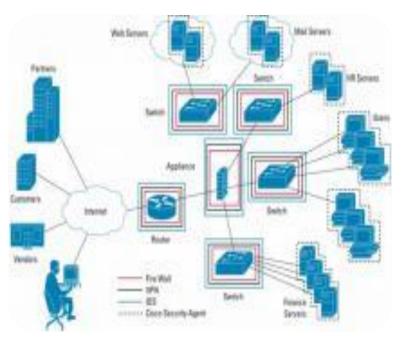
 Learning about deep sea resources and techniques for research including the required infrastructure and human capacity

### Conclusions on the priority needs in training in the MISIS beneficiary countries

# 1. Monitoring

- Optimization of field surveys
- Modern methods in monitoring (chemical oceanography, pollutants (incl. radioactivity), biological elements (especially for macroalgae and angiosperms), measuring pollution effects via biomarkers, bathing water)
- Biodiversity monitoring, including phytoplankton and zooplankton taxonomy, and molecular taxonomy
- Ecotoxicological monitoring
- Measuring toxicity of phytoplankton species

# 2. Data processing and assessments


- Oceanographic data statistical processing, visualization and analysis (especially applications in biology and ecology of STATISTICA, PRIMER 6, XLSTAT2012, as well as ArcView, Grapher, Surfer)
- MSFD-and WFD-related training: integrated chemistry and biology data assessment (according to WFD and MSFD requirements), identification of GES, development of indicators and methodologies for their calculation

**Note:** Such a training can be very beneficial, communicating the experience of BG and RO in identification of good ecological status sensu WFD.

 Modern analyitical/assessment tools (all spheres of investigations, priority mentioned - macro algae and angiosperms)

# 3. Habitat mapping

4. **Communication of research, development of public awareness** (e.g. for beach users preparation of communications on water quality, etc.)



# VI. Data/information availability to comply with the MSFD

(versus Annex I and III of the MSFD)

This chapter deals with the requirements of the MSFD related to the Initial assessment (IA), (Art.8, Annex III), GES identification (Art. 9, Annex I), setting of targets (Art. 10) and the process of regular reviews to propose any necessary amendments in the measures (Art. 13) taken to achieve GES. The target period is 2006-2011. The frequency of observations is meant from monthly to annual, depending on the parameter discussed. The geographical coverage meant is the Exclusive Economic Zone of each country.

The Tables further presented reflect the availability of data to cover the indicators for each Descriptor of the MSFD (Annex I) and cross-check also the readiness of the beneficiary countries to provide for the IA and environmental targets identification. The fields marked in red in the Tables signify positive answers to the questions posted (which is good), the rest mean lack of data/information (green) or partial availability (yellow). Ironically, 'the greening' of the Black Sea in the field of environmental data/information availability to meet the requirements of the MSFD becomes visible immediately and conclusions on the gaps are made in the end of the Chapter.

# **BULGARIA**

MoEW reported very limited data availability, collected by its own laboratories: nutrients in the water column; contaminants in water/sediment/biota; occurance and extent of acute pollution events; and loads from LBS (contaminants stemming to the Black Sea with municipal and industrial waste waters; agriculture&forestry run-offs). EAMA has no monitoring in the marine environment, but exercises inspections on ships related to environment and human safety aspects of shipping. NAFA collects fishery data/information in line with the CFP. The RHI provides for the compliance monitoring related to the Bathing Water Directive. The scientific institutions (IO-BAS, IBER-BAS, NIMH, and IFR) are the owners of the marine data/information (Tables 90-92) collected during different types of monitoring in the frames of national programmes, projects, problem-oriented EIA and others. These institutions trace the state of the Black Sea, identify trends in dynamics, however, their understanding of the causal chain pressures/impact is rather limited as demonstrated in Table 95.

Table 90. Check of availability of biological data in Bulgaria

| Species       | _    | Organizations involved in monitoring/data collection (Yes/No for each parameter and organization) |      |      |      |      |     |                    |  |  |
|---------------|------|---------------------------------------------------------------------------------------------------|------|------|------|------|-----|--------------------|--|--|
|               | MoEW | IO-BAS                                                                                            | EAMA | IBER | NAFA | NIMH | RHI | IFR                |  |  |
| Bacteria      | No   | No                                                                                                | No   | Yes  | No   | No   | Yes | Yes                |  |  |
| Phytoplankton | No   | Yes                                                                                               | No   | No   | No   | No   | No  | Yes                |  |  |
| Protozoa      | No   | Yes <sup>219</sup>                                                                                | No   | No   | No   | No   | No  | Yes <sup>163</sup> |  |  |
| Macroalgae    | No   | Yes                                                                                               | No   | Yes  | No   | No   | No  | Yes <sup>220</sup> |  |  |

<sup>&</sup>lt;sup>219</sup> For Noctiluca scintillans only

<sup>&</sup>lt;sup>220</sup> Since 2009

| Species          | _    | Organizations involved in monitoring/data collection (Yes/No for each parameter and organization) |      |       |      |      |     |                         |  |  |
|------------------|------|---------------------------------------------------------------------------------------------------|------|-------|------|------|-----|-------------------------|--|--|
|                  | MoEW | IO-BAS                                                                                            | EAMA | IBER  | NAFA | NIMH | RHI | IFR                     |  |  |
| Mesozooplankton  | No   | Yes                                                                                               | No   | No    | No   | No   | No  | Yes                     |  |  |
| Macrozooplankton | No   | Yes                                                                                               | No   | No    | No   | No   | No  | Yes                     |  |  |
| Meiobenthos      | No   | No                                                                                                | No   | No    | No   | No   | No  | No                      |  |  |
| Macrozoobenthos  | No   | Yes                                                                                               | No   | No    | No   | No   | No  | Yes                     |  |  |
| Fish             | No   | Yes                                                                                               | No   | No    | Yes  | No   | No  | Yes                     |  |  |
| Mammals          | No   | Yes <sup>165</sup>                                                                                | No   | Yes   | No   | No   | No  | Yes <sup>221</sup>      |  |  |
| Birds            | No   | No                                                                                                | No   | Yes   | No   | No   | No  | No                      |  |  |
| Others           | No   | Genetics<br>222                                                                                   | No   | Fungi | No   | No   | No  | Genetics <sup>167</sup> |  |  |

# A. Data availability versus Annex I of the MSFD

The Table below follows the EC COM Decision 2010/477/EU<sup>223</sup>, which specifies criteria and indicators for Good Environmental Status definition (GES, *sensu* MSFD). Selected additional indicators are included, which could be used to identify GES.

Table 91. Check of data availability in Bulgaria versus Annex I of the MSFD

| MSFD Descriptor and relevant indicators                                                                              |           | Organizations involved in monitoring/data collection (Yes/No for each parameter and organization) |           |                                     |                            |            |                            |            |  |  |
|----------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------|-----------|-------------------------------------|----------------------------|------------|----------------------------|------------|--|--|
| and relevant indicators                                                                                              | MoEW      | IO-BAS                                                                                            | EAMA      | IBER                                | NAFA                       | NIMH       | RHI                        | IFR        |  |  |
| Descriptor 1: Biological diversity                                                                                   |           |                                                                                                   |           |                                     |                            |            |                            |            |  |  |
| and abundance of species are in                                                                                      | line with | prevailing                                                                                        | physiogra | aphic, geogr                        | raphic and                 | climatic c | onditions                  | 5          |  |  |
| 1.1. Species distribution                                                                                            |           |                                                                                                   |           |                                     |                            |            |                            |            |  |  |
| Distributional range                                                                                                 | No        | Yes <sup>224</sup>                                                                                | No        | Yes<br>(GL/MP<br>H <sup>225</sup> ) | Yes<br>(F <sup>226</sup> ) | No         | Yes<br>(B <sup>227</sup> ) | Yes<br>228 |  |  |
| Distributional pattern within the latter, where appropriate                                                          | No        | Yes                                                                                               | No        | Yes<br>(GL/MP<br>H)                 | Yes (F)                    | No         | No                         | Yes        |  |  |
| Area covered by the species (for sessile/benthic species)                                                            | No        | No                                                                                                | No        | Yes<br>(GL <sup>229</sup> /<br>MPH) | No                         | No         | No                         | No         |  |  |
| 1.2. Population Size                                                                                                 |           |                                                                                                   |           |                                     |                            |            |                            |            |  |  |
| Population abundance and/or biomass, as appropriate                                                                  | No        | Yes                                                                                               | No        | Yes<br>(P <sup>230</sup> )          | Yes (F)                    | No         | No                         | Yes        |  |  |
| 1.3. Population condition                                                                                            |           |                                                                                                   |           |                                     |                            |            |                            |            |  |  |
| Population demographic characteristics (e.g. body size or age class structure, sex ratio, fecundity rates, survival/ | No        | Yes                                                                                               | No        | Yes (P)                             | Yes (F)                    | No         | No                         | Yes        |  |  |
| mortality rates)                                                                                                     | N.        | V 231                                                                                             |           | )/ (D)                              | A.                         |            |                            | V          |  |  |
| Population genetic structure, where appropriate                                                                      | No        | Yes <sup>231</sup>                                                                                | No        | Yes (P)                             | No                         | No         | No                         | Yes<br>175 |  |  |

<sup>&</sup>lt;sup>221</sup> Mainly on strandings, very few data on population dynamics and by-catch.

<sup>222</sup> Limited to fish

<sup>&</sup>lt;sup>223</sup> Commission Decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters (notified under document C(2010) 5956)/(2010/477/EU)

<sup>&</sup>lt;sup>224</sup> For D1.1. IO-BAS data do not cover birds, bacteria, Protozoa (except Noctiluca) and meiobenthos, as specified above.

<sup>&</sup>lt;sup>225</sup> GL/MPH – means geographically limited and for macrophytobenthos only

<sup>&</sup>lt;sup>226</sup> F – for fish only

<sup>&</sup>lt;sup>227</sup> For some pathogenic bacteria

<sup>&</sup>lt;sup>228</sup> For the species specified above

<sup>&</sup>lt;sup>229</sup> Only Bourgas Bay

<sup>&</sup>lt;sup>230</sup> P – means Partly

<sup>&</sup>lt;sup>231</sup> For fish

| MSFD Descriptor                                                                                                                                                                                                                                               | Organizations involved in monitoring/data collection (Yes/No for each parameter and organization) |                           |             |                     |             |            |            |                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|-------------|---------------------|-------------|------------|------------|---------------------------|--|
| and relevant indicators                                                                                                                                                                                                                                       | MoEW                                                                                              | IO-BAS                    | EAMA        | IBER                | NAFA        | NIMH       | RHI        | IFR                       |  |
| 1.4. Habitat distribution                                                                                                                                                                                                                                     | IVIOEVV                                                                                           | IO-BA3                    | LAIVIA      | IDEN                | IVAFA       | INIIVITI   | КПІ        | IFK                       |  |
| Distributional range                                                                                                                                                                                                                                          | No                                                                                                | Yes (P)                   | No          | Yes (GL)            | No          | No         | No         | No                        |  |
| Distributional pattern                                                                                                                                                                                                                                        | No                                                                                                | Yes (P)                   | No          | Yes (GL)            | No          | No         | No         | No                        |  |
| 1.5. Habitat extent                                                                                                                                                                                                                                           | 110                                                                                               | 163 (1)                   | 140         | 163 (GL)            | 110         | 140        | 140        | 110                       |  |
| Habitat area                                                                                                                                                                                                                                                  | No                                                                                                | No                        | No          | Yes (GL)            | No          | No         | No         | No                        |  |
| Habitat volume, where                                                                                                                                                                                                                                         | No                                                                                                | No                        | No          | Yes (GL)            | No          | No         | No         | No                        |  |
| relevant                                                                                                                                                                                                                                                      | 110                                                                                               |                           | 140         | 103 (01)            | 100         | 140        | 140        | 140                       |  |
| 1.6. Habitat condition                                                                                                                                                                                                                                        |                                                                                                   |                           |             |                     |             | l          |            |                           |  |
| Condition of the typical                                                                                                                                                                                                                                      | No                                                                                                | No                        | No          | Yes                 | No          | No         | No         | No                        |  |
| species and communities                                                                                                                                                                                                                                       |                                                                                                   |                           |             | (GL/MP<br>H)        |             | 110        |            |                           |  |
| Relative abundance and/or biomass, as appropriate                                                                                                                                                                                                             | No                                                                                                | Yes                       | No          | Yes<br>(GL/MP<br>H) | No          | No         | No         | Yes                       |  |
| Physical, hydrological and chemical conditions                                                                                                                                                                                                                | No                                                                                                | Yes                       | No          | Yes<br>(GL/MP<br>H) | No          | No         | No         | Yes                       |  |
| 1.7. Ecosystem structure                                                                                                                                                                                                                                      |                                                                                                   |                           |             |                     |             | •          |            |                           |  |
| Composition and relative proportions of ecosystem components (habitats and species)                                                                                                                                                                           | No                                                                                                | No                        | No          | No                  | No          | No         | No         | No                        |  |
| Ecosystem processes and functions: Interactions between the structural components of the ecosystem                                                                                                                                                            | No                                                                                                | No                        | No          | No <sup>232</sup>   | No          | No         | No         | No                        |  |
| <b>Descriptor 2:</b> Non-indigenous sp                                                                                                                                                                                                                        | necies intr                                                                                       | nduced by                 | human a     | ctivities are       | at levels t | hat not a  | dversely a | alter                     |  |
| the ecosystem                                                                                                                                                                                                                                                 | Jecies IIIti                                                                                      | oduced by                 | ilulilali a | ctivities are       | atieveist   | nat not at | aversely c | aitei                     |  |
|                                                                                                                                                                                                                                                               |                                                                                                   |                           |             |                     |             | •          |            |                           |  |
| 2.1. Abundance and spreading                                                                                                                                                                                                                                  | 1                                                                                                 |                           |             | 1                   | 1           |            |            |                           |  |
| 2.1.1.Trends in abundance, temporal occurrence and spatial distribution in the wild of non-indigenous species, particularly invasive non-indigenous species, notably in risk areas, in relation to the main vectors and pathways of spreading of such species | No                                                                                                | Yes                       | No          | No                  | No          | No         | No         | Yes                       |  |
| 2.1.2. Vectors of introduction                                                                                                                                                                                                                                | No                                                                                                | No                        | No          | No                  | No          | No         | No         | No                        |  |
| 2.2. Environmental impact of n                                                                                                                                                                                                                                | 1                                                                                                 | I                         |             | 1 110               | 1 110       | 1 110      | 1 110      | 1 110                     |  |
| 2.2.1. Ratio between non-<br>indigenous species and native<br>species in some well-studied<br>taxonomic groups, e.g. fish,<br>macroalgae, molluscs                                                                                                            | No                                                                                                | Yes<br>(P) <sup>233</sup> | No          | No                  | No          | No         | No         | Yes<br>(P) <sup>234</sup> |  |
| 2.2.2. Magnitude of the impacts of non-indigenous species, in particular invasive species, on native communities, habitats and ecosystem functioning                                                                                                          | No                                                                                                | Yes                       | No          | No                  | No          | No         | No         | Yes                       |  |
| 2.2.3. The Biopollution Level (BPL) (index)                                                                                                                                                                                                                   | No                                                                                                | No                        | No          | No                  | No          | No         | No         | No                        |  |

 <sup>232</sup> The Quest says YES for 1.7 indicators, however, many ecosystem components are not studied, thus it seems the more appropriate answer is NO.
 233 For phyto-, zooplankton and macrozoobenthos only
 234 For zooplankton

Organizations involved in monitoring/data collection **MSFD** Descriptor (Yes/No for each parameter and organization) and relevant indicators EAMA IBER MoEW IO-BAS **NAFA** NIMH RHI IFR Descriptor 3: Populations of all commercially exploited fish and shellfish are within safe biological limits, exhibiting a population age and size distribution that is indicative of a healthy stock 3.1. Level of pressure of the fishing activity 3.1.1. Fishing mortality (F) No No No Yes No No Yes (P)<sup>180</sup> related to a reference value 3.1.2. Catch/biomass ratio No Yes No No Yes No No Yes  $(P)^{235}$  $(P)^{179}$ (P) Yes<sup>236</sup> No Maximum Sustainable Yield Yes No No No No Yes (P)<sup>179</sup> (P)<sup>159</sup> Trends in catches / biomass Yes No No Yes Nο Nο Nο Yes  $(P)^{237}$ (P)<sup>179</sup> 3.2. Reproductive capacity of the stock Yes<sup>239</sup> 3.2.1. Spawning Stock Biomass Yes No No No No Yes  $(P)^{238}$ related to a reference value (P) 3.2.2. Biomass indices No Yes No No No No No Yes (P)<sup>180</sup> (P)<sup>180</sup> 3.3. Population age and size distribution 3.3.1. The proportion of fish Nο Nο Nο Nο Nο Nο Nο No larger than a given length, e.g. the length at which 100% of the females are mature Yes Yes Yes 3.3.2. The mean maximum No No No No No length across all species found (P) in research vessel surveys 3.3.3. The 95% percentile of No No No Yes No No No No the fish length distribution observed in research vessel surveys Secondary indicator to D 3 Yes<sup>240</sup> 3.3.4. Size at full sexual No No No No No No No maturation, which may reflect the extent of undesirable genetic effects of exploitation Descriptor 4: All elements of the marine food webs, to the extent that they are known, occur at normal abundance and diversity and levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity 4.1. Productivity (production per unit biomass) of key species or trophic groups 4.1.1. Performance of key No No No No No No No No predator species using their production per unit biomass (productivity)\* No<sup>241</sup> 4.1.2. Production per unit No No No No No No No biomass No 4.1.3. Marine Trophic Index No No No No No No No No<sup>242</sup> 4.1.4. Trophic Levels No No No No No No No (Functional feeding groups) No No No 4.1.5. Diet composition No Yes No No Yes  $(P)^{243}$  $(P)^{180}$ 

<sup>235</sup> For turbot and sprat only

<sup>&</sup>lt;sup>236</sup> For selected species only

<sup>&</sup>lt;sup>237</sup> For selected fish species

<sup>&</sup>lt;sup>238</sup> For sprat, turbot, anchovy, and whiting only

<sup>&</sup>lt;sup>239</sup> For selected species only

<sup>&</sup>lt;sup>240</sup> May be for fresh-water species only.

<sup>&</sup>lt;sup>241</sup> Yes for Primary Production (PP) but very limited in frequency

<sup>&</sup>lt;sup>242</sup> The Quest says No, however, for the BS Ecopath model (Daskalov, 2006) trophic levels were identified, and in the BSC Biodiversity Outlook Report (not published) there are calculations of the Trophic Index.

<sup>&</sup>lt;sup>243</sup> For sprat, horse mackerel, and turbot only

| Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly   Assembly    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Organiza   | ations invo          | lved in n | onitoring/  | data collec | rtion      |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-----------|-------------|-------------|------------|-----|-----|
| ## A.2. Proportion of selected species at the top of foot webs  ## 4.2.1. % Large fish (by weight)   No   Yes   No   No   No   No   No   No   No   Yes   No   No   No   No   No   No   No   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | _          |                      |           |             |             |            |     |     |
| 4.2.1. % Large fish (by weight) No Yes No No No No No No No No No Acal 2.2. Body size (length, weight) in selected functional groups/species  4.2.2. Body size (length, weight) in selected functional groups/species  4.3.1. Abundance / Indianal spatial distribution of key groups/species  4.3.1. Abundance frends - Abundance and spatial distributions of species  Additional to D4:  Ratio of pelagic to demersal fish production or biomass between different trophic levels  Ratio of pelagic to demersal fish production or biomass between different trophic levels  Ratio of macrobenthos invertebrate to demersal fish production or biomass between different trophic levels  Ratio of pelagic to demersal fish production or biomass between different trophic levels  Ratio of pelagic to demersal fish production or biomass between different trophic levels  Ratio of pelagic to demersal fish production or biomass between different trophic levels  Ratio of pelagic to demersal fish production or biomass between different trophic levels  Ratio of pelagic to demersal fish production or biomass between different trophic levels  Ratio production fish biomass and/or production or biomass between different trophic levels  Ratio production or biomass  Ratio zooplankton production or biomass between different trophic levels  Ratio production or biomass  Ratio zooplankton production  Ratio benthic production  No No No No No No No No No No No No No N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and relevant indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                      |           |             | 1           | NIMH       | RHI | IFR |
| 4.2.1. % Large fish (by weight) No Yes No No No No No No No No A.2.2. Body size (length, weight) in selected functional groups/species  4.3. Abundance trends - Abundance and spatial distributions of seeze Shading for the selected functional groups/species  4.3. Abundance and spatial distribution of sey groups/species  4.3. Abundance and spatial distribution of sey groups/species  4.3. Abundance and spatial distribution of sey groups/species  4.3. Abundance and spatial distributions of species No No Yes (P) 180 No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2. Proportion of selected spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1                    |           | IDEIX       | 1474174     | 1          |     |     |
| 4.2.2. Body size (length, weight) in selected functional groups/species  4.3.1. Abundance/distribution of key groups/species  4.3.1. Abundance trends - No Yes (P) <sup>244</sup> No No Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |           | No          | No          | No         | No  | No  |
| weight) in selected functional groups/species  4.3.1. Abundance / distribution of key groups/species  4.3.1. Abundance trends - Abundance and spatial distributions of species  No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |           |             |             |            | -   |     |
| groups/species 4.3. Abundance Irends - No Yes Abundance trends - No (P) <sup>244</sup> No No No Yes (P) <sup>380</sup> No No Yes Abundance and spatial distributions of species  Additional to D4: Energy flows in food webs: Ratio of production or biomass between different trophic levels  Ratio of pelagic to demersal fish production Ratio of macrobenthos No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO         | 163                  | INO       | INO         | 163         | INO        | INO | 163 |
| 4.3. Abundance/distribution of key groups/species  4.3.1. Abundance trends - Abundance and spatial distributions of species  No (P) <sup>244</sup> No No No (P) <sup>289</sup> No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |           |             |             |            |     |     |
| 4.3.1. Abundance trends - Abundance art appatial distributions of species    Additional to D4: Energy flows in food webs: Ratio of production or biomass between different trophic levels  Ratio of pelagic to demersal fish production or biomass and/or production as and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass and/or biomass a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f key grou | ns/snacias           |           |             |             |            |     |     |
| Abundance and spatial distributions of species    Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibility   Possibil |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | _                    |           | No          | Voc         | No         | No  | Voc |
| Additional to D4:  Energy flows in food webs: Ratio of production or biomass between different trophic levels  Ratio of pelagic to demersal fish biomass and/or production  Ratio of macrobenthos invertebrate to demersal fish production or biomass and/or production  Ratio of macrobenthos invertebrate to demersal fish production or biomass  Ratio zooplankton production required/ zooplankton production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production  Ratio production Ratio production  Ratio production  Ratio production  Ratio production  Ratio  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO         |                      | INO       | INO         |             | INO        | INO |     |
| Additional to D4: Energy flows in food webs: Ratio of production or biomass between different trophic levels  Ratio of pelagic to demersal fish biomass and/or production Ratio of macrobenthos invertebrate to demersal fish production or biomass Ratio zooplankton production required/ zooplankton production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Possible benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Production Ratio Productio | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | (P)                  |           |             | (P)         |            |     | (P) |
| Ratio of pelagic to demersal fish biomass and/or production or biomass between different trophic levels  Ratio of pelagic to demersal fish biomass and/or production production or biomass and/or production or biomass and/or production or biomass and/or production or biomass and/or production required/ zooplankton production required/ zooplankton production required/ zooplankton production required/ zooplankton production  Ratio benthic production  Ratio benthic production  Ratio benthic production  Ratio benthic production  No No No No No No No No No No No No No N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |           |             |             |            |     |     |
| Ratio of pelagic to demersal fish biomass and/or production Ratio of macrobenthos invertebrate to demersal fish production or biomass Ratio of macrobenthos invertebrate to demersal fish production or biomass Ratio zoplankton production required/ zooplankton production required/ zooplankton production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio Book Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Ratio Rati |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |           |             |             |            |     |     |
| fish biomass and/or production Ratio of macrobenthos invertebrate to demersal fish production or biomass Ratio zooplankton production required/zooplankton production or production Ratio benthic production required/zooplankton production Ratio benthic production required/zooplankton production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ra | Energy flows in food webs: Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o of produ | ction or bi          | omass be  | tween diffe | erent troph | nic levels |     |     |
| fish biomass and/or production Ratio of macrobenthos invertebrate to demersal fish production or biomass Ratio zooplankton production required/zooplankton production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio | Ratio of pelagic to demersal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No         | No                   | No        | No          | No          | No         | No  | No  |
| Production   No   No   No   No   No   No   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |           |             |             |            |     |     |
| Ratio of macrobenthos invertebrate to demersal fish production or biomass Ratio zooplankton production No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |           |             |             |            |     |     |
| Invertebrate to demersal fish production or biomass Ratio zooplankton production required/zooplankton production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic animals Ratio zooplankton Ratio Roll Roll Roll Roll Roll Roll Roll Rol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No         | No                   | No        | No          | No          | No         | No  | No  |
| Ratio zooplankton production required/ zooplankton production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Roo No No No No No No No No No No No No N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | invertebrate to demersal fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                      |           |             |             |            |     |     |
| Ratio zooplankton production required/ zooplankton production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Roo No No No No No No No No No No No No N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |           |             |             |            |     |     |
| required/zooplankton production Ratio benthic production Ratio benthic production Poscriptor 5: Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters  Nutrient loads  No Yes (P) <sup>245</sup> No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No         | No                   | No        | No          | No          | No         | No  | No  |
| Production Ratio benthic production Ratio benthic production Ratio benthic production Ratio benthic production Pescriptor 5: Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters  Nutrient loads  No Yes (P) <sup>245</sup> No No No No No No No No No No No Pes (P) <sup>165</sup> S.1. Nutrient level  S.1.1. Nutrients concentration in the water column S.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients) S.2. Primary symptoms or directs effects of eutrophication  S.2. Primary symptoms or directs effects of eutrophication  S.2. 2. Water transparency due to increase in suspended algae S.2.3. Algal community S.2.2. Water transparended en suspended algae S.2.3. Algal community S.2.2. Sepcies shift in floristic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals S.2.4. Species shift in floristic Composition  No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110        | 110                  | 110       |             | 110         | 110        | 110 | 110 |
| Ratio benthic production required/benthic production required/benthic production  Descriptor 5: Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters  Nutrient loads  No Yes (P) <sup>245</sup> No No No No No No No No No Yes (P) <sup>165</sup> 5.1. Nutrient sevel  5.1.1. Nutrients concentration in the water column  5.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community  5.2.1. Algal community  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community  5.2.2. Algal community  5.2.4. Species shift in floristic  Mo Yes No Yes No Yes No No No No No No No Yes No No No No No Yes No No No No No Yes No No No No No Yes No No No No No Yes No No No No No Yes No No No No No Yes No No No No No Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |           |             |             |            |     |     |
| Pescriptor 5: Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters.  Nutrient loads  No Yes (P) <sup>245</sup> No No No No No No No Yes (P) <sup>165</sup> 5.1. Nutrient level  5.1.1. Nutrients concentration in the water column  5.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community  structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes (P) No Yes (P) No No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No No Yes (P) No No No No No Yes (P) No No No No No Yes (P) No No No No No No No No No No No No No                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No         | No                   | No        | No          | No          | No         | No  | No  |
| Descriptor 5: Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters  Nutrient loads  No Yes (P) <sup>245</sup> No No No No No No No Yes  5.1. Nutrient level  5.1.1. Nutrients concentration in the water column 5.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic No Yes (P) <sup>245</sup> No No No No No No No No Yes No No No No No No Yes No No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NO         | INO                  | INO       | INO         | NO          | NO         | INO | NO  |
| 5.1.1. Nutrients concentration in the water column  5.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  Yes No Yes No Yes No No No No No Yes No No No No Yes No No No No Yes No No No No Yes Yes No No No No Yes No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No Yes No No No No No Yes No No No No No Yes No No No No No Yes No No No No No Yes No No No No No No Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nutrient loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No         |                      | No        | No          | No          | No         | No  |     |
| in the water column  5.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  No  No  No  No  Yes  No  No  No  No  Yes  No  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.1. Nutrient level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |           |             |             |            |     |     |
| 5.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1.1. Nutrients concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes        | Yes                  | No        | Yes         | No          | No         | No  | Yes |
| from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes No Yes No No No No No Yes No No No No No Yes (P) No Yes (P) No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No No Yes Yes No No No No No Yes Yes No No No No No Yes Yes No No No No No Yes Yes No No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No Yes Yes No No No No No Yes Yes No No No No Yes Yes No No No No No Yes Yes No No No No No No No Yes Yes No No No No No No Yes Yes No No No No No No No Yes Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                            | in the water column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                      |           |             |             |            |     |     |
| nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community No Yes No Yes No No No No Yes Structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes Po No Yes Po No No No No Yes Po No No No No Yes Po No No No Yes Po No No No Yes Po No No No No Yes Po No No No No Yes Po No No No Yes Po No No No Yes Po No No No No Yes Po No No No No Yes Po No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No Yes Po No No No No Yes Po No No No No Yes Po No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No Yes Po No No No No No Yes Po No No No No No Yes Po No No No No No Yes Po No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1.2. Nutrients ratio: Deviate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No         | Yes                  | No        | Yes         | No          | No         | No  | No  |
| is reduced in relation to other nutrients)  5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community  5.2.3. Algal community  5.2.4. Species shift in floristic composition  No Yes Pinary symptoms or directs effects of eutrophication  Yes No Yes No No No No Yes No No No No Yes No No No No Yes Pinary symptoms or directs effects of eutrophication  No Yes No Yes No No No No Yes Pinary symptoms or directs effects of eutrophication  No Yes No Yes No No No No Yes Pinary symptoms or directs effects of eutrophication  No Yes No No No No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes No No No No No Yes Pinary symptoms or directs effects of eutrophication  No Yes No No No No No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No Yes Pinary symptoms or directs effects of eutrophication  No No No No No No No Pinary symptoms of eutrophication  No Yes Pinary symptoms of eutrophication  No Yes Pinary symptoms of eutrophication  No No No No No No Pinary symptoms of eutrophication  No Pinary symptoms of eutrophication  No Pinary symptoms of eutrophication  No No No No No No No No Pinary symptoms of eutrophication  No No No No No No No No No No No No No N                                                                                                                                                                                                                        | from normal proportion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                      |           |             |             |            |     |     |
| nutrients)Image: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o                          | nutrient ratios (Si:N:P) (e.g. Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |           |             |             |            |     |     |
| 5.2. Primary symptoms or directs effects of eutrophication  5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes No Yes No Yes No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No Yes Ves No No No No Yes Ves No No No Yes Ves No No No No Yes Ves No No No No Yes Ves No No No No No No Yes Ves No No No No No No No No Yes Ves No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | is reduced in relation to other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |           |             |             |            |     |     |
| 5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes No Yes No No No No Yes No No No No No Yes (P) No Yes (P) No No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No No Yes No Yes No No Yes No No Yes No Yes No No Yes No No Yes No No Yes No Yes No No Yes No No Yes No No Yes No Yes No No Yes No No Yes No No Yes No Yes No No Yes No Yes No No Yes No Yes No No Yes No Yes No No Yes No Yes No Yes No No Yes No Yes No No Yes No Yes No Yes No Yes No No Yes No Yes No Yes No No Yes No Yes No Yes No No Yes No Yes No Yes No Yes No No Yes No Yes No Yes No Yes No No Yes No Yes No Yes No Yes No Yes No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes Yes No No No Yes Yes Yes No No Yes Yes Yes No No No Yes Yes Yes No No No Yes Yes Yes No No No Yes Yes Yes No No No Yes Yes Yes No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes Yes No No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                      |           |             |             |            |     |     |
| (concentration, spatial areas of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  No  Yes  No  No  No  Yes  No  No  Yes  No  No  Yes  No  No  Yes  No  No  Yes  No  No  No  Yes  No  No  Yes  No  No  Yes  No  No  Yes  No  No  Yes  No  No  No  Yes  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  No  No  No  No  No  No  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ts effects |                      | nication  |             |             | _          |     |     |
| of high concentrations)  5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community Structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  No  Yes  No  No  No  Yes  No  No  No  No  No  No  Yes  No  No  No  No  No  No  No  No  No  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No         | Yes                  | No        | Yes         | No          | No         | No  |     |
| 5.2.2. Water transparency due to increase in suspended algae  5.2.3. Algal community Structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  Yes  No  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  Yes  No  No  No  Yes  No  No  Yes  No  No  Yes  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  Yes  No  No  No  No  Yes  No  No  No  No  No  No  No  No  No  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                      |           |             |             |            |     | 246 |
| to increase in suspended algae  5.2.3. Algal community Structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  Solution  No Ses No Yes No No No No Yes (P) No Yes (P) No No No No Yes (P) No No No Yes (P) No No No No Yes (P) No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No Yes (P) No No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Ye | of high concentrations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                      |           |             |             |            |     |     |
| algae  5.2.3. Algal community Structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes No Yes No Yes No No No No No No Yes No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No         | Yes                  | No        | Yes         | No          | No         | No  |     |
| 5.2.3. Algal community structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals 5.2.4. Species shift in floristic composition  No Yes No Yes No No No No No No Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to increase in suspended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                      |           |             |             |            |     | 247 |
| structure - Abundance/ Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes (P) No Yes (P) No No No Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | algae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                      |           |             |             |            |     |     |
| Increase of opportunistic macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes (P) No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) | 5.2.3. Algal community                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No         | Yes                  | No        | Yes         | No          | No         | No  | Yes |
| macroalgae (e.g. can form blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes (P) No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No Yes (P) No No No No No No No No No No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | structure - Abundance/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                      |           |             |             |            |     |     |
| blankets over the natural flora and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes (P) No Yes (P) No No No Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Increase of opportunistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                      |           |             |             |            |     |     |
| and suffocate benthic animals  5.2.4. Species shift in floristic composition  No Yes (P) No Yes (P) No No No Yes (P) No Yes (P) No No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes (P) No Yes ( | macroalgae (e.g. can form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                      |           |             |             |            |     |     |
| 5.2.4. Species shift in floristic composition No Yes (P) No Yes (P) No No No Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | blankets over the natural flora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |           |             |             |            |     |     |
| composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and suffocate benthic animals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                      |           |             |             |            |     |     |
| composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.2.4. Species shift in floristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No         | Yes (P)              | No        | Yes (P)     | No          | No         | No  | Yes |
| 5.2.5. Primary production No No No Yes No No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |           |             |             |            |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2.5. Primary production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No         | No                   | No        | Yes         | No          | No         | No  | No  |
| (LD <sup>248</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | (LD <sup>248</sup> ) |           |             |             |            |     |     |

 <sup>&</sup>lt;sup>244</sup> For some groups or species of fast turnover rates
 <sup>245</sup> The Data are not collected by the organization but received from other sources
 <sup>246</sup> Derived by CTD, not very reliable
 <sup>247</sup> Sechi Dics

|                                                    | Organiza  | ations invo       | olved in m | nonitoring/  | data colle | ction       |          |                        |
|----------------------------------------------------|-----------|-------------------|------------|--------------|------------|-------------|----------|------------------------|
| MSFD Descriptor                                    | _         |                   |            | r and organ  |            |             |          |                        |
| and relevant indicators                            | MoEW      | IO-BAS            | EAMA       | IBER         | NAFA       | NIMH        | RHI      | IFR                    |
| 5.2.6. Nuisance / toxic algal                      | No        | Yes               | No         | No           | No         | No          | No       | Yes                    |
| blooms                                             |           |                   |            |              |            |             |          |                        |
| 5.2.7. Submerged aquatic                           | No        | No                | No         | Yes (GL)     | No         | No          | No       | No                     |
| vegetation - spatial coverage                      |           |                   |            |              |            |             |          |                        |
| and density of beds                                |           |                   |            |              |            |             |          |                        |
| 5.3. Secondary symptoms or in                      | I         |                   | _          |              |            |             | T        |                        |
| 5.3.1. Abundance/Decrease in                       | No        | Yes               | No         | Yes          | No         | No          | No       | Yes                    |
| perennial seaweeds and                             |           |                   |            |              |            |             |          | (P)                    |
| seagrasses                                         |           |                   |            |              |            |             |          |                        |
| 5.3.2. Dissolved oxygen                            | Yes       | Yes               | No         | Yes          | No         | No          | No       | Yes                    |
| 5.3.3. Benthos - diversity and                     | No        | Yes               | No         | Yes          | No         | No          | No       | Yes (P) <sup>249</sup> |
| proportion of sensitive vs.                        |           |                   |            | (GL/MP<br>H) |            |             |          | (P) <sup>2.3</sup>     |
| non-sensitive species (e.g. P-R model)             |           |                   |            | П)           |            |             |          |                        |
| 5.3.4. Benthos / fish kills                        | No        | No <sup>250</sup> | No         | No           | No         | No          | No       | No                     |
|                                                    |           |                   |            |              |            |             |          | l -                    |
| <b>Descriptor 6:</b> Sea-floor integrity           |           |                   |            |              |            | nction of t | he ecosy | stems                  |
| are safeguarded and benthic ec                     | osystems, | ın particul       | ar, are no | t adversely  | апестеа    |             |          | _                      |
| 6.1. Physical damage, having                       | No        | No (LD)           | No         | No           | No         | No          | No       | No                     |
| regard to substrate                                |           |                   |            |              |            |             |          |                        |
| characteristics                                    |           |                   |            |              |            |             |          |                        |
| 6.2. Type, abundance,                              | No        | Yes (P)           | No         | No           | No         | No          | No       | No                     |
| biomass and areal extent of                        |           |                   |            |              |            |             |          |                        |
| relevant biogenic substrate                        |           |                   |            |              |            |             |          | 1                      |
| 6.3. Extent of the seabed                          | No        | No                | No         | No           | No         | No          | No       | No                     |
| significantly affected by human activities for the |           |                   |            |              |            |             |          |                        |
| different substrate types                          |           |                   |            |              |            |             |          |                        |
| 6.4. Condition of benthic                          | No        | Yes               | No         | Yes          | No         | No          | No       | Yes                    |
| community                                          | NO        | 163               | INO        | (GL/MP       | INO        | INO         | INO      | 163                    |
| Community                                          |           |                   |            | H)           |            |             |          |                        |
| 6.5. Structure of benthic                          | No        | Yes (P)           | No         | Yes          | No         | No          | No       | No                     |
| habitats                                           |           | ( )               |            |              |            |             |          |                        |
| 6.6. Abundance of bio-                             | No        | Yes               | No         | Yes          | No         | No          | No       | Yes                    |
| engineering species                                |           |                   |            | (GL/MP       |            |             |          |                        |
|                                                    |           |                   |            | H)           |            |             |          |                        |
| 6.7. Diversity and richness                        | No        | Yes               | No         | Yes          | No         | No          | No       | Yes                    |
| indices also taking into                           |           |                   |            | (GL/MP       |            |             |          |                        |
| account species -area                              |           |                   |            | H)           |            |             |          |                        |
| relationships                                      |           |                   |            |              |            |             |          |                        |
| 6.8. Proportion of biomass or                      | No        | No                | No         | No           | No         | No          | No       | No                     |
| number of individuals in the                       |           |                   |            |              |            |             |          |                        |
| macrobenthos above some                            |           |                   |            |              |            |             |          |                        |
| specified length/size                              |           | )/ /D)            |            |              |            |             |          |                        |
| 6.9. Biomass size spectrum                         | No        | Yes (P)           | No         | No           | No         | No          | No       | Yes<br>(P)             |
| 6.10. Shape of cumulative                          | No        | Yes               | No         | No           | No         | No          | No       | Yes                    |
| abundance curves of numbers                        |           |                   |            |              |            |             |          |                        |
| of individuals by size group                       |           |                   |            |              |            |             |          |                        |
| 6.11. Secondary production                         | No        | No                | No         | No           | No         | No          | No       | No                     |
| 6.12. Opportunistic-sensitive                      | No        | Yes               | No         | No           | No         | No          | No       | Yes                    |
| species proportion (e.g. AMBI,                     |           |                   |            |              |            |             |          |                        |
| P-R-model)                                         |           |                   |            |              |            |             |          |                        |

<sup>&</sup>lt;sup>248</sup> LD – very limited data<sup>249</sup> For diversity only<sup>250</sup> No regular monitoring

| MSFD Descriptor                                                                                                                                                                                                                                                                                                | _           |                    |           | nonitoring/         |            | ction      |           |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-----------|---------------------|------------|------------|-----------|--------|
| and relevant indicators                                                                                                                                                                                                                                                                                        | MoEW        | IO-BAS             | EAMA      | r and orgar<br>IBER | NAFA       | NIMH       | RHI       | IFR    |
| 6.13. Parameters describing the characteristics (shape, slope and intercept) of the size spectrum of the benthic community                                                                                                                                                                                     | No          | No                 | No        | No                  | No         | No         | No        | No     |
| 6.14. Presence of particularly sensitive and or tolerant species                                                                                                                                                                                                                                               | No          | Yes                | No        | Yes                 | No         | No         | No        | Yes    |
| <b>Pressures - Descriptor 7:</b> Perma marine ecosystems <sup>251</sup>                                                                                                                                                                                                                                        | nent alter  | ation of hy        | /drograph | nical conditi       | ions does  | not advers | sely affe | ct     |
| Data/information on constructions at sea, landfills and land claim, barrages, windmill farms and other renewable energy constructions, oil and gas platforms and bridges, dredging and deposition in the sea, constructions on land with outlets into the sea e.g. power plants outfalls (Annex III, Table 2). | No          | Yes (P)            | No        | No                  | No         | No         | No        | No     |
| Impacts - Descriptor 7: Permane ecosystems                                                                                                                                                                                                                                                                     | ent alterat | tion of hyd        | rographic | cal condition       | ns does no | ot adverse | ly affect | marine |
| 7.1. Spatial characterisation of permanent alterations                                                                                                                                                                                                                                                         | No          | No                 | No        | No                  | No         | No         | No        | No     |
| 7.1.1. Extent of area affected by permanent alterations                                                                                                                                                                                                                                                        | No          | No                 | No        | No                  | No         | No         | No        | No     |
| 7.1.2. Changes in sedimentation                                                                                                                                                                                                                                                                                | No          | No                 | No        | No                  | No         | No         | No        | No     |
| 7.2. Impact of permanent hydrographical changes                                                                                                                                                                                                                                                                | No          | No                 | No        | No                  | No         | No         | No        | No     |
| 7.2.1. Spatial extent of benthic habitat affected by the permanent alteration                                                                                                                                                                                                                                  | No          | No                 | No        | No                  | No         | No         | No        | No     |
| 7.2.2. Changes in benthic communities and or biomass production                                                                                                                                                                                                                                                | No          | Yes                | No        | No                  | No         | No         | No        | Yes    |
| 7.2.3. Extent of area with spatial or temporal hypoxia/anoxia                                                                                                                                                                                                                                                  | No          | Yes <sup>252</sup> | No        | No                  | No         | No         | No        | No     |
| 7.2.4. Presence of benthic communities associated with low oxygen conditions                                                                                                                                                                                                                                   | No          | No                 | No        | No                  | No         | No         | No        | No     |
| 7.2.5 Diversity and richness indices, based on species number and relative abundance in the benthic community                                                                                                                                                                                                  | No          | Yes                | No        | No                  | No         | No         | No        | Yes    |
| 7.2.6 Presence of particularly sensitive or tolerant species                                                                                                                                                                                                                                                   | No          | Yes                | No        | No                  | No         | No         | No        | Yes    |

<sup>&</sup>lt;sup>251</sup> More detail specification of human activities was required in the Questionnaire, however, none of the stakeholders provided such information.

252 Doubtful information.

| MSFD Descriptor                                                                                                 | _           |                           |             | nonitoring/<br>r and orgai |             | ction       |           |       |
|-----------------------------------------------------------------------------------------------------------------|-------------|---------------------------|-------------|----------------------------|-------------|-------------|-----------|-------|
| and relevant indicators                                                                                         | MoEW        | IO-BAS                    | EAMA        | IBER                       | NAFA        | NIMH        | RHI       | IFR   |
| 7.2.7. Changes in habitat functions due to altered hydrographical conditions <sup>253</sup>                     | No          | Yes (P)                   | No          | No                         | No          | No          | No        | No    |
| <b>Descriptor 8:</b> Concentrations of                                                                          | fcontamir   | nants are a               | t levels no | t giving ris               | e to pollut | ion effects | 5         |       |
| 8.1 Concentrations in water, sediments and biota (measured, where relevant, in the same matrix <sup>254</sup> ) | Yes         | Yes<br>(P) <sup>255</sup> | No          | Yes (P)                    | No          | No          | No        | No    |
| 8.2. Biological effects on the elements of concerned ecosystems                                                 | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 8.3. Occurrence and extent of acute pollution events                                                            | Yes         | No                        | No          | No                         | No          | No          | No        | No    |
| Descriptor 9: Contaminants in f established by Community legis                                                  |             |                           |             |                            | nption do I | not exceed  | l levels  |       |
| 9.1. Frequency of levels exceeding regulatory levels                                                            | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 9.2. Actual levels detected                                                                                     | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 9.3 Numbers of contaminants for which exceeding levels have been detected                                       | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 9.4. Origin of contaminants (geological versus anthropogenic; local versus long distance)                       | No          | No                        | No          | No                         | No          | No          | No        | No    |
| <b>Descriptor 10:</b> Properties and quenvironment                                                              | uantities   | of marine I               | itter do no | ot cause ha                | arm to the  | coastal an  | d marine  |       |
| 10.1. ML washed ashore and/or deposited on coastlines                                                           | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 10.2. ML in the water column, including floating and suspended litter on the sea floor                          | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 10.3. ML ingested by marine animals/birds                                                                       | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 10.4. Microparticles (mainly mircroplastics) derived from degradation of litter                                 | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 10.5. Impact rates of degraded litter on organisms                                                              | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 10.6. Potential chemical pollution resulting from degraded litter (plastic)                                     | No          | No                        | No          | No                         | No          | No          | No        | No    |
| <b>Descriptor 11:</b> Introduction of a the marine environment                                                  | energy, inc | cluding und               | lerwater r  | noise, is at               | levels that | do not ad   | versely a | ffect |
| 11.1. Distribution in time and place of loud, low and mid frequency impulsive sounds                            | No          | No                        | No          | No                         | No          | No          | No        | No    |
| 11.2 Continuous low frequency sound                                                                             | No          | No                        | No          | No                         | No          | No          | No        | No    |

 <sup>253 (</sup>e.g. changes in areas for fish/mammals reproduction (spawning areas, breeding), nursery and feeding areas and migration routes of fish, birds and mammals)
 254 List of priority Black Sea contaminants was required to be specified, however, none of the stakeholders gave this information.
 255 No for Biota

# B. Data availability versus Annex III of the MSFD

Avoiding duplication with Annex I, here selected parts of Annex III are given for data availability check.

Table 92. Characteristics – state of the Sea in Bulgaria

| Characteristic                                      | Component                                                                                               | Criteria                                                        | _        | ations in<br>o for each |          |             |          |                    | ction    |            |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|-------------------------|----------|-------------|----------|--------------------|----------|------------|
|                                                     |                                                                                                         |                                                                 | MoEW     | IO-BAS                  | EAMA     | IBER        | NAFA     | NIMH               | RHI      | IFR        |
| Physical and chemical features                      | Bathymetry<br>and<br>topography<br>Temperature                                                          | Seasonal                                                        | No<br>No | Yes                     | No<br>No | Yes<br>(GL) | No<br>No | No                 | No<br>No | No<br>Yes  |
|                                                     | and salinity regime, ice cover, current velocity, stratification (CIL <sup>256</sup> ), upwelling, wave | variability,<br>spatial<br>distribution,<br>trends              |          |                         |          |             |          | (P) <sup>257</sup> |          | (P)        |
|                                                     | pH, pCO, H <sub>2</sub> S<br>profiles                                                                   |                                                                 | No       | Yes                     | No       | No          | No       | No                 | No       | No         |
| Biological                                          | Seabirds                                                                                                | Diversity,                                                      | No       | No                      | No       | Yes         | No       | No                 | No       | No         |
| features at<br>the level of<br>functional<br>groups | Mammals                                                                                                 | abundance,<br>spatial<br>distribution,<br>migrations,<br>trends | No       | Yes (P)                 | No       | Yes<br>258  | No       | No                 | No       | Yes<br>(P) |

In the Table below the availability of data/information to describe the human activities exercised in Black Sea national waters and on coast of the beneficiary country (BG) is presented. However, the shown availability reflects only the potential of the stakeholders contacted to describe human activities. This does not obligatory mean that data/information are absent in other stakeholders, which have not been included in the MISIS Quest. In this context, relevant explanations are given in footnote for each activity.

Table 93. Description of human activities in Bulgaria

| Activity             | List of Human                                                                  | Description of marine use/activity/Organizations |                    |      |      |      |      |     |     |  |  |  |
|----------------------|--------------------------------------------------------------------------------|--------------------------------------------------|--------------------|------|------|------|------|-----|-----|--|--|--|
| Theme                | Activities                                                                     | MoEW <sup>259</sup>                              | IO-BAS             | EAMA | IBER | NAFA | NIMH | RHI | IFR |  |  |  |
|                      | Fisheries incl.<br>recreational fishing<br>(fish & shellfish)                  | No                                               | Yes <sup>260</sup> | No   | No   | Yes  | No   | No  | No  |  |  |  |
| Extraction of living | Seaweed and other<br>sea-based food<br>harvesting <sup>261</sup>               | N/A                                              | N/A                | N/A  | N/A  | N/A  | N/A  | N/A | N/A |  |  |  |
| resources            | Extraction of genetic<br>resources/<br>bioprospecting/<br>maerl <sup>152</sup> | N/A                                              | N/A                | N/A  | N/A  | N/A  | N/A  | N/A | N/A |  |  |  |

<sup>&</sup>lt;sup>256</sup> Cold Intermediate Layer

210

<sup>&</sup>lt;sup>257</sup> Water temperature and salinity at 3 sations only

<sup>&</sup>lt;sup>258</sup> Doubtful information.

<sup>&</sup>lt;sup>259</sup> MoEW (the contacted person) reported no collection of data/information on human activity. Of course, this is not the case. Further, the cross-check shows that at least for **LBS** the Ministry traces the sources of pollutants and nutrients. And Agriculture&Forestry were mentioned to be known, together with point sources.

<sup>&</sup>lt;sup>260</sup> Number of fishing vessels, fishing effort

<sup>&</sup>lt;sup>261</sup> Not applicable for BG

| Activity                                 | List of Human                                                                                           | Description         | n of mari | ne use/a | ctivity/C  | Organizat | ions |     |     |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|-----------|----------|------------|-----------|------|-----|-----|
| Theme                                    | Activities                                                                                              | MoEW <sup>259</sup> | IO-BAS    | EAMA     | IBER       | NAFA      | NIMH | RHI | IFR |
| Food production                          | Aquaculture (fin-fish & shellfish)                                                                      | No                  | No        | No       | No         | Yes       | No   | No  | No  |
|                                          | Land claim, coastal<br>defence <sup>262</sup>                                                           | No                  | No        | No       | No         | No        | No   | No  | No  |
| Man-made                                 | Port operations <sup>153</sup>                                                                          | No                  | No        | No       | No         | No        | No   | No  | No  |
| structures<br>(incl. in<br>construction) | Placement & operation<br>of offshore structures<br>(other than for energy<br>production) <sup>153</sup> | No                  | No        | No       | No         | No        | No   | No  | No  |
|                                          | Submarine cable & pipeline operations 153                                                               | No                  | No        | No       | No         | No        | No   | No  | No  |
|                                          | Marine mining (sand, gravel, rock) <sup>153</sup>                                                       | No                  | No        | No       | No         | No        | No   | No  | No  |
| Extraction of non-living                 | Dredging <sup>263</sup>                                                                                 | No                  | No        | No       | No         | No        | No   | No  | No  |
| resources                                | Desalination/water abstraction <sup>152</sup>                                                           | N/A                 | N/A       | N/A      | N/A        | N/A       | N/A  | N/A | N/A |
| Energy production                        | Marine-based<br>renewable energy<br>generation (wind,<br>wave & tidal power) <sup>152</sup>             | N/A                 | N/A       | N/A      | N/A        | N/A       | N/A  | N/A | N/A |
|                                          | Marine hydrocarbon extraction (oil & gas) <sup>153</sup>                                                | No                  | No        | No       | No         | No        | No   | No  | No  |
| Transport                                | Shipping                                                                                                | No                  | No        | Yes      | No         | No        | No   | No  | No  |
| Waste                                    | Solid waste disposal incl. dredge material <sup>264</sup>                                               | No                  | No        | No       | No         | No        | No   | No  | No  |
| disposal                                 | Storage of gases <sup>152</sup>                                                                         | N/A                 | N/A       | N/A      | N/A        | N/A       | N/A  | N/A | N/A |
| Tourism and recreation                   | Tourism & recreation incl. yachting                                                                     | No                  | No        | No       | Yes<br>(P) | No        | No   | Yes | No  |
| Research and survey                      | Marine research,<br>survey & educational<br>activities                                                  | No                  | Yes       | No       | Yes        | No        | No   | No  | Yes |
| Military                                 | Defence recurrent operations <sup>265</sup>                                                             | No                  | No        | No       | No         | No        | No   | No  | No  |
| Military                                 | Dumping of munitions <sup>266</sup>                                                                     | N/A                 | N/A       | N/A      | N/A        | N/A       | N/A  | N/A | N/A |
| Land-based                               | Urban (municipal waste water discharge)                                                                 | No????              | No        | No       | Yes<br>(P) | No        | No   | No  | No  |
| activities<br>(coastal,<br>riverine and  | Industry (discharges, emissions)                                                                        | No????              | No        | No       | Yes<br>(P) | No        | No   | No  | No  |
| atmospheric)                             | Agriculture & forestry (run-off, emissions)                                                             | No????              | No        | No       | Yes<br>(P) | No        | No   | No  | No  |
| Other marine uses and activities         |                                                                                                         | No                  | No        | No       | No         | No        | No   | No  | No  |

In the Table below, the cross-check provides for each human activity the availability of data/information to describe the pressures exercised on the Black Sea.

<sup>&</sup>lt;sup>262</sup> They are quite well documented. For instance, human-induced coastline modifications and changes in beaches are well documented since 1908 for the Varna area, for other areas there are also long-term data/information.

<sup>&</sup>lt;sup>263</sup> MoEW should have the data/information

 $<sup>^{264}</sup>$  Disposal of wastes is forbidden, dumping should be known by the MoEW  $^{265}$  Ministry of Defence, confidential information

<sup>&</sup>lt;sup>266</sup> It is forbidden. Illegal dumping hardly takes place.

Table 94. Human activities and pressures (cross-check) in Bulgaria (**Note**: N/A means not applicable; the Table synthesizes the input of all stakeholders contacted)

|                                                      |                                                                                                | PRESSURES                                          |                                                        |                                                   |                                       |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
|------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|-----------------------------------|---------------------|--------------------|
| Activity<br>Theme                                    | Human Activities                                                                               | Physical loss<br>(area,<br>extent <sup>267</sup> ) | Physical<br>damage<br>(area,<br>extent)                | Interference<br>with<br>hydrological<br>processes | Other physi<br>disturbance<br>extent) | (areas,                                                             | Contamination<br>by hazardous<br>substances<br>(load)                  | Systematic<br>and/or<br>intentional<br>release of<br>substances<br>(load) | Nutrient<br>and organic<br>matter<br>enrichment<br>(load)    | Biological dis                                       | turbances                         |                     | Acidification      |
|                                                      |                                                                                                | Smothering<br>Sealing                              | Siltation<br>Abrasion<br>Extractio<br>n (e.g.<br>sand) | Thermal and salinity regime change                | Noise<br>(trends<br>in level)         | Marine<br>litter<br>(trends in<br>amount on<br>coast and<br>in sea) | Synthetic<br>compounds<br>Non-synthetic<br>substances<br>Radionuclides | e.g.<br>produced<br>water,<br>carbon<br>storage                           | Fertilizers<br>and other<br>nutrient-<br>rich<br>substances. | Extraction<br>of species,<br>including<br>non-target | Invasives,<br>trans-<br>locations | Microbial pathogens | Decrease in pH     |
|                                                      | Fisheries incl.<br>recreational<br>fishing (fish &<br>shellfish)                               | No                                                 | No                                                     |                                                   | No                                    | No                                                                  |                                                                        |                                                                           |                                                              | Yes                                                  |                                   |                     |                    |
| Extraction of living resources                       | Seaweed and<br>other sea-based<br>food harvesting                                              | N/A                                                | N/A                                                    |                                                   |                                       |                                                                     |                                                                        |                                                                           |                                                              | N/A                                                  |                                   |                     |                    |
| resources                                            | Extraction of<br>genetic<br>resources/<br>bioprospecting/<br>maerl                             | N/A                                                | N/A                                                    |                                                   |                                       |                                                                     |                                                                        |                                                                           |                                                              | N/A                                                  |                                   |                     |                    |
| Food<br>production                                   | Aquaculture (fin-<br>fish & shellfish)<br>Land claim,                                          |                                                    |                                                        |                                                   |                                       |                                                                     | No                                                                     |                                                                           | No                                                           |                                                      | No                                | No                  |                    |
|                                                      | coastal defence                                                                                | No                                                 | No                                                     | No                                                |                                       |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
|                                                      | Port operations                                                                                | No                                                 | No                                                     | No                                                |                                       |                                                                     |                                                                        |                                                                           |                                                              |                                                      | No                                |                     |                    |
| Man-made<br>structures<br>(incl. in<br>construction) | Placement &<br>operation of<br>offshore<br>structures (other<br>than for energy<br>production) | No                                                 | Yes                                                    | No                                                |                                       |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
|                                                      | Submarine cable<br>& pipeline<br>operations                                                    | No                                                 | No                                                     |                                                   | No                                    |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
| Extraction of                                        | Marine mining<br>(sand, gravel,<br>rock)                                                       | No                                                 | No                                                     |                                                   | No                                    |                                                                     |                                                                        |                                                                           |                                                              | No                                                   |                                   |                     |                    |
| non-living                                           | Dredging                                                                                       | No                                                 | No                                                     | No                                                | No                                    |                                                                     | No                                                                     |                                                                           |                                                              | No                                                   |                                   |                     |                    |
| resources                                            | Desalination/<br>water<br>abstraction                                                          |                                                    |                                                        | N/A                                               |                                       |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
| Energy<br>production                                 | Marine-based<br>renewable<br>energy<br>generation<br>(wind, wave &<br>tidal power)             | N/A                                                | N/A                                                    | N/A                                               | N/A                                   | N/A                                                                 |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
|                                                      | Marine<br>hydrocarbon<br>extraction<br>(oil & gas)                                             | No                                                 | No                                                     |                                                   | No                                    | No                                                                  | No                                                                     | No                                                                        |                                                              |                                                      |                                   |                     |                    |
| Transport                                            | Shipping                                                                                       |                                                    | No                                                     |                                                   | No                                    | No                                                                  | Yes*                                                                   |                                                                           |                                                              |                                                      | No                                |                     |                    |
| Waste<br>disposal                                    | Solid waste<br>disposal incl.<br>dredge material                                               | No                                                 | No                                                     |                                                   |                                       |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
| Tourism and                                          | Storage of gases Tourism &                                                                     |                                                    |                                                        |                                                   | No                                    | NI-                                                                 |                                                                        | N/A                                                                       | N-                                                           |                                                      |                                   | V                   |                    |
| recreation  Research and                             | recreation incl. yachting Marine research,                                                     |                                                    |                                                        |                                                   | No                                    | No                                                                  |                                                                        |                                                                           | No                                                           |                                                      |                                   | Yes                 |                    |
| survey                                               | survey & educational activities                                                                |                                                    |                                                        |                                                   | No                                    |                                                                     |                                                                        |                                                                           |                                                              | Yes                                                  |                                   |                     |                    |
| Military                                             | Defence<br>recurrent<br>operations<br>Dumping of                                               |                                                    |                                                        |                                                   | No                                    | No                                                                  |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
|                                                      | munitions                                                                                      |                                                    |                                                        |                                                   | <u> </u>                              |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |
| Land-based                                           | Urban (municipal<br>waste water<br>discharge)                                                  |                                                    |                                                        |                                                   |                                       | No                                                                  | Yes                                                                    |                                                                           | Yes                                                          |                                                      |                                   | No                  | Yes                |
| activities<br>(coastal,<br>riverine and              | Industry<br>(discharges,<br>emissions)                                                         |                                                    |                                                        | No                                                |                                       | No                                                                  | Yes                                                                    |                                                                           | Yes                                                          |                                                      |                                   |                     |                    |
| atmospheric)                                         | Agriculture & forestry (run-off, emissions)                                                    |                                                    |                                                        |                                                   |                                       |                                                                     | Yes                                                                    |                                                                           | Yes                                                          |                                                      |                                   |                     | Yes <sup>270</sup> |
| Other marine<br>uses and<br>activities               |                                                                                                |                                                    |                                                        |                                                   |                                       |                                                                     |                                                                        |                                                                           |                                                              |                                                      |                                   |                     |                    |

\*Note: check whether the question was correctly understood. This pressure/impact has been reported by the Executive Agency Maritime Administration (EAMA).

 $<sup>^{267}</sup>$  Area and extent, where mentioned, are meant for different types of affected substrates.

<sup>&</sup>lt;sup>268</sup> The Pressure can be described by number of vessels, fishing effort, frequency trawled, etc.

<sup>&</sup>lt;sup>269</sup> The pressure can be described by vectors of introduction, risk areas, number of new species identified per year, number of established species per decade, etc.

<sup>&</sup>lt;sup>270</sup> Doubtful information

In the Table below cross-check of data/information for each pressure to describe the related impact is provided.

Table 95. Pressures and impacts (cross-check)<sup>271</sup> in Bulgaria

| Pressure       | Pressure        | Impact on            |      | ations in  |      |      | oring/da | ata colle | ction ( | Yes |
|----------------|-----------------|----------------------|------|------------|------|------|----------|-----------|---------|-----|
| theme          |                 |                      |      | or each pa |      | •    |          | L         |         |     |
| Dhysiaal lass  | Consethermine   | Cooked Habitata      | MoEW | IO-BAS     | EAMA | IBER | NAFA     | NIMH      | RHI     | IFR |
| Physical loss  | Smothering      | Seabed Habitats      | No   | No         | No   | No   | No       | No        | No      | No  |
| Dla cata a I   | Sealing         |                      | No   | No         | No   | No   | No       | No        | No      | No  |
| Physical       | Siltation       |                      | No   | No         | No   | No   | No       | No        | No      | No  |
| damage         | Abrasion        |                      | No   | No         | No   | No   | No       | No        | No      | No  |
|                | Extraction      |                      | No   | Yes        | No   | No   | No       | No        | No      | No  |
| Other physical | Underwater      | Functional groups    | No   | No         | No   | No   | No       | No        | No      | No  |
| disturbance    | noise           | and habitats (water  |      |            |      |      |          |           |         |     |
|                | Marine litter   | column and seabed)   | No   | No         | No   | No   | No       | No        | No      | No  |
| Interference   | Thermal         | Functional groups    | No   | No         | No   | No   | No       | No        | No      | No  |
| with           | regime change   | and habitats (water  |      |            |      |      |          |           |         |     |
| hydrological   | Salinity regime | column and seabed)   | No   | No         | No   | No   | No       | No        | No      | No  |
| processes      | change          |                      |      |            |      |      |          |           |         |     |
| Contamination  | Synthetic       | Seabed habitats,     | No   | No         | No   | Yes  | No       | No        | No      | No  |
| by hazardous   | compounds       | functional groups,   |      |            |      |      |          |           |         |     |
| substances     | Non-synthetic   | seafood              | No   | No         | No   | Yes  | No       | No        | No      | No  |
|                | substances      |                      |      |            |      |      |          |           |         |     |
|                | Radionuclides   |                      | No   | No         | No   | No   | No       | No        | No      | No  |
| Systematic     | Other           | Seabed habitats,     | No   | No         | No   | Yes  | No       | No        | No      | No  |
| and/or         | substances      | functional groups    |      |            |      |      |          |           |         |     |
| intentional    |                 |                      |      |            |      |      |          |           |         |     |
| release of     |                 |                      |      |            |      |      |          |           |         |     |
| substances     |                 |                      |      |            |      |      |          |           |         |     |
| Nutrient and   | Nutrients       | Water column and     | No   | Yes        | No   | Yes  | No       | No        | No      | Yes |
| organic matter | Organic         | seabed habitats,     | No   | Yes        | No   | Yes  | No       | No        | No      | No  |
| enrichment     | matter          | species, functional  |      |            |      |      |          |           |         |     |
|                |                 | groups, ecosystems   |      |            |      |      |          |           |         |     |
| Biological     | Microbial       | Safety of food (fish | No   | No         | No   | No   | No       | No        | Yes     | No  |
| disturbance    | pathogens       | and other seafood),  |      |            |      |      |          |           |         |     |
|                |                 | bathing water        |      |            |      |      |          |           |         |     |
|                |                 | quality              |      |            |      |      |          |           |         |     |
|                | Non-native      | Water column and     | No   | Yes        | No   | No   | No       | No        | No      | No  |
|                | species and     | seabed habitats,     |      |            |      |      |          |           |         |     |
|                | translocations  | species, functional  |      |            |      |      |          |           |         |     |
|                |                 | groups, ecosystems   |      |            |      |      |          |           |         |     |
|                | Extraction of   | Water column and     | No   | Yes        | No   | No   | Yes      | No        | No      | No  |
|                | selected        | seabed habitats,     |      |            |      |      | 272      |           |         |     |
|                | species incl.   | species, functional  |      |            |      |      |          |           |         |     |
|                | non-target      | groups, ecosystems   |      |            |      |      |          |           |         |     |
|                | catches         |                      |      |            |      |      |          |           |         |     |
| Others         |                 |                      | No   | No         | No   | No   | No       | No        | No      | No  |

<sup>271</sup> The Table is similar to Table 2 from the EC document: Guidance for 2012 reporting under the Marine Strategy Framework Directive, however covers broader scale impacts under certain pressures as seen being possible in the Black Sea.

272 NAFA says NO, however, according to the Tables above, idea about the impact on functional groups should be known by NAFA in order to manage

fishery.

# Conclusions on the gaps in data/information availability in BG to meet the requirements of the MSFD

#### 1. Biological data gaps:

Protozoa and meiobenthos. Mammals are poorly studied as well.

### 2.MSFD Descriptors gaps

Descriptor 1: Biological diversity is maintained

- Areas covered by sessile/benthic species
- Distributional range and pattern of habitats
- Habitat area and volume
- Condition of the typical species and communities in habitats
- Ecosystem structures composition and relative proportions of ecosystem components (habitats and species); ecosystem processes and functions: interactions between the structural components of the ecosystem

Descriptor 2: Environmental impact of non-indigenous species

- Vectors of introduction
- The Biopollution Level (BPL) (index)

**Descriptor 3:** Populations of all commercially exploited fish and shellfish are within safe biological limits, exhibiting a population age and size distribution that is indicative of a healthy stock

- Biomass indices very limited data
- The proportion of fish larger than a given length, e.g. the length at which 100% of the females are mature
- Size at full sexual maturation, which may reflect the extent of undesirable genetic effects of exploitation<sup>273</sup>

**Descriptor 4:** All elements of the marine food webs, to the extent that they are known, occur at normal abundance and diversity and levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity

For most of the indicators data are missing, very limited data are available for production per unit biomass and for diet composition. Energy flows through the food web are not estimated.

**Descriptor 5:** Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters

- Submerged aquatic vegetation spatial coverage and density of beds very limited data
- Benthos and fish kills are not regularly monitored

**Descriptor 6:** Sea-floor integrity is at a level that ensures that the structure and function of the ecosystems are safeguarded and benthic ecosystems, in particular, are not adversely affected

- Physical damage, having regard to substrate characteristics very limited data
- Type, abundance, biomass and areal extent of relevant biogenic substrate very limited data
- Extent of the seabed significantly affected by human activities for the different substrate types not known
- Proportion of biomass or number of individuals in the macrobenthos above some specified length/size – not known
- Secondary production not known
- Parameters describing the characteristics (shape, slope and intercept) of the size spectrum of the benthic community not known

<sup>&</sup>lt;sup>273</sup> Note: NAFA reported data availability but it is doubtful the data are about Black Sea species.

**Descriptor 7:** Permanent alteration of hydrographical conditions does not adversely affect marine ecosystems

- Data/information on constructions at sea, landfills and land claim, barrages, oil and gas platforms and bridges, dredging and deposition in the sea, constructions on land with outlets into the sea e.g. power plants outfalls (Annex III, Table 2) very limited data (or access to such data is limited)
- Changes in habitat functions due to altered hydrographical conditions (e.g. changes in areas for fish/mammals reproduction (spawning areas, breeding), nursery and feeding areas and migration routes of fish, birds and mammals) very limited data

# No data are available for:

- Spatial characterisation of permanent alterations
- Extent of area affected by permanent alterations
- Changes in sedimentation
- Impact of permanent hydrographical changes
- Spatial extent of benthic habitat affected by the permanent alteration
- Extent of area with spatial or temporal hypoxia/anoxia
- Presence of benthic communities associated with low oxygen conditions

**Descriptor 8:** Concentrations of contaminants are at levels not giving rise to pollution effects

- Biota contamination very limited data
- Biological effects on the elements of concerned ecosystems No data

**Descriptor 9:** Contaminants in fish and other seafood for human consumption do not exceed levels established by Community legislation or other relevant standards - No data

**Descriptor 10:** Properties and quantities of marine litter do not cause harm to the coastal and marine environment - No data

**Descriptor 11:** Introduction of energy, including underwater noise, is at levels that do not adversely affect the marine environment - No data

# 3. Characteristics - state of the Sea

No substantial gaps identified.

#### 4. Human Activities description gaps

The gaps identified according to the contacted stakeholders response are not the real gaps. Human activities are well documented in BG, except for illegal practices (extraction of living and non-living resources, dumping of forbidden wastes, illegal discharges from ships or LBS, dredging, etc.). However, the data/information available are dispersed in many different organizations, which do not normally exchange them and there is no mechanism to arrange for this on a regular basis. On an adhock basis, as for instance the case of the collection of data to prepare the Initial Assessment under the MSFD, the MoEW has contacted the relevant organizations and they have been helpful in providing metadata and some of them also data.

#### 5. Pressures gaps

Knowing the human activities does not mean that the related pressures are well documented. The main gaps are in the pressures related to:

- Aquaculture
- Land claim and coastal defence
- Port operations construction in ports (e.g. new terminals, etc.) go through EIA, however, other
  pressures are poorly documented (bunkering, emissions, release of anti-fouling chemicals, noise,
  loading of hazardous substances, ship-generated waste, etc.). There is no ballast water monitoring
  as well as a regular practice.
- Submarine cables and pipeline operations

- Marine mining
- Dredging
- Marine hydrocarbon extraction
- Dumping of spoils
- Shipping
- Agriculture

Most poorly known pressures are: physical loss and damage, other physical disturbance (noise and marine litter), thermal and salinity regime change, and contamination by hazardous substances (especially for sediments and biota).

#### 6. Impacts gaps

As the pressures are poorly known, consequently the state of the environment is feebly related to them so that to speak with certainty about impacts. The Table below shows the major gaps and uncertainties in knowledge related to causal chains of pressures/impacts. The greenish fields show those areas where impact is known to exist but not studied even qualitatively. By asterisk (\*) the insufficiency of data is marked. Almost uknown are the impacts related to the following pressures: physical loss and damage, other physical disturbance (noise and marine litter), thermal and salinity regime change, and contamination by hazardous substances, as demonstrated also in Table 95 (above). Worse known and related to pressures are the impacts on macroalgae, seagrasses and mammals.

Table 96. Synthetic analysis of pressures and impacts (Bulgaria)

|   |                      | 1                                                         | 2                                          | 3                                        | 4                              | 5                | 6                                          | 7             | 8                | 9                                         |
|---|----------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------|------------------|--------------------------------------------|---------------|------------------|-------------------------------------------|
|   | Pressures Impact on: | Changes in fresh water<br>and sediment riverine<br>fluxes | Nutrients and organic<br>matter enrichment | Contamination by<br>hazardous substances | Physical damage of<br>habitats | Loss of habitats | Introduction of non-<br>indigenous species | Marine litter | Underwater noise | Other pressure<br>(extraction of species) |
| Α | Plankton             | *                                                         |                                            |                                          |                                |                  |                                            |               |                  | *                                         |
| В | Macroalgae           |                                                           |                                            | *                                        | *                              |                  |                                            |               |                  | *                                         |
| С | Seagrass             |                                                           | *                                          |                                          | *                              |                  |                                            |               |                  | *                                         |
| D | Zoobenthos           |                                                           | *                                          | *                                        | *                              | *                |                                            |               |                  |                                           |
| F | Fish                 | *                                                         | *                                          | *                                        | *                              | *                | *                                          |               |                  |                                           |
| G | Marine mammals       |                                                           |                                            |                                          |                                |                  |                                            |               |                  | *                                         |
| Н | Birds                | *                                                         | *                                          |                                          | *                              |                  | *                                          |               |                  |                                           |

<sup>\*</sup> Low or very low data/information availability and lack of proper quantified assessments

Note: For A9, B9 and C9 the impact may be high through trophic cascades, however, proper distinguishing between top-down, bottom-up and wasp-waste control for the Black Sea ecosystem has never been achieved.

Note: For B3, D3 and F3 eco-physiological effects are almost not known, as well as changes in the structures of the communities.

Note: For F9 quantitative assessments are also limited to selected commercial species.

| Intensity of the impact (based on their associated risk for biodiversity conservation) |
|----------------------------------------------------------------------------------------|
| High impact                                                                            |
| Significant impact                                                                     |
| Low impact                                                                             |
| No impact                                                                              |
| Existing interaction, but the impact has not been determined even qualitattively       |
| Misread interaction, impact not determined                                             |

# **ROMANIA**

Among all stakeholders contacted in RO, those who mentioned availability of data (any kind, which would be useful in the MSFD process) were respectively included in the Tables further. The stakeholders who answered with 'No' to all questions posted in the MISIS Questionnaire Part II (see Annex I) were: Constanta City Hall, Constanta County Department of Statitics (their response to the Questionnaire Part I did not also provide information on what data this organization collects)<sup>274</sup>, and Constanta Maritime Hydrographic Directorate (Note: in the Questionnaire Part I they have reported measurements of noise and salinity),

**Environmental Protection Agency Constanta** (EPA-Constanta) specified availability of data only for the pressures under the MSFD Descriptor 7 (*Permanent alteration of hydrographical conditions does not adversely affect marine ecosystems*). In Romania all requests for realization of projects (e.g. constructions at sea, landfills and land claim, barrages, windmill farms and other renewable energy constructions, oil and gas platforms and bridges, dredging and deposition in the sea, constructions on land with outlets into the sea e.g. power plants outfalls, etc. (Annex III, Table 2)) are submitted at county level and EPA-Constanta releases regulatory documents for them (permissions).

**Border Police General Inspectorate and Naval Academy** are included in those Tables only, where they have provided information.

Among those organizations, which responded to the Questionnaire Part I, but are missing as response to its Part II are: private companies and NGOs (such as Mare Nostrum, EXXON Exploration, OMV Petrom SA, Thermoelectric Factory Midia, and Sc AQUASERV SA) and some governmental organizations (Ministry of Env., Romanian Space Agency, National Institute for Tourism Research, Tulcea County Department of Public Health, and National Port Administration).

In the Tables below, where applicable, **Dobrogea Litoral** (Romanian Water Administration) is abbreviated as **DobLit**, **Constanta County Department of Public Health** – **CCDPH** (**Note**: The Tulcea Department would provide similar information, see Chapter I.3 for their monitoring activities), **Border Police General Inspectorate** – **BPGI**, **Naval Academy** – **NA**. NIMRD and GeoEcoMar are abbreviations widely used in the whole report.

Table 97. Check of availability of biological data in Romania

| Species          | Organizations involved in monitoring/data collection (Yes/No parameter and organization) |                    |                    |       |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------|--------------------|--------------------|-------|--|--|--|--|
|                  | NIMRD                                                                                    | GeoEcoMar          | DobLit             | CCDPH |  |  |  |  |
| Bacteria         | ?                                                                                        | No                 | No                 | Yes   |  |  |  |  |
| Phytoplankton    | Yes <sup>275</sup>                                                                       | Yes <sup>276</sup> | Yes                | No    |  |  |  |  |
| Protozoa         | ?                                                                                        | No                 | No                 | No    |  |  |  |  |
| Macroalgae       | Yes                                                                                      | No                 | Yes <sup>277</sup> | No    |  |  |  |  |
| Mesozooplankton  | Yes                                                                                      | Yes <sup>189</sup> | No                 | No    |  |  |  |  |
| Macrozooplankton | Yes                                                                                      | Yes <sup>278</sup> | No                 | No    |  |  |  |  |
| Meiobenthos      | Yes                                                                                      | Yes <sup>279</sup> | No                 | No    |  |  |  |  |
| Macrozoobenthos  | Yes                                                                                      | Yes <sup>280</sup> | Yes                | No    |  |  |  |  |

<sup>&</sup>lt;sup>274</sup> Surely there is an annula book produced by them (in Romanian), and it should be public on the webpage: www.constanta.insse.ro.

<sup>&</sup>lt;sup>275</sup> Available data for coastal and marine waters up to 30Nm distance

<sup>&</sup>lt;sup>276</sup> Data for 2006 for the coastal zone and in 2008-2011 for the RO Black Sea shelf, emphasis on Calanus euxinus, Pseudocalanus elongatus, Anomalocera patersoni, Labidocera brunescens for species distribution

<sup>&</sup>lt;sup>277</sup> Monitored once every 3 years

<sup>&</sup>lt;sup>278</sup> For Ctenophores and Aurelia aurita

<sup>&</sup>lt;sup>279</sup> For all species of the groups Foraminifera, Nematoda, Ostracoda and Kinorhyncha

<sup>&</sup>lt;sup>280</sup> For all species registered in Romanian Black Sea shelf with some exception (certain species from Nemertea, Bryozoa and the entire group Oligocheta). For species distribution emphasis on: Rapana venosa, Lentidium mediterraneum, Mytilus galloprovincialis, Modiolula phaseolina, Mya arenaria, Alitta succinea, Dipolydora quadrilobata, Melinna palmata, Caprella acanthifera, Orchomene humilis, Megamphopus cornutus, Cumella pygmaea euxinica, Paramysis kroyeri, etc.

| Species |                    | Organizations involved in monitoring/data collection (Yes/No for each parameter and organization) |    |    |  |  |  |  |  |  |
|---------|--------------------|---------------------------------------------------------------------------------------------------|----|----|--|--|--|--|--|--|
|         | NIMRD              | CCDPH                                                                                             |    |    |  |  |  |  |  |  |
| Fish    | Yes                | Yes                                                                                               | No | No |  |  |  |  |  |  |
| Mammals | Yes <sup>281</sup> | No                                                                                                | No | No |  |  |  |  |  |  |
| Birds   | No                 | No                                                                                                | No | No |  |  |  |  |  |  |
| Others  | No                 | No                                                                                                | No | No |  |  |  |  |  |  |

# A. Data availability versus Annex I of the MSFD

The Table below follows the EC COM Decision 2010/477/EU<sup>282</sup>, which specifies criteria and indicators for Good Environmental Status definition (GES, *sensu* MSFD). Selected additional indicators are included, which could be used to identify GES.

**Constanta County Department of Public Health i**s not included in the Table below as they provided information related to the MSFD Descriptors, but in the following format:

| Mineral oils mg/l                                                 |
|-------------------------------------------------------------------|
| Surfactants (which reacts with methylene blue) mg/l lauril sulfat |
| Phenols (phenol index) C₄H₅OH mg/l                                |
| Transparency m                                                    |
| рН                                                                |
| Dissolved Oxygen                                                  |
| O₂ saturation degree                                              |
| CBO <sub>5</sub>                                                  |
| Temperature °C                                                    |
| Activity for radionuclides emitting gamma radiation (Bq)          |
| Global alpha and beta activity (Bq)                               |
| Tritium radionuclide activity in water (Bq)                       |

Table 98. Check of data availability in Romania versus Annex I of the MSFD

| MSFD Descriptor and relevant indicators                                    | Organizations      | involved in        |             |
|----------------------------------------------------------------------------|--------------------|--------------------|-------------|
|                                                                            | monitoring/d       | ata collection (\  | es/No for   |
|                                                                            | each paramet       | er and organiza    | ition)      |
|                                                                            | NIMRD              | GeoEcoMar          | DobLit      |
| <b>Descriptor 1:</b> Biological diversity is maintained. The quality and c | occurrence of hal  | bitats and the di  | istribution |
| and abundance of species are in line with prevailing physiograph           | ic, geographic a   | nd climatic cond   | litions     |
| 1.1. Species distribution                                                  |                    |                    |             |
| Distributional range                                                       | Yes                | Yes                | Yes         |
| Distributional pattern within the latter, where appropriate                | Yes                | Yes                | No          |
| Area covered by the species (for sessile/benthic species)                  | Yes <sup>283</sup> | Yes                | No          |
| 1.2. Population Size                                                       |                    |                    |             |
| Population abundance and/or biomass, as appropriate                        | Yes                | Yes                | Yes         |
| 1.3. Population condition                                                  |                    |                    |             |
| Population demographic characteristics (e.g. body size or age              | Yes <sup>284</sup> | Yes <sup>285</sup> | No          |
| class structure, sex ratio, fecundity rates, survival/ mortality           |                    |                    |             |
| rates)                                                                     |                    |                    |             |

<sup>&</sup>lt;sup>281</sup> On strandings and bycatch only

<sup>284</sup> Body size for mussels; Age class structure, fecundity rate, survival/mortality rates for fish

Sex ratio (Copepoda, Nematoda, Mysida and Cumacea)

<sup>&</sup>lt;sup>282</sup> Commission Decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters (notified under document C(2010) 5956)/(2010/477/EU)

<sup>&</sup>lt;sup>283</sup> For macroalgae and macrozoobenthos

<sup>&</sup>lt;sup>285</sup> Body size and age class structure (Copepoda, Nematoda, *Melinna palmata, Mytilus galloprovincialis, Mytilaster lineatus, Rapana venosa,* Mysida and Cumacea)

| MSFD Descriptor and relevant indicators                                   | Organizations          | involved in            |                        |
|---------------------------------------------------------------------------|------------------------|------------------------|------------------------|
|                                                                           | monitoring/d           | ata collection (       | Yes/No for             |
|                                                                           | each paramet           | ter and organiza       | ation)                 |
|                                                                           | NIMRD                  | GeoEcoMar              | DobLit                 |
| Population genetic structure, where appropriate                           | No                     | No                     | No                     |
| 1.4. Habitat distribution                                                 |                        |                        |                        |
| Distributional range                                                      | Yes (P) <sup>286</sup> | Yes <sup>287</sup>     | No                     |
| Distributional pattern                                                    | Yes (P) <sup>226</sup> | Yes <sup>288</sup>     | No                     |
| 1.5. Habitat extent                                                       |                        |                        |                        |
| Habitat area                                                              | Yes (P) <sup>226</sup> | Yes                    | No                     |
| Habitat volume, where relevant                                            | No                     | Yes                    | No                     |
| 1.6. Habitat condition                                                    |                        |                        |                        |
| Condition of the typical species and communities                          | Yes (P) <sup>226</sup> | Yes                    | Yes                    |
| Relative abundance and/or biomass, as appropriate                         | Yes (P) <sup>226</sup> | Yes                    | Yes                    |
| Physical, hydrological and chemical conditions                            | ???                    | Yes                    | Yes <sup>289</sup>     |
| 1.7. Ecosystem structure                                                  |                        |                        |                        |
| Composition and relative proportions of ecosystem components              | Yes                    | Yes                    | Yes (P) <sup>290</sup> |
| (habitats and species)                                                    |                        |                        |                        |
| Ecosystem processes and functions: Interactions between the               | Yes                    | Yes (P) <sup>291</sup> | No <sup>292</sup>      |
| structural components of the ecosystem                                    |                        |                        |                        |
| Descriptor 2: Non-indigenous species introduced by human activi           | ties are at level      | s that not adver       | sely alter the         |
| ecosystem                                                                 |                        |                        |                        |
| 2.1. Abundance and spreading of non-indigenous species, in part           |                        | pecies                 |                        |
| 2.1.1.Trends in abundance, temporal occurrence and spatial                | Yes (P) <sup>293</sup> | Yes (P) 294            | No                     |
| distribution in the wild of non-indigenous species, particularly          |                        |                        |                        |
| invasive non-indigenous species, notably in risk areas, in                |                        |                        |                        |
| relation to the main vectors and pathways of spreading of such            |                        |                        |                        |
| species                                                                   | 205                    | 205                    |                        |
| 2.1.2. Vectors of introduction                                            | Yes <sup>295</sup>     | Yes <sup>296</sup>     | No                     |
| 2.2. Environmental impact of non-indigenous species                       | ı                      |                        |                        |
| 2.2.1. Ratio between non-indigenous species and native species            | Yes                    | Yes (P) <sup>297</sup> | No                     |
| in some well-studied taxonomic groups, e.g. fish, macroalgae,             |                        |                        |                        |
| molluscs                                                                  |                        |                        |                        |
| 2.2.2. Magnitude of the impacts of non-indigenous species, in             | No                     | Yes                    | No                     |
| particular invasive species, on native communities, habitats and          |                        |                        |                        |
| ecosystem functioning                                                     |                        |                        |                        |
| 2.2.3. The Biopollution Level (BPL) (index)                               | No                     | No                     | No                     |
| <b>Descriptor 3:</b> Populations of all commercially exploited fish and s |                        |                        | al limits,             |
| exhibiting a population age and size distribution that is indicative      | of a nealthy sto       | DCK <sup>230</sup>     |                        |
| 3.1. Level of pressure of the fishing activity                            | Ves                    | No                     | No                     |
| 3.1.1. Fishing mortality (F) related to a reference value                 | Yes                    | No                     | No                     |
| 3.1.2. Catch/biomass ratio                                                | Yes                    | No                     | No                     |
| Maximum Sustainable Yield                                                 | Yes                    | No                     | No                     |
| Trends in catches / biomass                                               | Yes                    | No                     | No                     |
| 3.2. Reproductive capacity of the stock                                   |                        | L                      | Tar                    |
| 3.2.1. Spawning Stock Biomass related to a reference value                | Yes                    | No                     | No                     |

000 =

<sup>&</sup>lt;sup>286</sup> For 1.4, 1.5.1 and 1.6. the available data/information are for the habitats designated under NATURE2000.

<sup>&</sup>lt;sup>287</sup> Pelagic zone: coastal and offshore waters; Benthic zone: Littoral rock and other hard substrata, littoral sediment, infralittoral rock and other hard substrata, sublittoral sediment and deep-sea bed

<sup>288</sup> Pelagic zone: DCM, thermocline and CIL; Benthic zone: Bathymetric gradient, sediment grain size, oxygen regime and dominant species

<sup>&</sup>lt;sup>289</sup> For 16.1-1.6.3 DobLit specified availability of data for habitats as per each water body identified (transitional, coastal and marine waters). **Note**: it is not clear they mean pelagic habitats only or all.

<sup>&</sup>lt;sup>290</sup> The Quest says 'Yes", however, most of the components of the ecosystem are not studied.

<sup>&</sup>lt;sup>291</sup> Productivity and eutrophication-related effects

<sup>&</sup>lt;sup>292</sup> The Quest says 'Ecological status provided by ARQ Program, however, this is something different.

<sup>&</sup>lt;sup>293</sup> For Mnemiopsis leidyi, Beroe ovata, Rapana venosa, Anadara inaequivalvis, Mya arenaria

<sup>&</sup>lt;sup>294</sup> Mnemiopsis leidyi, Beroe ovata, Oithona brevicomis (**Note**: the right name is O. davisae), Corambe obscura, Rapana venosa, Anadara inaequivalvis, Mya arenaria

<sup>&</sup>lt;sup>295</sup> Written ballast water, however, it is important to know from where the ballast water originates, this is the vector as well.

<sup>&</sup>lt;sup>296</sup> The Ports of Midia, Constanta and Mangalia mentioned, this hardly means that ballast water are studied in all of them.

<sup>&</sup>lt;sup>297</sup> For Mollusca and Crustacea

<sup>&</sup>lt;sup>298</sup> NIMRD answered YES to all indicators, however, most probably they had in mind selected species (turbot, sprat, e.g.) for knowing the safe biological limits.

| MSFD Descriptor and relevant indicators                                                                                                                                                | Organizations involved in monitoring/data collection (Yes/No for each parameter and organization) |                        |              |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|--------------|--|--|
|                                                                                                                                                                                        | NIMRD                                                                                             | GeoEcoMar              | DobLit       |  |  |
| 3.2.2. Biomass indices                                                                                                                                                                 | Yes                                                                                               | No                     | No           |  |  |
| 3.3. Population age and size distribution                                                                                                                                              |                                                                                                   |                        |              |  |  |
| 3.3.1. The proportion of fish larger than a given length, e.g. the                                                                                                                     | Yes                                                                                               | No                     | No           |  |  |
| length at which 100% of the females are mature                                                                                                                                         |                                                                                                   |                        |              |  |  |
| 3.3.2. The mean maximum length across all species found in                                                                                                                             | Yes                                                                                               | No                     | No           |  |  |
| research vessel surveys                                                                                                                                                                |                                                                                                   |                        |              |  |  |
| 3.3.3. The 95% percentile of the fish length distribution                                                                                                                              | Yes                                                                                               | No                     | No           |  |  |
| observed in research vessel surveys                                                                                                                                                    |                                                                                                   |                        |              |  |  |
| Secondary indicator to D3.3                                                                                                                                                            |                                                                                                   |                        |              |  |  |
| 3.3.4. Size at full sexual maturation, which may reflect the                                                                                                                           | Yes                                                                                               | No                     | No           |  |  |
| extent of undesirable genetic effects of exploitation                                                                                                                                  |                                                                                                   |                        |              |  |  |
| <b>Descriptor 4:</b> All elements of the marine food webs, to the extent abundance and diversity and levels capable of ensuring the long-retention of their full reproductive capacity | term abundance                                                                                    | e of the species       |              |  |  |
| 4.1. Productivity (production per unit biomass) of key species o                                                                                                                       | r trophic groups                                                                                  | <b>i</b>               | T            |  |  |
| 4.1.1. Performance of key predator species using their production per unit biomass (productivity)*                                                                                     | Yes                                                                                               | No                     | No           |  |  |
| 4.1.2. Production per unit biomass                                                                                                                                                     | No                                                                                                | Yes (P) <sup>299</sup> | No           |  |  |
| 4.1.3. Marine Trophic Index                                                                                                                                                            | No                                                                                                | No                     | No           |  |  |
| 4.1.4. Trophic Levels (Functional feeding groups)                                                                                                                                      | No                                                                                                | Yes (P)300             | No           |  |  |
| 4.1.5. Diet composition                                                                                                                                                                | No                                                                                                | No                     | No           |  |  |
| 4.2. Proportion of selected species at the top of food webs                                                                                                                            |                                                                                                   |                        | •            |  |  |
| 4.2.1. % Large fish (by weight)                                                                                                                                                        | Yes                                                                                               | No                     | No           |  |  |
| 4.2.2. Body size (length, weight) in selected functional                                                                                                                               | Yes                                                                                               | No                     | No           |  |  |
| groups/species                                                                                                                                                                         |                                                                                                   |                        |              |  |  |
| 4.3. Abundance/distribution of key groups/species                                                                                                                                      |                                                                                                   |                        | l            |  |  |
| 4.3.1. Abundance trends - Abundance and spatial distributions                                                                                                                          | Yes <sup>301</sup>                                                                                | Yes                    | No           |  |  |
| of species                                                                                                                                                                             |                                                                                                   |                        |              |  |  |
| Additional to D4: Energy flows in food webs: Ratio of production levels                                                                                                                | or biomass bet                                                                                    | ween different         | trophic      |  |  |
| Ratio of pelagic to demersal fish biomass and/or production                                                                                                                            | Yes                                                                                               | No                     | No           |  |  |
| Ratio of macrobenthos invertebrate to demersal fish production                                                                                                                         | Yes                                                                                               | No                     | No           |  |  |
| or biomass                                                                                                                                                                             |                                                                                                   |                        |              |  |  |
| Ratio zooplankton production required/zooplankton                                                                                                                                      | Yes                                                                                               | Yes                    | No           |  |  |
| production                                                                                                                                                                             |                                                                                                   |                        |              |  |  |
| Ratio benthic production required/benthic production                                                                                                                                   | Yes                                                                                               | Yes                    | No           |  |  |
| <b>Descriptor 5:</b> Human-induced eutrophication is minimised, especi                                                                                                                 |                                                                                                   |                        | ch as losses |  |  |
| in biodiversity, ecosystem degradation, harmful algae blooms and                                                                                                                       |                                                                                                   | _                      |              |  |  |
| Nutrient loads                                                                                                                                                                         | Yes                                                                                               | Yes                    | Yes          |  |  |
| 5.1. Nutrient level                                                                                                                                                                    |                                                                                                   |                        |              |  |  |
| 5.1.1. Nutrients concentration in the water column                                                                                                                                     | Yes                                                                                               | Yes                    | Yes          |  |  |
| 5.1.2. Nutrients ratio: Deviate from normal proportion of                                                                                                                              | Yes                                                                                               | Yes                    | No           |  |  |
| nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other                                                                                                                      |                                                                                                   |                        |              |  |  |
| nutrients)                                                                                                                                                                             |                                                                                                   |                        |              |  |  |
| 5.2. Primary symptoms or directs effects of eutrophication                                                                                                                             |                                                                                                   |                        |              |  |  |
| 5.2.1. Chlorophyll (concentration, spatial areas of high                                                                                                                               | Yes                                                                                               | Yes                    | Yes          |  |  |
| concentrations)                                                                                                                                                                        |                                                                                                   |                        |              |  |  |
| 5.2.2. Water transparency due to increase in suspended algae                                                                                                                           | Yes                                                                                               | Yes                    | Yes          |  |  |
| 5.2.3. Algal community structure - Abundance/Increase of                                                                                                                               | Yes                                                                                               | No                     | Yes          |  |  |
| opportunistic macroalgae (e.g. can form blankets over the                                                                                                                              | .00                                                                                               | "                      | , 03         |  |  |
| natural flora and suffocate benthic animals                                                                                                                                            |                                                                                                   |                        |              |  |  |
| y                                                                                                                                                                                      |                                                                                                   | 1                      |              |  |  |

<sup>&</sup>lt;sup>299</sup> Benthos

<sup>300</sup> Without Fish and mammals 301 For phyto and zooplankton, jellies, macrozoobenthos and fish

| MSFD Descriptor and relevant indicators                                      | Organizatio            | ns involved in         |                    |
|------------------------------------------------------------------------------|------------------------|------------------------|--------------------|
|                                                                              | monitoring             | data collection (      | Yes/No for         |
|                                                                              | each param             | eter and organiz       | ation)             |
|                                                                              | NIMRD                  | GeoEcoMar              | DobLit             |
| 5.2.4. Species shift in floristic composition                                | Yes                    | Yes                    | No                 |
| 5.2.5. Primary production                                                    | Yes                    | No                     | No                 |
| 5.2.6. Nuisance / toxic algal blooms                                         | No                     | No                     | Yes                |
| 5.2.7. Submerged aquatic vegetation - spatial coverage and                   | Yes                    | No                     | Yes <sup>302</sup> |
| density of beds                                                              |                        |                        |                    |
| 5.3. Secondary symptoms or indirect effects of eutrophication                |                        |                        |                    |
| 5.3.1. Abundance/Decrease in perennial seaweeds and                          | Yes                    | No                     |                    |
| seagrasses ,                                                                 |                        |                        |                    |
| 5.3.2. Dissolved oxygen                                                      | Yes                    | Yes                    |                    |
| 5.3.3. Benthos - diversity and proportion of sensitive vs. non-              | Yes                    | Yes                    |                    |
| sensitive species (e.g. P-R model)                                           |                        | 163                    |                    |
| 5.3.4. Benthos / fish kills                                                  | Yes                    | Yes                    |                    |
| <b>Descriptor 6:</b> Sea-floor integrity is at a level that ensures that the |                        |                        | acosystams         |
| are safeguarded and benthic ecosystems, in particular, are not a             |                        |                        | ecosystems         |
| 6.1. Physical damage, having regard to substrate                             | ????                   | Yes                    | No                 |
| characteristics                                                              | 1111                   | 165                    | INO                |
| 6.2. Type, abundance, biomass and areal extent of relevant                   | Yes                    | Yes                    | No                 |
|                                                                              | res                    | res                    | INO                |
| biogenic substrate                                                           | 2222                   | V                      | NI-                |
| 6.3. Extent of the seabed significantly affected by human                    | ????                   | Yes                    | No                 |
| activities for the different substrate types                                 |                        |                        |                    |
| 6.4. Condition of benthic community                                          | Yes                    | Yes                    | No                 |
| 6.5. Structure of benthic habitats                                           | Yes                    | Yes                    | No                 |
| 6.6. Abundance of bio-engineering species                                    | No                     | No                     | No                 |
| 6.7. Diversity and richness indices also taking into account                 | Yes                    | Yes                    | No                 |
| species -area relationships                                                  |                        |                        |                    |
| 6.8. Proportion of biomass or number of individuals in the                   | Yes <sup>303</sup>     | Yes (P) <sup>304</sup> | No                 |
| macrobenthos above some specified length/size                                |                        |                        |                    |
| 6.9. Biomass size spectrum                                                   | Yes                    | Yes (P)                | No                 |
| 6.10. Shape of cumulative abundance curves of numbers of                     | Yes                    | Yes (P)                | No                 |
| individuals by size group                                                    |                        |                        |                    |
| 6.11. Secondary production                                                   | Yes                    | Yes                    | No                 |
| 6.12. Opportunistic-sensitive species proportion (e.g. AMBI, P-              | Yes <sup>305</sup>     | Yes (AMBI)             | Yes                |
| R-model)                                                                     |                        |                        |                    |
| 6.13. Parameters describing the characteristics (shape, slope                | Yes (P) <sup>306</sup> | Yes (P) <sup>249</sup> | No                 |
| and intercept) of the size spectrum of the benthic community                 |                        | , ,                    |                    |
| 6.14. Presence of particularly sensitive and or tolerant species             | Yes                    | Yes                    | No                 |
| Pressures - Descriptor 7: Permanent alteration of hydrographica              | l conditions de        |                        |                    |
| marine ecosystems                                                            |                        | ,                      | ,,                 |
| Data/information on constructions at sea, landfills and land                 | Yes <sup>307</sup>     | Yes <sup>308</sup>     | No                 |
| claim, barrages, windmill farms and other renewable energy                   |                        | 100                    |                    |
| constructions, oil and gas platforms and bridges, dredging and               |                        |                        |                    |
| deposition in the sea, constructions on land with outlets into               |                        |                        |                    |
| the sea e.g. power plants outfalls (Annex III, Table 2).                     |                        |                        |                    |
| Impacts - Descriptor 7: Permanent alteration of hydrographical of            | conditions doe         | rs not adverselv a     | ffect marine       |
| ecosystems                                                                   |                        | J. OF GAVETSETY U      | ,, coc manne       |
| 7.1. Spatial characterisation of permanent alterations                       | No                     | Yes                    | No                 |
| 7.1.1. Extent of area affected by permanent alterations                      | 3333                   |                        | No                 |
|                                                                              | 1::::                  | Yes                    | INU                |
| 7.1.2. Changes in sedimentation                                              | Yes                    | Yes                    | No                 |

<sup>302</sup> For macroalgae 303 Especially for mussels 304 For 6.8-6.10: Mytilus galloprovincialis, Mytilaster lineatus, Rapana venosa, Melinna palmata 305 AMBI, M-AMBI

<sup>306</sup> For mussels

<sup>307</sup> Data for oil and gas platforms and bridges, dredging and deposition in the sea based on the information from EIA (Evaluation of Environmental Impact Studies)

Studies)

308 Oil and gas platforms, dredging and deposition in the sea, constructions on land with outlets into the sea

| MSFD Descriptor and relevant indicators                                                                                                                                                                                                  | Organizations involved in monitoring/data collection (Yes/No for each parameter and organization) |                        |                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------|------------------------|--|--|--|
|                                                                                                                                                                                                                                          | NIMRD                                                                                             | GeoEcoMar              | DobLit                 |  |  |  |
| 7.2.1. Spatial extent of benthic habitat affected by the permanent alteration                                                                                                                                                            | Yes                                                                                               | Yes                    | No                     |  |  |  |
| 7.2.2. Changes in benthic communities and or biomass production                                                                                                                                                                          | Yes                                                                                               | Yes                    | No                     |  |  |  |
| 7.2.3. Extent of area with spatial or temporal hypoxia/anoxia                                                                                                                                                                            | Yes                                                                                               | Yes                    | No                     |  |  |  |
| 7.2.4. Presence of benthic communities associated with low oxygen conditions                                                                                                                                                             | Yes                                                                                               | Yes                    | No                     |  |  |  |
| 7.2.5 Diversity and richness indices, based on species number and relative abundance in the benthic community                                                                                                                            | Yes                                                                                               | Yes                    | No                     |  |  |  |
| 7.2.6 Presence of particularly sensitive or tolerant species                                                                                                                                                                             | Yes                                                                                               | Yes                    | No                     |  |  |  |
| 7.2.7. Changes in habitat functions due to altered hydrographical conditions (e.g. changes in areas for fish/mammals reproduction (spawning areas, breeding), nursery and feeding areas and migration routes of fish, birds and mammals) | Yes                                                                                               | No                     | No                     |  |  |  |
| <b>Descriptor 8:</b> Concentrations of contaminants are at levels not give                                                                                                                                                               | ving rise to poll                                                                                 | ution effects          |                        |  |  |  |
| 8.1 Concentrations in water, sediments and biota (measured, where relevant, in the same matrix)                                                                                                                                          | Yes <sup>309</sup>                                                                                | Yes (P) <sup>310</sup> | Yes (P) <sup>311</sup> |  |  |  |
| 8.2. Biological effects on the elements of concerned ecosystems                                                                                                                                                                          | No                                                                                                | No                     | No                     |  |  |  |
| 8.3. Occurrence and extent of acute pollution events                                                                                                                                                                                     | Yes (P) <sup>312</sup>                                                                            | No                     | No                     |  |  |  |
| <b>Descriptor 9:</b> Contaminants in fish and other seafood for human established by Community legislation or other relevant standards                                                                                                   | •                                                                                                 | o not exceed leve      | els                    |  |  |  |
| 9.1. Frequency of levels exceeding regulatory levels                                                                                                                                                                                     | No                                                                                                | No                     | No                     |  |  |  |
| 9.2. Actual levels detected                                                                                                                                                                                                              | Yes (LD) <sup>313</sup>                                                                           | No                     | No                     |  |  |  |
| 9.3 Numbers of contaminants for which exceeding levels have been detected                                                                                                                                                                | No                                                                                                | No                     | No                     |  |  |  |
| 9.4. Origin of contaminants (geological versus anthropogenic; local versus long distance)                                                                                                                                                | Yes <sup>314</sup>                                                                                | No                     | No                     |  |  |  |
| <b>Descriptor 10:</b> Properties and quantities of marine litter do not convironment                                                                                                                                                     | ause harm to th                                                                                   | ne coastal and m       | arine                  |  |  |  |
| 10.1. ML washed ashore and/or deposited on coastlines <sup>315</sup>                                                                                                                                                                     | No                                                                                                | No                     | No                     |  |  |  |
| 10.2. ML in the water column, including floating and suspended litter on the sea floor                                                                                                                                                   | Yes (P) <sup>316</sup>                                                                            | No                     | No                     |  |  |  |
| 10.3. ML ingested by marine animals/birds                                                                                                                                                                                                | No                                                                                                | No                     | No                     |  |  |  |
| 10.4. Microparticles (mainly mircroplastics) derived from degradation of litter                                                                                                                                                          | No                                                                                                | No                     | No                     |  |  |  |
| 10.5. Impact rates of degraded litter on organisms                                                                                                                                                                                       | No                                                                                                | No                     | No                     |  |  |  |
| 10.6. Potential chemical pollution resulting from degraded litter (plastic)                                                                                                                                                              | No                                                                                                | No                     | No                     |  |  |  |
| <b>Descriptor 11:</b> Introduction of energy, including underwater noise marine environment                                                                                                                                              | e, is at levels th                                                                                | at do not advers       | ely affect the         |  |  |  |
| 11.1. Distribution in time and place of loud, low and mid                                                                                                                                                                                | No                                                                                                | No                     | No                     |  |  |  |
| frequency impulsive sounds                                                                                                                                                                                                               |                                                                                                   |                        |                        |  |  |  |

Note: Naval Academy has reported data on noise, but it is not clear whether they could cover the specific indicators under the Descriptor 11.

<sup>309</sup> OCP's in water, sediments and biota; PAH'S in water, sediments; TPHs in water, sediments; Heavy metals in water, sediments and biota

<sup>310</sup> Trace metals in sediments

<sup>311</sup> Water and sediments

<sup>312</sup> Occurrence and extent of acute oil pollution events

 $<sup>^{\</sup>rm 313}$  Some data on OCP's and heavy metals in molluscs, limited data for fish

<sup>&</sup>lt;sup>314</sup> Antropogenic, local and long-distance

<sup>&</sup>lt;sup>315</sup> All contacted stakeholders have said No, however, in RO Marine Litter data for the coast is available in the NGO Mare Nostrum, as demonstrated in Chapter I on the monitoring.

<sup>&</sup>lt;sup>316</sup> For 2010 and 2011

# B. Data availability versus Annex III of the MSFD

Avoiding duplication with Annex I, here selected parts of Annex III are given for data availability check.

Table 99. Characteristics – state of the Sea in Romania

| Characteristic | Component                             | Criteria      | Organizati             | Organizations involved in monitoring/data     |                    |                    |    |  |  |  |
|----------------|---------------------------------------|---------------|------------------------|-----------------------------------------------|--------------------|--------------------|----|--|--|--|
|                |                                       |               | collection             | collection (Yes/No for each item and organiza |                    |                    |    |  |  |  |
|                |                                       |               | NIMRD                  | GeoEcoMar                                     | DobLit             | BPGI               | NA |  |  |  |
| Physical and   | Bathymetry and                        |               | Yes (P) <sup>317</sup> | Yes                                           | Yes                | No                 | No |  |  |  |
| chemical       | topography                            |               |                        |                                               | (P) <sup>318</sup> |                    |    |  |  |  |
| features       | Temperature and                       | Seasonal      | Yes (P) <sup>320</sup> | Yes (P) <sup>321</sup>                        | Yes                | Yes                | No |  |  |  |
|                | salinity regime, ice                  | variability,  |                        |                                               |                    |                    |    |  |  |  |
|                | cover, current                        | spatial       |                        |                                               |                    |                    |    |  |  |  |
|                | velocity,                             | distribution, |                        |                                               |                    |                    |    |  |  |  |
|                | stratification (CIL <sup>319</sup> ), | trends        |                        |                                               |                    |                    |    |  |  |  |
|                | upwelling, wave                       |               |                        |                                               |                    |                    |    |  |  |  |
|                | pH, pCO, H₂S profiles                 |               | Yes (P) <sup>322</sup> | Yes (P) <sup>323</sup>                        | Yes                | No                 | No |  |  |  |
| Biological     | Seabirds                              | Diversity,    | No                     | No                                            | No                 | No                 | No |  |  |  |
| features at    | Mammals                               | abundance,    | Yes (P)                | No                                            | No                 | Yes <sup>324</sup> | No |  |  |  |
| the level of   |                                       | spatial       |                        |                                               |                    |                    |    |  |  |  |
| functional     |                                       | distribution, |                        |                                               |                    |                    |    |  |  |  |
| groups         |                                       | migrations,   |                        |                                               |                    |                    |    |  |  |  |
|                |                                       | trends        |                        |                                               |                    |                    |    |  |  |  |

In the Table below the availability of data/information to describe the human activities exercised in Black Sea national waters and on coast of the beneficiary country (RO) is presented. According to the information provided, the Naval Academy is the organization having the ability to describe any human activity in Romanian Black Sea waters<sup>325</sup> and on coast.

Table 100. Description of human activities in Romania

| Activity                       | List of Human Activities                                      | Description of marine use/activity/Organization able to provide it |           |        |       |                    |         |  |  |
|--------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|-----------|--------|-------|--------------------|---------|--|--|
| Theme                          | List of Human Activities                                      | NIMRD                                                              | GeoEcoMar | DobLit | CCDPH | BPGI               | NA      |  |  |
| Extraction of living resources | Fisheries incl.<br>recreational fishing<br>(fish & shellfish) | Yes <sup>326</sup>                                                 | No        | No     | No    | Yes <sup>327</sup> | Yes     |  |  |
|                                | Seaweed and other sea-<br>based food harvesting               | N/A??                                                              | No        | No     | No    | No                 | Yes???? |  |  |
|                                | Extraction of genetic resources/ bioprospecting/ maerl        | N/A??                                                              | No        | No     | No    | No                 | Yes???? |  |  |
| Food production                | Aquaculture (fin-fish & shellfish)                            | Yes <sup>328</sup>                                                 | No        | No     | No    | No                 | Yes     |  |  |
| Man-made structures            | Land claim, coastal defence                                   | Yes <sup>329</sup>                                                 | No        | No     | No    | No                 | Yes     |  |  |

<sup>317</sup> Only bathymetry

<sup>318</sup> Bathymetry once per year

<sup>319</sup> Cold Intermediate Layer

<sup>320</sup> Temperature, salinity, ice cover

<sup>321</sup> Temperature, salinity, and CIL

<sup>322</sup> Only pH

<sup>323</sup> pH and H<sub>2</sub>S

<sup>&</sup>lt;sup>324</sup> May be by-catch.

<sup>&</sup>lt;sup>325</sup> However, the validity of the information has to be checked, because they have also reported information available for activities which are not exercised in RO waters according to NIMRD.

<sup>326</sup> Number of fisheries permits, No of equipment, fishing fleet, TAC, no info for recreational.

<sup>327</sup> Illegal fishery: Under the law, the territorial structure of Coast Guard is charged with preventing and combating illegal fishing.

<sup>328</sup> Aquaculture production by species

<sup>329</sup> Surface of land claimed from the see

| Activity                               | List of Human Astinities                                                                       | Description of marine use/activity/Organization able to provide it |           |                    |       |                    |                     |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------|--------------------|-------|--------------------|---------------------|--|--|
| Theme                                  | List of Human Activities                                                                       | NIMRD                                                              | GeoEcoMar | DobLit             | CCDPH | BPGI               | NA                  |  |  |
| (incl. in                              | Port operations                                                                                | Yes <sup>330</sup>                                                 | No        | No                 | No    | No                 | Yes                 |  |  |
| construction)                          | Placement & operation of offshore structures (other than for energy production) <sup>153</sup> | Yes <sup>331</sup>                                                 | No        | No                 | No    | No                 | Yes                 |  |  |
|                                        | Submarine cable & pipeline operations                                                          | Yes <sup>332</sup>                                                 | No        | No                 | No    | No                 | Yes                 |  |  |
| Extraction of                          | Marine mining (sand, gravel, rock)                                                             | N/A????                                                            | No        | No                 | No    | No                 | Yes????             |  |  |
| non-living                             | Dredging                                                                                       | Yes <sup>333</sup>                                                 | No        | No                 | No    | No                 | Yes                 |  |  |
| resources                              | Desalination/water abstraction <sup>152</sup>                                                  | N/A????                                                            | No        | No                 | No    | No                 | Yes????             |  |  |
| Energy<br>production                   | Marine-based renewable energy generation (wind, wave & tidal power)                            | N/A????                                                            | No        | No                 | No    | No                 | Yes????             |  |  |
|                                        | Marine hydrocarbon extraction (oil & gas)                                                      | Yes <sup>334</sup>                                                 | No        | Yes <sup>335</sup> | No    | Yes <sup>336</sup> | Yes                 |  |  |
| Transport                              | Shipping                                                                                       | Yes <sup>337</sup>                                                 | No        | No                 | No    | Yes                | Yes                 |  |  |
| Waste                                  | Solid waste disposal incl. dredge material 338                                                 | Yes <sup>339</sup>                                                 | No        | No                 | No    | No <sup>340</sup>  | Yes                 |  |  |
| disposal                               | Storage of gases                                                                               | N/A???                                                             | N/A       | N/A                | N/A   | N/A                | Yes????             |  |  |
| Tourism and recreation                 | Tourism & recreation incl. yachting                                                            | Yes <sup>341</sup>                                                 | No        | Yes                | No    | Yes                | Yes                 |  |  |
| Research and survey                    | Marine research, survey & educational activities                                               | Yes <sup>342</sup>                                                 | No        | No                 | No    | Yes                | Yes                 |  |  |
| Military                               | Defence recurrent operations                                                                   | Yes <sup>343</sup>                                                 | No        | No                 | No    | Yes <sup>344</sup> | Yes                 |  |  |
| -                                      | Dumping of munitions                                                                           | N/A????                                                            | No        | No                 | No    | No                 | Yes? <sup>345</sup> |  |  |
| Land-based                             | Urban (municipal waste water discharge)                                                        | Yes <sup>346</sup>                                                 | No        | Yes <sup>347</sup> | No    | No                 | Yes                 |  |  |
| activities<br>(coastal,                | Industry (discharges, emissions)                                                               | Yes <sup>348</sup>                                                 | Yes       | No                 | No    | No                 | Yes                 |  |  |
| riverine and atmospheric)              | Agriculture & forestry (run-off, emissions)                                                    | No                                                                 | No        | No                 | No    | No                 | Yes                 |  |  |
| Other<br>marine uses<br>and activities |                                                                                                | No                                                                 | No        | No                 | No    | No                 | No                  |  |  |

330 No of ships in/out of port, type of cargo, quantity of cargo by type, port development in future

<sup>331</sup> No of structure, location

<sup>332</sup> Position of cable, type of cable or pipe

<sup>333</sup> Location of activities and possible quantities of materials that were removed

<sup>334</sup> Production of oil and gas

<sup>335</sup> Tomis and Belona Ports

<sup>336</sup> BPGI monitors through surveillance systems and vessels patrol the hydrocarbon prospecting activities in the contiguous and exclusive economic zone

<sup>337</sup> No of ships in transit, type of cargo carried, quantities of cargo carried, types of ships

<sup>338</sup> Disposal of wastes is forbidden, dumping of spoils is legal

<sup>339</sup> Position of disposal, and quantities

<sup>&</sup>lt;sup>340</sup> Here is NO, and in the next Table is YES, one of these should be true.

<sup>341</sup> Location of touristic activities, no of tourists, types of recreational activities and location

<sup>342</sup> Location of research activities and type of activities

<sup>343</sup> Location of exercise polygons, number of exercises

<sup>344</sup> BPGI preforms shooting trainings or law enforcement in the territorial sea, contiguous zone and exclusive economic zone in accordance with the laws

<sup>&</sup>lt;sup>345</sup> Activity 'Dumping of munitions" is illegal in the BS region (see the Dumping Protocol to the Bucharest Convention, http://www.blacksea-commission.org/\_convention-protocols.asp).

<sup>346</sup> Location of discharges, quantities, total amount of waste water sufficiently or insufficiently treated

<sup>347</sup> Wastewater treatment

<sup>348</sup> Location of discharges, quantities, total amount of waste water sufficiently or insufficiently treated

In the Table below, the cross-check provides for each human activity the availability of data/information to describe the pressures exercised on the Black Sea.

Table 101. Human activities and pressures (cross-check) in Romania (**Note**: N/A means not applicable; the Table synthesizes the input of all stakeholders contacted)

|                                                      | PRESSURES                                                                                   |                                                    |                                                    |                                                   |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
|------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|---------------------|----------------|
| Activity<br>Theme                                    | Human Activities                                                                            | Physical<br>loss (area,<br>extent <sup>349</sup> ) | Physical<br>damage<br>(area,<br>extent)            | Interference<br>with<br>hydrological<br>processes | Other phy<br>disturban<br>extent) |                                                                     | Contamination<br>by hazardous<br>substances<br>(load)                  | Systematic<br>and/or<br>intentional<br>release of<br>substances<br>(load) | Nutrient<br>and organic<br>matter<br>enrichment<br>(load)    | Biological di                                                              | sturbances                   |                     | Acidification  |
|                                                      |                                                                                             | Smothering<br>Sealing                              | Siltation<br>Abrasion<br>Extraction<br>(e.g. sand) | Thermal<br>and salinity<br>regime<br>change       | Noise<br>(trends<br>in<br>level)  | Marine<br>litter<br>(trends in<br>amount on<br>coast and<br>in sea) | Synthetic<br>compounds<br>Non-synthetic<br>substances<br>Radionuclides | e.g. produced<br>water,<br>carbon<br>storage                              | Fertilizers<br>and other<br>nutrient-<br>rich<br>substances. | Extraction<br>of<br>species,<br>including<br>non-<br>target <sup>350</sup> | Invasives,<br>translocations | Microbial pathogens | Decrease in pH |
|                                                      | Fisheries incl.<br>recreational fishing<br>(fish & shellfish)                               | Yes                                                | Yes                                                |                                                   | No                                | Yes                                                                 |                                                                        |                                                                           |                                                              | Yes                                                                        |                              |                     |                |
| Extraction of living resources                       | Seaweed and other<br>sea-based food<br>harvesting                                           | N/A                                                | N/A                                                |                                                   |                                   |                                                                     |                                                                        |                                                                           |                                                              | N/A                                                                        |                              |                     |                |
| resources                                            | Extraction of genetic resources/ bioprospecting/ maerl                                      | N/A                                                | N/A                                                |                                                   |                                   |                                                                     |                                                                        |                                                                           |                                                              | N/A                                                                        |                              |                     |                |
| Food<br>production                                   | Aquaculture (fin-fish<br>& shellfish)                                                       |                                                    |                                                    |                                                   |                                   |                                                                     | No                                                                     |                                                                           | Yes                                                          |                                                                            | Yes                          | No                  |                |
|                                                      | Land claim, coastal defence                                                                 | Yes                                                | Yes                                                | Yes                                               |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
|                                                      | Port operations                                                                             | Yes                                                | Yes                                                | Yes                                               |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            | No                           |                     |                |
| Man-made<br>structures<br>(incl. in<br>construction) | Placement &<br>operation of<br>offshore structures<br>(other than for<br>energy production) | Yes                                                | No                                                 | Yes                                               |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
|                                                      | Submarine cable & pipeline operations                                                       | No                                                 | No                                                 |                                                   | No                                |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
| Extraction of                                        | Marine mining<br>(sand, gravel, rock)                                                       | N/A                                                | N/A                                                |                                                   | N/A                               |                                                                     |                                                                        |                                                                           |                                                              | Yes                                                                        |                              |                     |                |
| non-living resources                                 | Dredging                                                                                    | Yes                                                | Yes                                                | No                                                | No                                |                                                                     | No                                                                     |                                                                           |                                                              | No                                                                         |                              |                     |                |
|                                                      | Desalination/water<br>abstraction                                                           |                                                    |                                                    | N/A                                               |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
| Energy<br>production                                 | Marine-based<br>renewable energy<br>generation (wind,<br>wave & tidal power)                | N/A                                                | N/A                                                | N/A                                               | N/A                               | N/A                                                                 |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
| ,                                                    | Marine hydrocarbon<br>extraction<br>(oil & gas)                                             | Yes                                                | Yes                                                |                                                   | No                                | No                                                                  | Yes                                                                    | Yes                                                                       |                                                              |                                                                            |                              |                     |                |
| Transport                                            | Shipping                                                                                    |                                                    | Yes                                                |                                                   | No                                | No                                                                  | Yes                                                                    |                                                                           |                                                              |                                                                            | Yes                          |                     |                |
| Waste                                                | Solid waste disposal<br>incl. dredge material                                               | Yes                                                | Yes                                                |                                                   |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
| disposal                                             | Storage of gases Tourism &                                                                  |                                                    |                                                    |                                                   |                                   |                                                                     |                                                                        | N/A                                                                       |                                                              |                                                                            |                              |                     |                |
| Tourism and recreation                               | recreation incl.<br>yachting                                                                |                                                    |                                                    |                                                   | No                                | No                                                                  |                                                                        |                                                                           | No                                                           | Yes                                                                        |                              | Yes                 |                |
| Research and survey                                  | Marine research,<br>survey &<br>educational<br>activities                                   |                                                    |                                                    |                                                   | No                                |                                                                     |                                                                        |                                                                           |                                                              | Yes                                                                        |                              |                     |                |
| Military                                             | Defence recurrent operations  Dumping of                                                    |                                                    |                                                    |                                                   | No                                | No                                                                  |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
|                                                      | munitions                                                                                   |                                                    |                                                    |                                                   |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |
| Land-based                                           | Urban (municipal<br>waste water<br>discharge)                                               |                                                    |                                                    |                                                   |                                   | No                                                                  | Yes                                                                    | Yes                                                                       | Yes                                                          |                                                                            |                              | Yes                 | Yes            |
| activities<br>(coastal,<br>riverine and              | Industry<br>(discharges,<br>emissions)                                                      |                                                    |                                                    | No                                                |                                   | No                                                                  | Yes                                                                    | Yes                                                                       | Yes                                                          |                                                                            |                              |                     |                |
| atmospheric)                                         | Agriculture & forestry (run-off, emissions)                                                 |                                                    |                                                    |                                                   |                                   |                                                                     | Yes                                                                    |                                                                           | Yes                                                          |                                                                            |                              |                     | No             |
| Other marine<br>uses and<br>activities               |                                                                                             |                                                    |                                                    |                                                   |                                   |                                                                     |                                                                        |                                                                           |                                                              |                                                                            |                              |                     |                |

<sup>&</sup>lt;sup>349</sup> Area and extent, where mentioned, are meant for different types of affected substrates.

<sup>&</sup>lt;sup>350</sup> The Pressure can be described by number of vessels, fishing effort, frequency trawled, etc.

<sup>351</sup> The pressure can be described by vectors of introduction, risk areas, number of new species identified per year, number of established species per decade, etc.

In the Table below cross-check of data/information for each pressure to describe the related impact is provided.

Table 102. Pressures and impacts (cross-check)<sup>352</sup> in Romania

| Pressure theme | Pressure        | Impact on            |                    | tions involved<br>to for each para |        | ring/data c | ollection |     |
|----------------|-----------------|----------------------|--------------------|------------------------------------|--------|-------------|-----------|-----|
|                |                 |                      | NIMRD              | GeoEcoMar                          | DobLit | CCDPH       | BPGI      | NA  |
| Physical loss  | Smothering      | Seabed Habitats      | Yes                | Yes                                | No     | No          | No        | No  |
|                | Sealing         | ]                    | Yes                | Yes                                | No     | No          | No        | No  |
| Physical       | Siltation       |                      | Yes                | Yes                                | No     | No          | No        | No  |
| damage         | Abrasion        |                      | Yes                | Yes                                | No     | No          | No        | No  |
|                | Extraction      |                      | Yes                | Yes                                | No     | No          | No        | No  |
| Other physical | Underwater      | Functional groups    | No                 | No                                 | No     | No          | No        | No  |
| disturbance    | noise           | and habitats (water  |                    |                                    |        |             |           |     |
|                | Marine litter   | column and seabed)   | Yes <sup>353</sup> | No                                 | No     | No          | No        | No  |
| Interference   | Thermal         | Functional groups    | No                 | Yes                                | No     | No          | No        | No  |
| with           | regime change   | and habitats (water  |                    |                                    |        |             |           |     |
| hydrological   | Salinity regime | column and seabed)   | No                 | Yes                                | No     | No          | No        | No  |
| processes      | change          |                      |                    |                                    |        |             |           |     |
| Contamination  | Synthetic       | Seabed habitats,     | Yes                | No                                 | No     | No          | No        | No  |
| by hazardous   | compounds       | functional groups,   |                    |                                    |        |             |           |     |
| substances     | Non-synthetic   | seafood              | Yes <sup>354</sup> | Yes (P) <sup>355</sup>             | No     | No          | No        | No  |
|                | substances      |                      |                    |                                    |        |             |           |     |
|                | Radionuclides   |                      | No                 | No                                 | No     | No          | No        | No  |
| Systematic     | Other           | Seabed habitats,     | Yes                | No                                 | No     | No          | No        | No  |
| and/or         | substances      | functional groups    |                    |                                    |        |             |           |     |
| intentional    |                 |                      |                    |                                    |        |             |           |     |
| release of     |                 |                      |                    |                                    |        |             |           |     |
| substances     |                 |                      |                    |                                    |        |             |           |     |
| Nutrient and   | Nutrients       | Water column and     | Yes                | Yes                                | Yes    | No          | No        | No  |
| organic matter | Organic         | seabed habitats,     | Yes                | Yes                                | Yes    | No          | No        | No  |
| enrichment     | matter          | species, functional  |                    |                                    |        |             |           |     |
|                |                 | groups, ecosystems   |                    |                                    |        |             |           |     |
| Biological     | Microbial       | Safety of food (fish | Yes                | No                                 | No     | Yes         | No        | No  |
| disturbance    | pathogens       | and other seafood),  |                    |                                    |        |             |           |     |
|                |                 | bathing water        |                    |                                    |        |             |           |     |
|                |                 | quality              |                    |                                    |        |             |           |     |
|                | Non-native      | Water column and     | Yes                | Yes                                | No     | No          | No        | No  |
|                | species and     | seabed habitats,     |                    |                                    |        |             |           |     |
|                | translocations  | species, functional  |                    |                                    |        |             |           |     |
|                | F               | groups, ecosystems   | V                  |                                    | ļ.,    |             | ļ.,       | ļ   |
|                | Extraction of   | Water column and     | Yes                | Yes                                | No     | No          | No        | No  |
|                | selected        | seabed habitats,     |                    |                                    |        |             |           |     |
|                | species incl.   | species, functional  |                    |                                    |        |             |           |     |
|                | non-target      | groups, ecosystems   |                    |                                    |        |             |           |     |
| Othors         | catches         |                      | No                 | No                                 | No     | No          | Ne        | N.a |
| Others         |                 |                      | No                 | No                                 | No     | No          | No        | No  |

<sup>352</sup> The Table is similar to Table 2 from the EC document: **Guidance for 2012 reporting under the Marine Strategy Framework Directive**, however covers broader scale impacts under certain pressures as seen being possible in the Black Sea.

<sup>353</sup> Impact in the sea is most probably not studied, this answer is rather doubtful.

<sup>354</sup> According to the info above, little is known about the impact, investigations on biological effects are scarce. May be partially YES is the more correct answer.

<sup>355</sup> For trace metals

# Conclusions on the gaps in data/information availability in RO to meet the requirements of the MSFD

**1. Biological data**: Mammals are insufficiently studied (mainly strandings data). For birds the information should be verified with relevant organizations.

#### 2. MSFD Descriptors

**Descriptor 1:** Biological diversity is maintained

Population genetic structure

**Descriptor 2:** Environmental impact of non-indigenous species

- Vectors of introduction<sup>356</sup>
- The Biopollution Level (BPL) (index)

**Descriptor 3:** Populations of all commercially exploited fish and shellfish are within safe biological limits, exhibiting a population age and size distribution that is indicative of a healthy stock NIMRD answered YES to all indicators, however, most probably they had in mind selected species (turbot, sprat, e.g.) for knowing the safe biological limits, whereas the Descriptor requires investigations on ALL commercially exploited species. Therefore, the available safe biological limits should be further checked and list those which are missing, then expanding of investigations for them could be recommended.

**Descriptor 4:** All elements of the marine food webs, to the extent that they are known, occur at normal abundance and diversity and levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity

For some of the indicators data are limited or missing: e.g. production per unit biomass, trophic levels, and diet composition. Marine Trophic Index is not calculated.

**Descriptor 5:** Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters

No substantial gaps have been reported, nuisance and toxic algal blooms need to be better traced.

**Descriptor 6:** Sea-floor integrity is at a level that ensures that the structure and function of the ecosystems are safeguarded and benthic ecosystems, in particular, are not adversely affected

• Parameters describing the characteristics (shape, slope and intercept) of the size spectrum of the benthic community – known for mussels only.

**Descriptor 7:** Permanent alteration of hydrographical conditions does not adversely affect marine ecosystems

No substantial gaps reported, more problem-oriented studies are needed into the impact of permanent hydrographical changes.

**Descriptor 8:** Concentrations of contaminants are at levels not giving rise to pollution effects

- PAHs in sediments further studies are required to distinguish between natural and anthropogenic sources. Recommended indices/ratios are: LMW/HMW; IP/(IP+BghiP); FI/FI+Py; BaA/228; total PAHs index.
- Biota contamination PCBs and PAHs are almost not studied; biomagnification along the food web is not known for all pollutants.
- Biological effects on the elements of concerned ecosystems there are few investigations on general biomarkers like lysososmal membrane stability and oxidative enzymes. There are no studies on specific biomarkers as metalothionein, vitelogenin content, etc.

<sup>356</sup> There were answeres YES, but they are doubtful, it should be further checked whether Vecrors of introduction are properly traced.

**Descriptor 9:** Contaminants in fish and other seafood for human consumption do not exceed levels established by Community legislation or other relevant standards

Limited data are available. No data are reported for:

- Frequency of levels exceeding regulatory levels
- Number of contaminants exceeding regulatory levels

**Descriptor 10:** Properties and quantities of marine litter do not cause harm to the coastal and marine environment

Limited data are available, mostly for the coast.

**Descriptor 11:** Introduction of energy, including underwater noise, is at levels that do not adversely affect the marine environment

Data availability is reported, however, it is not clear whether the specific indicators could be covered.

#### 3. Characteristics – state of the Sea

No substantial gaps.

#### 4. Human Activities

Human activities are well documented in RO, including illegal practices. However, the different stakeholders provided a bit contradictory information. It should be verified which human activities are not applicable for the Romanian coast and BS waters.

#### 5. Pressures

The main gaps are in the pressures related to:

- Aquaculture synthetic and non-synthetic substances release, microbial pathogens
- Port operations ballast water monitoring is absent, risk assessments have not been conducted
- Submarine cables and pipeline operations

The List should be further completed where needed after careful re-check of the Table on Human activities and related Pressures.

#### 6. Impacts

According to the information provided, for the following pressures the impacts are not known:

- Underwater noise (for water column and seabed habitats)
- Radionuclides

Little is known about the impacts related to contamination by hazardous substances and marine litter. More studies are needed to better understand how the thermal and salinity regime changes impact the biota and which are the critical loads of nutrients and pollutants stemming from LBS.

Table 103. Synthetic analysis of pressures and impacts **in Romania** (**Note**: the template is adopted from the PERSEUS Project with modifications)

|   |                      | 1                                                         | 2                                          | 3                                        | 4                              | 5                | 6                                          | 7             | 8                | 9                                         |
|---|----------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------|------------------|--------------------------------------------|---------------|------------------|-------------------------------------------|
|   | Pressures Impact on: | Changes in fresh water<br>and sediment riverine<br>fluxes | Nutrients and organic<br>matter enrichment | Contamination by<br>hazardous substances | Physical damage of<br>habitats | Loss of habitats | Introduction of non-<br>indigenous species | Marine litter | Underwater noise | Other pressure<br>(extraction of species) |
| Α | Plankton             | *                                                         |                                            |                                          |                                |                  |                                            |               |                  | *                                         |
| В | Macroalgae           | *                                                         | *                                          |                                          |                                |                  | *                                          |               |                  |                                           |
| С | Seagrass             | *                                                         | *                                          |                                          |                                |                  |                                            |               |                  |                                           |
| D | Zoobenthos           |                                                           |                                            | *                                        |                                |                  |                                            |               |                  |                                           |
| F | Fish                 | *                                                         | *                                          |                                          |                                |                  | *                                          |               |                  |                                           |
| G | Marine mammals       |                                                           |                                            |                                          |                                |                  |                                            |               |                  | *                                         |
| Н | Birds                |                                                           |                                            |                                          |                                |                  |                                            |               |                  |                                           |

<sup>\*</sup> Low or very low data/information availability and lack of proper quantified assessments

**Note**: Extraction of species (fishery) is not extensive in RO waters, therefore, the impacts are not distinguished as high. However, the fishery problem is transboundary, many BS fish stocks are depleted due to overfishing exercised by other BS countries. So, the impact of extraction of species on the pelagic and benthic communities in RO waters should be nested into a broader picture than taking into consideration the fishery activities in RO waters only.

| Intensity of the impact (based on their associated risk for biodiversity conservation) |
|----------------------------------------------------------------------------------------|
| High impact                                                                            |
| Significant impact                                                                     |
| Low impact                                                                             |
| No impact                                                                              |
| Existing interaction, but the impact has not been determined even qualitattively       |
| Misread interaction, impact not determined                                             |

The abbreviations used in the Tables below are as follows:

- Ministry of Environment and Urbanization MoEU
- Istanbul University/Faculty of Marine Sciences and Management IU/MSM
- TUBITAK Marmara Research Center (Istanbul) TUBITAK
- Istanbul University (Faculty of Fishery) IU/FF
- Karadeniz Technical University, Faculty of Marine Science, Trabzon KTU/FMS
- Recep Tayyip Erdoğan University Faculty of Fisheries RTEU/FF
- Canakkale Onsekiz Mart Univ. Faculty of Marine Sciences and Technology COMU/FMST
- Institute of Marine Sciences/METU (Erdemli) IMS/METU
- Central Fisheries Research Institute (Trabzon) CFRI
- Nature Conservation Center NCC

TURMEPA<sup>357</sup> was contacted for the Part II of the Questionnaire, however, they reported no data/information availability and, therefore, they are not included in the Tables below.

According to the information provided in Tables 104-106, among the 8 major research institutions dealing with the Black Sea in Turkey (studies in the sea itself), at least 3 have the set of biological elements investigated from bacteria to fish.

Table 104. Check of availability of biological data in Turkey

| Species          | Organi | zations invo | lved in moi | nitoring/o | lata coll | ection (Yes/ | No for eac | h parameter an | nd organizatio | on)  |                    |
|------------------|--------|--------------|-------------|------------|-----------|--------------|------------|----------------|----------------|------|--------------------|
|                  | MoEU   | IU/FMSM      | TUBITAK     | TUDAV      | IU/FF     | KTU/FMS      | RTEU/FF    | COMU/FMST      | IMS/METU       | CFRI | NCC                |
| Bacteria         | No     | Yes          | No          | No         | Yes       | Yes          | Yes        | Yes            | Yes            | Yes  | No                 |
| Phytoplankton    | Yes    | Yes          | Yes         | No         | Yes       | Yes          | Yes        | Yes            | Yes            | No   | No                 |
| Protozoa         | No     | Yes          | No          | No         | No        | Yes          | Yes        | Yes            | No             | No   | No                 |
| Macroalgae       | Yes    | Yes          | No          | No         | Yes       | No           | Yes        | Yes            | No             | No   | No                 |
| Mesozooplankton  | No     | Yes          | No          | No         | Yes       | Yes          | Yes        | Yes            | Yes            | No   | No                 |
| Macrozooplankton | No     | Yes          | No          | Yes        | Yes       | Yes          | Yes        | Yes            | Yes            | No   | No                 |
| Meiobenthos      | No     | Yes          | No          | No         | No        | No           | Yes        | Yes            | No             | No   | No                 |
| Macrozoobenthos  | Yes    | Yes          | Yes         | Yes        | Yes       | No           | Yes        | Yes            | Yes            | Yes  | No                 |
| Fish             | Yes    | Yes          | No          | Yes        | Yes       | Yes          | Yes        | Yes            | Yes            | Yes  | Yes <sup>358</sup> |
| Mammals          | No     | No           | No          | Yes        | Yes       | No           | Yes        | No             | Yes            | No   | Yes                |
| Birds            | No     | No           | No          | No         | No        | No           | No         | No             | No             | No   | Yes                |
| Others           | No     | No           | No          | No         | No        | No           | Yes        | No             | Turtles        | No   | Yes <sup>359</sup> |

#### A. Data availability versus Annex I of the MSFD

The Table below follows the EC COM Decision 2010/477/EU<sup>360</sup>, which specifies criteria and indicators for Good Environmental Status definition (GES, *sensu* MSFD). Selected additional indicators are included, which could be used to identify GES.

**Note:** The response of MoEU is based on the work carried out or planned in the TR National Project "Quality Assessment and Classification of Marine and Coastal Waters (DeKoS)". This Project (2011-2013) is funded by the MoEU and implemented by TUBITAK/MRC, as mentioned already. National monitoring data sets are considered both in the Project and for the replies below.

Note: The TR stakeholders have answered to many questions in the Table below 'YES', without specifying to what extend this 'YES' covers the possibilities to provide for data to calculate the indicators in each Descriptor (as it was the practice applied by the stakeholders in BG and RO). Therefore, the 'YES' answers should be regarded with caution, especially for those descriptors related to biological elements. This shall be kept in mind for each particular organization. For instance, the 'YES' answers of the Central Fisheries Institute refer to fish and macrozoobenthos only, etc. The Nature Conservation Center (NCC) is a stakeholder involved in research on coast only. So, when they talk about mammals, for instance, it does not mean sea mammals, but those who inhabit the coast, and mainly forests, not wetlands. The same is for birds, NCC does not study seabirds. That is why seabirds look like non-studied in TR, which is for sure not the case. BirdLife International (http://www.birdlife.org/seabirds/index.html) or other relevant organizations have to be contacted to clarify the situation. And this was the case in all MISIS beneficiary countries, not only in TR. Marine scientists, who also implement MISIS, do not sufficiently communicate with ornithologists, and understandably they know little about the Birds Directive or projects dealing with birds and their protection. It would be beneficial to summon together seabirds researchers with marine scientists and encourage them to learn from each other.

<sup>&</sup>lt;sup>357</sup> DenizTemiz Derneği/TURMEPA- Turkish Marine Environment Protection Association. Postal address: Nakkaştepe Azizbey Sok. No:26 Kuzguncuk Üsküdar/İstanbul-Turkey; webpage: www.turmepa.org.tr; Contact person: Aslin Karanfil; Nakkaştepe Azizbey Sok. No:26 Kuzguncuk; Üsküdar/İstanbul-Turkey; Tel: 0090216 310 93 01; Fax:0090216 343 21 77; E-mail: asline@turmepa.org.tr

<sup>358</sup> All 'YES' marked in this colour mean on coast organisms.

<sup>359</sup> Plant species, plant communities, dragonflies, butterflies and herpetofauna

<sup>&</sup>lt;sup>360</sup> Commission Decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters (notified under document C(2010) 5956)/(2010/477/EU)

Table 105. Check of data availability in Turkey versus Annex I of the MSFD

| MSFD Descriptor and relevant                                                  | Organiz<br>organiz |                         | olved in m   | onitorin   | g/data    | collection  | (Yes/No fo  | or each paran | neter and   |         |     |
|-------------------------------------------------------------------------------|--------------------|-------------------------|--------------|------------|-----------|-------------|-------------|---------------|-------------|---------|-----|
| indicators                                                                    | MoEU               | IU/FMSM                 | TUBITAK      | TUDAV      | IU/FF     | KTU/FMS     | RTEU/FF     | COMU/FMST     | IMS/METU    | CFRI    | NCC |
| <b>Descriptor 1:</b> Biological diversity are in line with prevailing physion |                    |                         | , ,          |            | ,         | abitats and | d the distr | ibution and a | bundance oj | fspecie | S   |
| 1.1. Species distribution                                                     |                    |                         |              |            |           |             |             |               |             |         |     |
| Distributional range                                                          | Yes                | No                      | Yes          | Yes        | Yes       | No          | Yes         | Yes           | Yes         | Yes     | Yes |
| Distributional pattern within                                                 | Vee                | NI-                     | V            | Van        | V         | NI -        | N-          | V             | V           | V       | V   |
| the latter, where appropriate                                                 | Yes                | No                      | Yes          | Yes        | Yes       | No          | No          | Yes           | Yes         | Yes     | Yes |
| Area covered by the species                                                   | Yes                | No                      | Yes          | Yes        | Yes       | No          | Yes         | Yes           | Yes         | Yes     | No  |
| (for sessile/benthic species)                                                 |                    |                         |              |            |           |             |             |               |             |         |     |
| 1.2. Population Size                                                          |                    |                         | ı            |            |           |             |             |               |             |         |     |
| Population abundance and/or biomass, as appropriate                           | No                 | No                      | No           | Yes        | Yes       | Yes         | Yes         | Yes           | Yes         |         | Yes |
| 1.3. Population condition                                                     |                    |                         |              |            |           |             |             |               |             |         |     |
| Population demographic                                                        |                    |                         |              |            |           |             |             |               |             |         |     |
| characteristics (e.g. body size                                               | N-                 | N-                      | N -          | Van        | V         | Vee         | V           | V             | V           | V       | NI- |
| or age class structure, sex ratio, fecundity rates, survival/                 | No                 | No                      | No           | Yes        | Yes       | Yes         | Yes         | Yes           | Yes         | Yes     | No  |
| mortality rates)                                                              |                    |                         |              |            |           |             |             |               |             |         |     |
| Population genetic structure,                                                 | No                 | No                      | No           | Vec        | Voc       | Vec         | Vec         | No            | No          | Voc     | No  |
| where appropriate                                                             | No                 | No                      | No           | Yes        | Yes       | Yes         | Yes         | No            | No          | Yes     | No  |
| 1.4. Habitat distribution                                                     |                    |                         |              |            |           |             |             |               |             |         |     |
| Distributional range                                                          | No                 | No                      | No           | Yes        | Yes       | Yes         | Yes         | Yes           | Yes         | Yes     | Yes |
| Distributional pattern                                                        | No                 | No                      | No           | Yes        | Yes       | Yes         | Yes         | Yes           | Yes         | Yes     | Yes |
| 1.5. Habitat extent                                                           |                    |                         |              |            |           |             |             |               |             |         |     |
| Habitat area                                                                  | No                 | No                      | No           | No         | No        | Yes         | Yes         | Yes           | Yes         | Yes     | Yes |
| Habitat volume, where                                                         | No                 | No                      | No           | No         | No        | Yes         | Yes         | Yes           | Yes         | Yes     | No  |
| relevant                                                                      | 140                | NO                      | 140          | NO         | NO        | 163         | 163         | 163           | 163         | 163     | 140 |
| 1.6. Habitat condition                                                        |                    |                         |              |            |           | •           |             |               |             |         |     |
| Condition of the typical species                                              | Yes                | No                      | Yes          | Yes        | Yes       | No          | Yes         | Yes           | Yes         | Yes     | No  |
| and communities Relative abundance and/or                                     |                    |                         |              |            |           |             |             |               |             |         |     |
| biomass, as appropriate                                                       | Yes                | No                      | Yes          | Yes        | Yes       | Yes         | Yes         | Yes           | Yes         | Yes     | No  |
| Physical, hydrological and                                                    | Yes                | Yes                     | Yes          | Yes        | Yes       | Yes         | Yes         | Yes           | Yes         | Yes     | No  |
| chemical conditions                                                           | res                | res                     | res          | res        | res       | res         | res         | res           | res         | res     | NO  |
| 1.7. Ecosystem structure                                                      |                    |                         |              |            |           |             |             |               |             |         |     |
| Composition and relative                                                      |                    |                         |              |            |           |             |             |               |             |         |     |
| proportions of ecosystem                                                      | No                 | Yes                     | No           | No         | No        | Yes         | Yes         | Yes           | No          | Yes     | Yes |
| components (habitats and species)                                             |                    |                         |              |            |           |             |             |               |             |         |     |
| Ecosystem processes and                                                       |                    |                         |              |            |           |             |             |               |             |         |     |
| functions: Interactions                                                       | No                 | Yes <sup>361</sup>      | No           | No         | No        | Vec         | Vec         | Voc           | Ves         | Yes     | Voc |
| between the structural                                                        | No                 | res                     | No           | No         | No        | Yes         | Yes         | Yes           | Yes         | res     | Yes |
| components of the ecosystem                                                   |                    |                         | L            |            |           |             |             |               |             |         |     |
| <b>Descriptor 2:</b> Non-indigenous spe                                       | ecies intro        | oduced by I             | human act    | ivities ar | e at leve | els that no | t adversely | alter the eco | system      |         |     |
| 2.1. Abundance and spreading of                                               | f non-inc          | ligenous s <sub>l</sub> | pecies, in p | particula  | r invasiv | e species   |             |               |             |         |     |
| 2.1.1.Trends in abundance,                                                    |                    |                         |              |            |           |             |             |               |             |         |     |
| temporal occurrence and                                                       |                    |                         |              |            |           |             |             |               |             |         |     |
| spatial distribution in the wild                                              |                    |                         |              |            |           |             |             |               |             |         |     |
| of non-indigenous species,<br>particularly invasive non-                      | Yes                | No                      | Yes          | Yes        | No        | No          | Yes         | Yes           | Yes         | Yes     | No  |
| indigenous species, notably in                                                | 103                | 140                     | 103          | 103        | 140       | 110         | 103         | 103           | 163         | 163     | 140 |
| risk areas, in relation to the                                                |                    |                         |              |            |           |             |             |               |             |         |     |
| main vectors and pathways of                                                  |                    |                         |              |            |           |             |             |               |             |         |     |
| spreading of such species                                                     |                    |                         |              |            |           |             |             |               |             |         |     |
| 2.1.2. Vectors of introduction                                                | Yes                | No                      | Yes          | Yes        | No        | No          | No          | No            | No          | Yes     | No  |
| 2.2. Environmental impact of no                                               | n-indige           | nous speci              | es           |            |           | <b>T</b>    |             |               |             |         |     |
| 2.2.1. Ratio between non-                                                     |                    |                         |              |            |           |             |             |               |             |         |     |
| indigenous species and native                                                 | No                 | No                      | Voc          | No         | No        | No          | Voc         | Voc           | Vos         | Voc     | No  |
| species in some well-studied taxonomic groups, e.g. fish,                     | No                 | No                      | Yes          | No         | No        | No          | Yes         | Yes           | Yes         | Yes     | No  |
| macroalgae, molluscs                                                          |                    |                         |              |            |           |             |             |               |             |         |     |
| <u> </u>                                                                      |                    | 1                       |              |            | i .       |             |             |               |             |         |     |

<sup>&</sup>lt;sup>361</sup> The "YES"s for Ecosystem structure contradict the 'NO's above, which state that there is no data on Species, population and habitat level. Actually, all these 'NO's are also in contradiction with Table 104 above, where it is stated that the organization (IU/FMSM) studies almost all biological elements. Thus, the information provided needs further check.

| MSFD Descriptor and relevant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organiz            |              | olved in m  | onitorin   | g/data   | collection  | (Yes/No fo  | or each paran   | neter and   |          |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-------------|------------|----------|-------------|-------------|-----------------|-------------|----------|----------|
| indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MoEU               | IU/FMSM      | TUBITAK     | TUDAV      | IU/FF    | KTU/FMS     | RTEU/FF     | COMU/FMST       | IMS/METU    | CFRI     | NCC      |
| 2.2.2. Magnitude of the impacts of non-indigenous species, in particular invasive species, on native communities, habitats and ecosystem functioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                 | No           | Yes         | Yes        | No       | No          | Yes         | Yes             | Yes         | Yes      | No       |
| 2.2.3. The Biopollution Level (BPL) (index)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                | No           | Yes         | No         | No       | No          | No          | Yes             | Yes         | No       | No       |
| <b>Descriptor 3:</b> Populations of all cand size distribution that is indicated and size distribution that is indicated as a size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size of the size |                    |              |             | d shellfis | h are wi | thin safe b | iological l | imits, exhibiti | ng a popula | tion age | е        |
| 3.1. Level of pressure of the fish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing activ          | ity          | 1           | ı          | ı        |             | I           |                 |             |          | 1        |
| 3.1.1. Fishing mortality (F) related to a reference value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                | No           | No          | No         | No       | Yes         | No          | Yes             | Yes         | Yes      | No       |
| 3.1.2. Catch/biomass ratio  Maximum Sustainable Yield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No<br>No           | No<br>No     | No<br>No    | No<br>No   | No<br>No | No<br>No    | Yes         | Yes<br>Yes      | Yes         | Yes      | No<br>No |
| Trends in catches / biomass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                 | No           | No          | No         | No       | Yes         | Yes         | Yes             | Yes         | Yes      | No       |
| 3.2. Reproductive capacity of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e stock            | 1            | 1           | l          | ı        |             |             |                 |             |          |          |
| 3.2.1. Spawning Stock Biomass related to a reference value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                | No           | No          | No         | Yes      | Yes         | Yes         | Yes             | Yes         | Yes      | No       |
| 3.2.2. Biomass indices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                 | No           | No          | No         | Yes      | No          | Yes         | Yes             | Yes         | Yes      | No       |
| 3.3. Population age and size dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tribution          |              |             |            |          |             |             |                 |             |          |          |
| 3.3.1. The proportion of fish larger than a given length, e.g. the length at which 100% of the females are mature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No                 | No           | No          | No         | No       | Yes         | No          | Yes             | Yes         | Yes      | No       |
| 3.3.2. The mean maximum length across all species found in research vessel surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No                 | No           | No          | No         | No       | Yes         | Yes         | Yes             | Yes         | Yes      | No       |
| 3.3.3. The 95% percentile of<br>the fish length distribution<br>observed in research vessel<br>surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No                 | No           | No          | No         | No       | Yes         | Yes         | Yes             | No          | Yes      | No       |
| Secondary indicator to D3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |              |             |            |          |             |             |                 |             |          |          |
| 3.3.4. Size at full sexual maturation, which may reflect the extent of undesirable genetic effects of exploitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No                 | No           | No          | No         | No       | Yes         | Yes         | Yes             | No          | Yes      | No       |
| <b>Descriptor 4:</b> All elements of the levels capable of ensuring the lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                  |              |             |            | -        |             |             |                 |             | sity and | d        |
| 4.1. Productivity (production pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r unit bio         | omass) of k  | ey species  | or troph   | nic grou | ps          | ı           | ı               |             |          |          |
| 4.1.1. Performance of key predator species using their production per unit biomass (productivity)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                | No           | No          | No         | No       | No          | No          | Yes             | Yes         | Yes      | No       |
| 4.1.2. Production per unit biomass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No                 | No           | No          | No         | No       | No          | No          | Yes             | Yes         | No       | No       |
| 4.1.3. Marine Trophic Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No                 | No           | No          | No         | No       | No          | No          | Yes             | Yes         | No       | No       |
| 4.1.4. Trophic Levels (Functional feeding groups)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No                 | No           | No          | No         | No       | Yes         | No          | Yes             | Yes         | No       |          |
| 4.1.5. Diet composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No                 | No           | No          | No         | No       | Yes         | No          | No              | No          | Yes      | No       |
| 4.2. Proportion of selected spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |              | 1           | ı          |          |             |             |                 |             |          |          |
| 4.2.1. % Large fish (by weight) 4.2.2. Body size (length,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                | No           | No          | No         | No       | Yes         | No          | Yes             | No          | Yes      | No       |
| weight) in selected functional groups/species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                 | No           | No          | No         | No       | Yes         | No          | Yes             | Yes         | Yes      | No       |
| 4.3. Abundance/distribution of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | key grou           | ps/species   | 3           | ı          | ı        |             |             |                 |             |          |          |
| 4.3.1. Abundance trends - Abundance and spatial distributions of species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                | No           | No          | No         | No       | Yes         | Yes         | Yes             | Yes         | Yes      | Yes      |
| Additional to D4: Energy flows in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n food we          | ebs: Ratio d | of producti | on or bic  | mass b   | etween dif  | ferent tro  | phic levels     |             |          |          |
| Ratio of pelagic to demersal fish biomass and/or production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes <sup>362</sup> | No           | No          | No         | No       | Yes         | No          | Yes             | Yes         | Yes      | No       |
| Ratio of macrobenthos<br>invertebrate to demersal fish<br>production or biomass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No                 | No           | No          | No         | No       | No          | No          | Yes             | No          | Yes      | No       |

<sup>362</sup> Based on landings data

| MSFD Descriptor and relevant                              | Organiz     |              | olved in m  | onitorin   | g/data   | collection  | (Yes/No fo  | or each paran    | neter and                               |         |                                                  |
|-----------------------------------------------------------|-------------|--------------|-------------|------------|----------|-------------|-------------|------------------|-----------------------------------------|---------|--------------------------------------------------|
| indicators                                                | MoEU        | IU/FMSM      | TUBITAK     | TUDAV      | IU/FF    | KTU/FMS     | RTEU/FF     | COMU/FMST        | IMS/METU                                | CFRI    | NCC                                              |
| Ratio zooplankton production                              |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| required/zooplankton                                      | No          | No           | No          | No         | No       | Yes         | No          | Yes              | No                                      | Yes     | No                                               |
| production                                                |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| Ratio benthic production required/benthic production      | No          | No           | No          | No         | No       | No          | No          | No               | No                                      | Yes     | No                                               |
| Descriptor 5: Human-induced eu                            | trophicat   | ion is minii | mised. esp  | ecially ac | dverse e | ffects then | eof. such d | as losses in bio | i<br>Odiversitv. ed                     | cosvste | m                                                |
| degradation, harmful algae bloo                           | -           |              | -           | -          | _        | ,,,         |             |                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,       |                                                  |
| Nutrient loads                                            | Yes         | Yes          | Yes         | No         | Yes      | No          | No          | Yes              | Yes                                     | Yes     |                                                  |
| 5.1. Nutrient level                                       |             |              |             | ı          |          |             |             |                  |                                         |         |                                                  |
| 5.1.1. Nutrients concentration in the water column        | Yes         | Yes          | Yes         | No         | Yes      | Yes         | Yes         | Yes              | Yes                                     | Yes     | No                                               |
| 5.1.2. Nutrients ratio: Deviate                           |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| from normal proportion of                                 |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| nutrient ratios (Si:N:P) (e.g. Si                         | Yes         | Yes          | Yes         | No         | Yes      | Yes         | Yes         | Yes              | Yes                                     | Yes     | No                                               |
| is reduced in relation to other nutrients)                |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| 5.2. Primary symptoms or direct                           | ts effects  | of eutroph   | nication    |            |          |             |             |                  |                                         |         |                                                  |
| 5.2.1. Chlorophyll                                        |             | 3 p          |             |            |          |             |             |                  |                                         |         |                                                  |
| (concentration, spatial areas                             | Yes         | Yes          | Yes         | No         | Yes      | Yes         | Yes         | Yes              | Yes                                     | Yes     | No                                               |
| of high concentrations)                                   |             |              |             |            |          |             |             |                  |                                         |         | <u> </u>                                         |
| 5.2.2. Water transparency due                             | Yes         | Yes          | Yes         | No         | Yes      | Yes         | Yes         | Yes              | Yes                                     | No      | No                                               |
| to increase in suspended algae 5.2.3. Algal community     |             |              |             |            |          |             |             |                  |                                         |         | <del>                                     </del> |
| structure -                                               |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| Abundance/Increase of                                     |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| opportunistic macroalgae (e.g.                            | Yes         | Yes          | Yes         | No         | No       | No          | No          | Yes              | No                                      | No      | No                                               |
| can form blankets over the<br>natural flora and suffocate |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| benthic animals                                           |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| 5.2.4. Species shift in floristic                         | Yes         | Yes          | Yes         | No         | No       | Yes         | Yes         | Yes              | Yes                                     | Yes     | No                                               |
| composition                                               |             | 1.63         |             |            |          |             |             |                  |                                         | 1.03    |                                                  |
| 5.2.5. Primary production                                 | Yes         | No           | Yes         | No         | No       | Yes         | Yes         | Yes              | Yes                                     | No      | No                                               |
| 5.2.6. Nuisance / toxic algal blooms                      | Yes         | Yes          | Yes         | No         | Yes      | Yes         | Yes         | Yes              | Yes                                     | No      | No                                               |
| 5.2.7. Submerged aquatic                                  |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| vegetation - spatial coverage                             | No          | Yes          | No          | No         | No       | Yes         | No          | Yes              | No                                      | No      | No                                               |
| and density of beds                                       |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| 5.3. Secondary symptoms or ind                            | irect effe  | cts of eutr  | ophicatio   | n<br>I     | 1        | ı           |             |                  | <u> </u>                                | I       |                                                  |
| 5.3.1. Abundance/Decrease in perennial seaweeds and       | No          | No           | No          | No         | No       | No          | Yes         | Yes              | No                                      | No      | No                                               |
| seagrasses                                                |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| 5.3.2. Dissolved oxygen                                   | Yes         | No           | Yes         | No         | No       | Yes         | Yes         | Yes              | Yes                                     | Yes     | No                                               |
| 5.3.3. Benthos - diversity and                            |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| proportion of sensitive vs. non-                          | No          | No           | No          | No         | No       | No          | No          | Yes              | No                                      | Yes     | No                                               |
| sensitive species (e.g. P-R<br>model)                     |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| 5.3.4. Benthos / fish kills                               | No          | No           | No          | No         | No       | No          | No          | Yes              | No                                      | Yes     | No                                               |
| Descriptor 6: Sea-floor integrity                         | is at a lev | l e          | ures that t | he struct  | ture and | function of | of the eco  | systems are s    | afeguarded                              | and     |                                                  |
| benthic ecosystems, in particular                         |             |              |             |            |          |             |             |                  | J                                       |         |                                                  |
| 6.1. Physical damage, having                              |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| regard to substrate                                       | No          | No           | No          | No         | No       | Yes         | No          | Yes              | No                                      | Yes     | No                                               |
| characteristics 6.2. Type, abundance, biomass             |             |              |             |            |          |             |             |                  |                                         |         | -                                                |
| and areal extent of relevant                              | No          | No           | No          | No         | No       | No          | No          | No               | Yes                                     | Yes     | No                                               |
| biogenic substrate                                        |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| 6.3. Extent of the seabed                                 |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| significantly affected by<br>human activities for the     | No          | No           | No          | No         | No       | No          | No          | Yes              | No                                      | Yes     | No                                               |
| different substrate types                                 |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| 6.4. Condition of benthic                                 | Yes         | No           | Yes         | No         | No       | No          | Yes         | Yes              | No                                      | Yes     | No                                               |
| community                                                 | 163         | 110          | 103         | 140        | 140      | 1,10        | 163         | 103              | 140                                     | 163     | .,,,                                             |
| 6.5. Structure of benthic habitats                        | No          | No           | No          | No         | No       | No          | Yes         | Yes              | No                                      | Yes     | No                                               |
| 6.6. Abundance of bio-                                    |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| engineering species                                       | No          | No           | No          | No         | No       | No          | No          | No               | No                                      | No      | No                                               |
| 6.7. Diversity and richness                               |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
| indices also taking into                                  | No          | No           | No          | No         | No       | No          | Yes         | Yes              | No                                      | Yes     | Yes                                              |
| account species -area<br>relationships                    |             |              |             |            |          |             |             |                  |                                         |         |                                                  |
|                                                           |             |              |             | l          | 1        | 1           |             |                  | I                                       |         |                                                  |

| MSFD Descriptor and relevant                                                                                                                                                                                                                                                                                   | Organiz<br>organiz |              | olved in m | onitorin   | g/data   | collection | (Yes/No fo  | or each paran  | neter and               |      |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|------------|------------|----------|------------|-------------|----------------|-------------------------|------|------------|
| indicators                                                                                                                                                                                                                                                                                                     | MoEU               | IU/FMSM      | TUBITAK    | TUDAV      | IU/FF    | KTU/FMS    | RTEU/FF     | COMU/FMST      | IMS/METU                | CFRI | NCC        |
| 6.8. Proportion of biomass or number of individuals in the macrobenthos above some                                                                                                                                                                                                                             | No                 | No           | No         | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| specified length/size 6.9. Biomass size spectrum                                                                                                                                                                                                                                                               | No                 | No           | No         | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| 6.10. Shape of cumulative                                                                                                                                                                                                                                                                                      | NO                 | NO           | NO         | NO         | INO      | NO         | NO          | res            | NO                      | res  | NO         |
| abundance curves of numbers                                                                                                                                                                                                                                                                                    | No                 | No           | No         | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| of individuals by size group 6.11. Secondary production                                                                                                                                                                                                                                                        | No                 | No           | No         | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| 6.12. Opportunistic-sensitive species proportion (e.g. AMBI, P-R-model)                                                                                                                                                                                                                                        | Yes                | No           | Yes        | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| 6.13. Parameters describing<br>the characteristics (shape,<br>slope and intercept) of the size<br>spectrum of the benthic<br>community                                                                                                                                                                         | No                 | No           | No         | No         | No       | No         | Yes         | Yes            | No                      | Yes  | No         |
| 6.14. Presence of particularly sensitive and or tolerant                                                                                                                                                                                                                                                       | Yes                | No           | Yes        | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| species                                                                                                                                                                                                                                                                                                        |                    |              |            |            |          |            |             |                |                         |      |            |
| Pressures - Descriptor 7: Perman                                                                                                                                                                                                                                                                               | nent alter         | ration of hy | /drographi | cal condi  | tions do | es not adv | ersely affe | ect marine eco | osystems <sup>363</sup> | I    |            |
| Data/information on constructions at sea, landfills and land claim, barrages, windmill farms and other renewable energy constructions, oil and gas platforms and bridges, dredging and deposition in the sea, constructions on land with outlets into the sea e.g. power plants outfalls (Annex III, Table 2). | Yes <sup>364</sup> | No           | Yes        | No         | No       | No         | No          | No             | No                      | No   | Yes<br>(P) |
| Impacts - Descriptor 7: Permane                                                                                                                                                                                                                                                                                | nt altera          | tion of hyd  | rographico | al conditi | ons doe. | s not adve | rsely affec | t marine ecos  | ystems                  |      |            |
| 7.1. Spatial characterisation of permanent alterations                                                                                                                                                                                                                                                         | Yes                | No           | Yes        | No         | No       | No         | No          | Yes            | No                      | No   | Yes        |
| 7.1.1. Extent of area affected                                                                                                                                                                                                                                                                                 | No                 | No           | No         | No         | No       | No         | No          | Yes            | No                      | Yes  | Yes        |
| 7.1.2. Changes in                                                                                                                                                                                                                                                                                              | No                 | No           | No         | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| sedimentation 7.2. Impact of permanent                                                                                                                                                                                                                                                                         |                    |              |            |            |          |            |             |                |                         |      |            |
| hydrographical changes                                                                                                                                                                                                                                                                                         | No                 | No           | No         | No         | No       | No         |             | Yes            | No                      | Yes  | No         |
| 7.2.1. Spatial extent of benthic habitat affected by the permanent alteration                                                                                                                                                                                                                                  | No                 | No           | No         | No         | No       | No         | Yes         | Yes            | No                      | Yes  | No         |
| 7.2.2. Changes in benthic communities and or biomass production                                                                                                                                                                                                                                                | No                 | No           | No         | No         | No       | No         | Yes         | Yes            | No                      | Yes  | No         |
| 7.2.3. Extent of area with spatial or temporal hypoxia/anoxia                                                                                                                                                                                                                                                  | Yes                | No           | No         | No         | No       | No         | No          | Yes            | No                      | No   | No         |
| 7.2.4. Presence of benthic communities associated with low oxygen conditions                                                                                                                                                                                                                                   | No                 | No           | No         | No         | No       | No         | No          | Yes            | No                      | Yes  | No         |
| 7.2.5 Diversity and richness indices, based on species number and relative abundance in the benthic community                                                                                                                                                                                                  | No                 | No           | No         | No         | No       | No         | Yes         | Yes            | No                      | Yes  | No         |
| 7.2.6 Presence of particularly sensitive or tolerant species                                                                                                                                                                                                                                                   | No                 | No           | No         | No         | No       | No         | Yes         | Yes            | No                      | Yes  | No         |
| 7.2.7. Changes in habitat functions due to altered hydrographical conditions (e.g. changes in areas for fish/mammals reproduction                                                                                                                                                                              | No                 | No           | No         | No         | No       | Yes        | No          | Yes            | Yes                     | Yes  | No         |

<sup>&</sup>lt;sup>363</sup> More detail specification of human activities was required in the Questionnaire, however, none of the stakeholders provided such information.
<sup>364</sup> Dredging and deposition, landfills and land claim, constructions on land with outlets at sea, oil and gas platforms and bridges

| MSFD Descriptor and relevant                                                                                             | Organiz<br>organiz |              | olved in m  | onitorin   | g/data (  | collection   | (Yes/No fo | or each paran  | neter and              |                   |       |
|--------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|-------------|------------|-----------|--------------|------------|----------------|------------------------|-------------------|-------|
| indicators                                                                                                               | MoEU               | IU/FMSM      | TUBITAK     | TUDAV      | IU/FF     | KTU/FMS      | RTEU/FF    | COMU/FMST      | IMS/METU               | CFRI              | NCC   |
| (spawning areas, breeding),<br>nursery and feeding areas and<br>migration routes of fish, birds<br>and mammals)          |                    |              |             |            |           |              |            |                |                        |                   |       |
| <b>Descriptor 8:</b> Concentrations of a                                                                                 | contamin           | ants are at  | levels not  | giving ri  | se to po  | llution effe | cts        |                |                        |                   |       |
| 8.1 Concentrations in water,<br>sediments and biota<br>(measured, where relevant, in<br>the same matrix <sup>365</sup> ) | Yes                | No           | Yes         | No         | No        | Yes          | No         | Yes            | Yes                    | Yes               | No    |
| 8.2. Biological effects on the<br>elements of concerned<br>ecosystems                                                    | No                 | No           | Yes         | No         | No        | No           | No         | Yes            | Yes                    | Yes               | No    |
| 8.3. Occurrence and extent of acute pollution events                                                                     | No                 | No           | No          | No         | No        | No           | No         | Yes            | Yes                    | No                | No    |
| <b>Descriptor 9:</b> Contaminants in fisor other relevant standards                                                      | sh and ot          | her seafoo   | d for huma  | ın consur  | nption c  | lo not exce  | ed levels  | established by | Community              | y legislo         | ntion |
| 9.1. Frequency of levels exceeding regulatory levels                                                                     | No <sup>366</sup>  | No           | No          | No         | Yes       | No           | No         | No             | Yes                    | No                | No    |
| 9.2. Actual levels detected                                                                                              | No                 | No           | No          | No         | Yes       | No           | No         | No             | Yes                    | No                | No    |
| 9.3 Numbers of contaminants<br>for which exceeding levels<br>have been detected                                          | No                 | No           | No          | No         | Yes       | Yes          | No         | No             | Yes                    | No                | No    |
| 9.4. Origin of contaminants (geological versus anthropogenic; local versus long distance)                                | No                 | No           | No          | No         | No        | Yes          | No         | No             | No                     | No                | No    |
| <b>Descriptor 10:</b> Properties and qu                                                                                  | antities o         | of marine li | tter do not | cause h    | arm to t  | he coastal   | and marii  | ne environme   | nt <sup>367</sup>      |                   |       |
| 10.1. ML washed ashore and/or deposited on coastlines                                                                    | No                 | No           | No          | Yes        | Yes       | No           | No         | No             | No                     | No                | No    |
| 10.2. ML in the water column, including floating and suspended litter on the sea floor                                   | No                 | No           | No          | Yes        | Yes       | No           | No         | No             | Yes (P)                | No                | No    |
| 10.3. ML ingested by marine animals/birds                                                                                | No                 | No           | No          | No         | No        | No           | No         | No             | No                     | No                | No    |
| 10.4. Microparticles (mainly mircroplastics) derived from degradation of litter                                          | No                 | No           | No          | No         | No        | No           | No         | No             | Yes (P) <sup>368</sup> | No                | No    |
| 10.5. Impact rates of degraded litter on organisms                                                                       | No                 | No           | No          | No         | No        | No           | No         | No             | No                     | No                | No    |
| 10.6. Potential chemical pollution resulting from degraded litter (plastic)                                              | No                 | No           | No          | No         | No        | No           | No         | No             | No                     | No                | No    |
| Descriptor 11: Introduction of en                                                                                        | ergy, inc          | luding und   | erwater no  | ise, is at | levels tl | hat do not   | adversely  | affect the ma  | rine enviror           | ment <sup>3</sup> | 169   |
| 11.1. Distribution in time and place of loud, low and mid frequency impulsive sounds                                     | No                 | No           | No          | Yes        | Yes       | No           | No         | No             | No                     | No                | No    |
| 11.2 Continuous low frequency sound                                                                                      | No                 | No           | No          | Yes        | Yes       | No           | No         | No             | No                     | No                | No    |

<sup>&</sup>lt;sup>365</sup> List of priority Black Sea contaminants is not yet elaborated in TR, but a national project is implemented (2012-2014), which should deliver such a List. It is coordinated by TUBITAK/MRC and supported by the Ministry of Water and Forest focusing on the development of Environmental Quality Standards basing on the chemicals in Annex VIII and X of WFD.

<sup>366</sup> However, the Ministry says that an assessment is being prepared by the project DeKoS (TUBITAK) through consultation with relevant organizations.

The Ministry informs that the project DeKOS prepares an assessment in consultation with relevant organizations, and gaps and needs are also being identified.

<sup>368</sup> Just initiated

<sup>&</sup>lt;sup>369</sup> The same as for Marine Litter

#### B. Data availability versus Annex III of the MSFD

Avoiding duplication with Annex I, here selected parts of Annex III are given for data availability check.

Table 106. Characteristics – state of the Sea in Turkey

| Characteristic                                      | Component                                                                                                           | Criteria                                                        | _           |             | nvolved in<br>th item ar |       |           |             | ection      |               |              |      |     |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------|-------------|--------------------------|-------|-----------|-------------|-------------|---------------|--------------|------|-----|
|                                                     |                                                                                                                     |                                                                 | MoEU<br>370 | IU/<br>FMSM | TUBITAK<br>371           | TUDAV | IU/<br>FF | KTU/<br>FMS | RTEU/<br>FF | COMU/<br>FMST | IMS/<br>METU | CFRI | NCC |
| Physical and chemical                               | Bathymetry and topography                                                                                           |                                                                 | Yes         | No          | Yes                      | No    | No        | No          | No          | Yes           | Yes          | No   | No  |
| features                                            | Temperature and salinity regime, ice cover, current velocity, stratification (CIL <sup>372</sup> ), upwelling, wave | Seasonal<br>variability,<br>spatial<br>distribution,<br>trends  | Yes         | No          | Yes                      | No    | No        | Yes         | Yes         | Yes           | Yes          | Yes  | No  |
|                                                     | pH, pCO, H <sub>2</sub> S<br>profiles                                                                               |                                                                 | No          | No          | No                       | No    | No        | Yes         | Yes         | Yes           | No           | Yes  | No  |
| Biological                                          | Seabirds                                                                                                            | Diversity,                                                      | No          | No          | No                       | No    | No        | No          | No          | No            | No           | No   | No  |
| features at the<br>level of<br>functional<br>groups | Mammals                                                                                                             | abundance,<br>spatial<br>distribution,<br>migrations,<br>trends | No          | No          | No                       | Yes   | Yes       | No          | No          | No            | Yes          | No   | Yes |

In the Table below the availability of data/information to describe the human activities exercised in Black Sea national waters and on coast of the beneficiary country (TR) is presented. The shown availability reflects only the potential of the stakeholders contacted to describe human activities. The Karadeniz Technical University (Faculty of Marine Science) provided detail information which organizations are data/information holders regarding human activities (see in the Footnote 304).

#### Table 107. Description of human activities in Turkey

Note: according to the responses of the stakeholders, it is not clear which activities are applicable for the TR Black Sea. For instance, renewable energy, dumping of munitions, desalinization, storage of gasses, etc. should be checked for relevanance.

| A salindary Theory | link of them on Anti-ining                              | Descrip | tion of m   | arine use/a | ctivity/Or | ganizati  | ons                        |             |               |              |            |     |
|--------------------|---------------------------------------------------------|---------|-------------|-------------|------------|-----------|----------------------------|-------------|---------------|--------------|------------|-----|
| Activity Theme     | List of Human Activities                                | MoEU    | IU/<br>FMSM | TUBITAK     | TUDAV      | IU/<br>FF | KTU/<br>FMS <sup>373</sup> | RTEU/<br>FF | COMU/<br>FMST | IMS/<br>METU | CFRI       | NCC |
|                    | Fisheries incl. recreational fishing (fish & shellfish) | No      | No          | No          | No         | No        | No                         | Yes         | No            | Yes          | Yes        |     |
| Extraction of      | Seaweed and other sea-based food harvesting             | No      | No          | No          | No         | No        | No                         | No          | No            | No           | Yes<br>374 |     |
| living resources   | Extraction of genetic resources/ bioprospecting/ maerl  | No      | No          | No          | No         | No        | No                         | No          | No            | No           | Yes<br>375 |     |
| Food<br>production | Aquaculture (fin-fish & shellfish)                      | Yes     | No          | Yes         | No         | No        | No                         | Yes         | No            | No           | Yes        |     |

<sup>&</sup>lt;sup>370</sup> The given "Yes"s below mean that data are collected from the NODC and partner institutions of the DeKoS Project, such as the Istanbul University (Faculty of Marine Sciences and Management) and IMS/METU (Erdemli)

<sup>&</sup>lt;sup>371</sup> The same comment as for the MoEU (above 301)

<sup>372</sup> Cold Intermediate Layer

<sup>373</sup> The University gave information which organizations are holders of respective data/information. They listed the following:

Fisheries incl. recreational fishing (fish & shellfish); Aquaculture (fin-fish & shellfish); Placement & operation of offshore structures (other than for energy production); Dredging - Information is available in the national fisheries statistics (TUİK)

Port operations; Shipping - Information is available in the national fisheries statistics and Ministry of Transport Maritime Affairs and Communications Submarine cable & pipeline operations; Marine-based renewable energy generation (wind, wave & tidal power) - Information is available in Ministry of Energy and Natural Resources

Solid waste disposal incl. dredge material; Urban (municipal waste water discharge); Industry (discharges, emissions); Agriculture & forestry (run-off, emissions); Coastal mining (sand) - Information is available in local Municipalities

Tourism & recreation incl. yachting - Information is available in the Ministry of Tourism

Marine research, survey & educational activities - Information is available from the Universities and Research Centers

<sup>374</sup> Doubtful information

<sup>375</sup> Doubtful information

|                                                   |                                                                                 | Descrip | otion of m  | narine use/a | ctivity/Or | ganizati  | ions                       |             |               |              |      |            |
|---------------------------------------------------|---------------------------------------------------------------------------------|---------|-------------|--------------|------------|-----------|----------------------------|-------------|---------------|--------------|------|------------|
| Activity Theme                                    | List of Human Activities                                                        | MoEU    | IU/<br>FMSM | TUBITAK      | TUDAV      | IU/<br>FF | KTU/<br>FMS <sup>373</sup> | RTEU/<br>FF | COMU/<br>FMST | IMS/<br>METU | CFRI | NCC        |
|                                                   | Land claim, coastal defence                                                     | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | No           | Yes  |            |
|                                                   | Port operations                                                                 | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | No           | No   |            |
| Man-made<br>structures (incl.<br>in construction) | Placement & operation of offshore structures (other than for energy production) | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
|                                                   | Submarine cable & pipeline operations                                           | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | No           | No   |            |
|                                                   | Marine mining (sand, gravel, rock)                                              | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| Extraction of non-living resources                | Dredging                                                                        | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | No           | Yes  |            |
|                                                   | Desalination/water abstraction                                                  | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| Energy                                            | Marine-based renewable energy generation (wind, wave & tidal power)             | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| production                                        | Marine hydrocarbon extraction (oil & gas)                                       | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| Transport                                         | Shipping                                                                        | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | No           | No   |            |
| Waste disposal                                    | Solid waste disposal incl. dredge material                                      | Yes     | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| rraste aisposa.                                   | Storage of gases                                                                | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| Tourism and recreation                            | Tourism & recreation incl. yachting                                             | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | No           | No   | Yes<br>(P) |
| Research and survey                               | Marine research, survey & educational activities                                | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | Yes          | Yes  |            |
| A 4:1:-                                           | Defence recurrent operations                                                    | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| Military                                          | Dumping of munitions                                                            | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |
| Land-based                                        | Urban (municipal waste water discharge)                                         | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | yes          | No   |            |
| activities<br>(coastal,<br>riverine and           | Industry (discharges, emissions)                                                | Yes     | No          | Yes          | No         | No        | No                         | No          | No            | yes          | No   |            |
| atmospheric)                                      | Agriculture & forestry (run-off, emissions)                                     | Yes     | No          | No           | No         | No        | No                         | No          | No            | yes          | No   | Yes<br>(P) |
| Other marine uses and activities                  |                                                                                 | No      | No          | No           | No         | No        | No                         | No          | No            | No           | No   |            |

In the Table below, the cross-check provides for each human activity the availability of data/information to describe the pressures exercised on the Black Sea.

Note: some of the information provided by the stakeholders looked doubtful, questions are posted in Footnotes. Further check and verification of this Table (below) is required.

# Table 108. Human activities and pressures (cross-check) in Turkey (Note: N/A means not applicable; the Table synthesizes the input of all stakeholders contacted)

|                                                   |                                                                                          | PRESSURES                                          |                                                    |                                                   |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
|---------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|------------------------|--------------------|
| Activity Theme                                    | List of Human Activities                                                                 | Physical<br>loss (area,<br>extent <sup>376</sup> ) | Physical<br>damage<br>(area,<br>extent)            | Interference<br>with<br>hydrological<br>processes | Other physical<br>disturbance (areas,<br>extent) |                                                                     | substances intentional matter                                          |                                                 | and organic<br>matter<br>enrichment                          | Biological disturbances                                                    |                                   |                        | Acidification      |
|                                                   |                                                                                          | Smothering<br>Sealing                              | Siltation<br>Abrasion<br>Extraction<br>(e.g. sand) | Thermal<br>and salinity<br>regime<br>change       | Noise<br>(trends<br>in<br>level)                 | Marine<br>litter<br>(trends in<br>amount<br>on coast<br>and in sea) | Synthetic<br>compounds<br>Non-synthetic<br>substances<br>Radionuclides | e.g.<br>produced<br>water,<br>carbon<br>storage | Fertilizers<br>and other<br>nutrient-<br>rich<br>substances. | Extraction<br>of<br>species,<br>including<br>non-<br>target <sup>377</sup> | Invasives,<br>trans-<br>locations | Microbial<br>pathogens | Decrease in pH     |
|                                                   | Fisheries incl. recreational fishing (fish & shellfish)                                  | No <sup>379</sup>                                  | No                                                 |                                                   | No                                               | No <sup>380</sup>                                                   |                                                                        |                                                 |                                                              | Yes                                                                        | Yes                               |                        |                    |
| Extraction of living resources                    | Seaweed and other sea-<br>based food harvesting <sup>381</sup>                           | No                                                 | No                                                 |                                                   |                                                  |                                                                     |                                                                        |                                                 |                                                              | No                                                                         |                                   |                        |                    |
|                                                   | Extraction of genetic<br>resources/ bioprospecting/<br>maerl <sup>382</sup>              | No                                                 | No                                                 |                                                   |                                                  |                                                                     |                                                                        |                                                 |                                                              | No                                                                         |                                   |                        |                    |
| Food production                                   | Aquaculture (fin-fish &<br>shellfish) <sup>383</sup>                                     | ????                                               |                                                    |                                                   |                                                  |                                                                     | ???                                                                    |                                                 | ???                                                          |                                                                            | ???                               | ???                    |                    |
|                                                   | Land claim, coastal defence                                                              | No                                                 | No                                                 | No                                                |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
|                                                   | Port operations <sup>384</sup>                                                           | ????                                               | ???                                                | ???                                               |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            | Yes                               |                        |                    |
| Man-made<br>structures (incl. in<br>construction) | Placement & operation of<br>offshore structures (other<br>than for energy production)    | No                                                 | No                                                 | No                                                |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
|                                                   | Submarine cable & pipeline<br>operations                                                 | No                                                 | No                                                 |                                                   | No                                               |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
|                                                   | Marine mining (sand, gravel, rock)                                                       | No                                                 | No                                                 |                                                   | No                                               |                                                                     |                                                                        |                                                 |                                                              | No                                                                         |                                   |                        |                    |
| Extraction of non-<br>living resources            | Dredging <sup>385</sup>                                                                  | Yes                                                | Yes                                                | Yes                                               | Yes <sup>386</sup>                               | ???                                                                 | Yes                                                                    |                                                 |                                                              | ????                                                                       |                                   |                        |                    |
|                                                   | Desalination/water<br>abstraction <sup>387</sup>                                         |                                                    |                                                    |                                                   |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
| Energy production                                 | Marine-based renewable<br>energy generation (wind,<br>wave & tidal power) <sup>388</sup> | No                                                 | No                                                 | No                                                | No                                               | No                                                                  |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
|                                                   | Marine hydrocarbon<br>extraction (oil & gas)                                             | No                                                 | No                                                 |                                                   | No                                               | No                                                                  | No                                                                     | No                                              |                                                              |                                                                            |                                   |                        |                    |
| Transport                                         | Shipping                                                                                 |                                                    | Yes                                                |                                                   | Yes                                              | Yes                                                                 | Yes                                                                    |                                                 |                                                              |                                                                            | Yes                               |                        |                    |
| Waste disposal                                    | Solid waste disposal incl.<br>dredge material <sup>389</sup>                             | Yes                                                | Yes                                                |                                                   |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
|                                                   | Storage of gases <sup>390</sup>                                                          |                                                    |                                                    |                                                   |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
| Tourism and<br>recreation                         | Tourism & recreation incl.<br>yachting                                                   |                                                    | No                                                 |                                                   | No                                               | Yes                                                                 |                                                                        |                                                 |                                                              |                                                                            | No                                | Yes                    |                    |
| Research and<br>survey                            | Marine research, survey &<br>educational activities                                      |                                                    |                                                    |                                                   | No                                               |                                                                     |                                                                        |                                                 |                                                              | Yes                                                                        |                                   |                        |                    |
|                                                   | Defence recurrent                                                                        |                                                    |                                                    |                                                   | No                                               |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |
| Military                                          | operations  Dumping of munitions <sup>391</sup>                                          |                                                    | No                                                 |                                                   | No                                               |                                                                     | No                                                                     | No                                              |                                                              |                                                                            |                                   |                        |                    |
| Land-based                                        | Urban (municipal waste water discharge)                                                  |                                                    |                                                    |                                                   |                                                  | No <sup>392</sup>                                                   | Yes                                                                    | Yes                                             | Yes                                                          |                                                                            |                                   | No                     | ????               |
| activities (coastal, riverine and                 | Industry (discharges,<br>emissions) <sup>393</sup>                                       |                                                    |                                                    | No                                                |                                                  | No                                                                  | Yes                                                                    | Yes                                             | ???                                                          |                                                                            |                                   |                        |                    |
| atmospheric)                                      | Agriculture & forestry (run-<br>off, emissions)                                          |                                                    |                                                    |                                                   |                                                  |                                                                     | Yes                                                                    | Yes                                             | Yes                                                          |                                                                            |                                   |                        | Yes <sup>394</sup> |
| Other marine uses<br>and activities               |                                                                                          |                                                    |                                                    |                                                   |                                                  |                                                                     |                                                                        |                                                 |                                                              |                                                                            |                                   |                        |                    |

Note: MoEU did not give 'Yes' to any of the pressures in the Table above, however they reported data availability for contaminants and nutrient loads, so at least these pressures should be positively marked. Table 3 of QII not replied. That is the reason. "yes" answers for LBS, waste diposal, dreding etc. is also valid for MoEU

<sup>&</sup>lt;sup>376</sup> Area and extent, where mentioned, are meant for different types of affected substrates.

<sup>377</sup> The Pressure can be described by number of vessels, fishing effort, frequency trawled, etc.

<sup>&</sup>lt;sup>378</sup> The pressure can be described by vectors of introduction, risk areas, number of new species identified per year, number of established species per decade, etc.

<sup>&</sup>lt;sup>379</sup> Karadeniz University says YES to these pressures (physical loss and damage). Do they really know the Fisheries impact in terms of smothering, sealing, siltation, etc.?

<sup>&</sup>lt;sup>380</sup> For Marine Litter the Karadeniz University says YES. However, they have not pointed availability of ML data in the Tables above. Do they really know how much ML comes from Fishery?

<sup>381</sup> Is it exercised in TR waters of the Black Sea?

<sup>382</sup> For bioprospecting Karadeniz University says YES to all possible pressures. Do you have such kind of human activity in TR waters?

<sup>&</sup>lt;sup>383</sup> Karadeniz University says YES to all possible pressures of Aquaculture. Do they really study the release of contaminants, nutrients, invasive species and microbial pathogens from Aquaculture farms in the Black Sea? CFRI say that there is a physical loss due to Aquaculture and they identify it (smothering, sealing). Are they sure about this?

<sup>&</sup>lt;sup>384</sup> Karadeniz University says YES to all pressures related to Port Operations. Do they really study them and have the data to describe such pressures as physical damage/loss, changes in hydrology and invasive species?

<sup>&</sup>lt;sup>385</sup> For dredging the same – Karadeniz University says YES to all possible pressures. Do they study them?

<sup>386</sup> CFRI says also YES to all pressures related to Dredging, but they also include a pressure like Marine Litter associated with dredging. Are they sure there is such a pressure existing?

<sup>387</sup> Is it applicable for TR waters?

<sup>388</sup> Is it applicable for TR waters?

<sup>389</sup> Residential waste and rubble has been infilled along the shores of some TR cities for a distance of 30–50m from the sea side since the 1970s. This now supports a double lane road construction that follows the shore line. Both actions have caused damage to sea shore ecology.

<sup>&</sup>lt;sup>390</sup> Is it applicable for TR waters?

<sup>391</sup> Is it applicable for TR waters?

<sup>392</sup> Karadeniz University says YES for Marine Litter, microbial pathogens and acidification. Do they study them in relation to municipal waste water?

<sup>393</sup> Karadeniz University says YES to all possible pressures. Do they study them?

<sup>394</sup> Karadeniz University says YES to acidification related to agriculture/forests run-offs. Do they study this?

In the Table below cross-check of data/information for each pressure to describe the related impact is provided.

Table 109. Pressures and impacts (cross-check)<sup>395</sup> in Turkey

| Pressure          | Pressure                   | Impact on               | Orgar | nizations   | involved | l in moni | itoring/ | data co     | ollection   | 1             |              |      |          |
|-------------------|----------------------------|-------------------------|-------|-------------|----------|-----------|----------|-------------|-------------|---------------|--------------|------|----------|
| theme             |                            |                         |       |             | each par |           |          |             |             |               |              |      |          |
|                   |                            |                         | MoEU  | IU/<br>FMSM | TUBITAK  | TUDAV     | IU/FF    | KTU/<br>FMS | RTEU/<br>FF | COMU/<br>FMST | IMS/<br>METU | CFRI | NCC      |
| Physical loss     | Smothering                 | Seabed                  | No    | No          | No       | No        | No       | Yes         | No          | No            | No           | No   | No       |
| ,                 | Sealing                    | Habitats                | No    | No          | No       | No        | No       | Yes         | No          | No            | No           | No   | No       |
| Physical          | Siltation                  |                         | No    | No          | No       | No        | No       | Yes         | No          | No            | No           | No   | No       |
| damage            | Abrasion                   |                         | No    | No          | No       | No        | No       | Yes         | Yes         | No            | No           | No   | No       |
| · ·               | Extraction                 |                         | No    | No          | No       | No        | No       | Yes         | No          | No            | No           | No   | No       |
| Other physical    | Underwater                 | Functional              | No    | No          | No       | No        | No       | No          | Yes         | No            | No           | No   | No       |
| disturbance       | noise                      | groups and              |       |             |          |           |          |             |             |               |              |      |          |
|                   | Marine litter              | habitats                | No    | No          | No       | No        | No       | No          | Yes         | No            | No           | No   | No       |
|                   |                            | (water column           |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | and seabed)             |       |             |          |           |          |             |             |               |              |      |          |
| Interference      | Thermal                    | Functional              | No    | No          | No       | No        | No       | No          | No          | Yes           | No           | No   | No       |
| with              | regime change              | groups and              |       |             |          |           |          |             |             |               |              |      |          |
| hydrological      | Salinity regime            | habitats                | No    | No          | No       | No        | No       | Yes         | Yes         | Yes           | No           | No   | No       |
| processes         | change                     | (water column           |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | and seabed)             |       |             |          |           |          |             |             |               |              |      | L        |
| Contamination     | Synthetic                  | Seabed                  | No    | No          | No       | No        | No       | No          | No          | No            | No           | No   | No       |
| by hazardous      | compounds                  | habitats,               |       |             |          |           |          |             |             |               |              |      |          |
| substances        | Non-synthetic              | functional              | No    | No          | No       | No        | No       | No          | No          | No            | No           | No   | No       |
|                   | substances                 | groups,<br>seafood      | No    | No          | No       | No        | No       | Yes         | No          | No            | No           | No   | No       |
| C                 | Radionuclides              |                         | No    | No          | No       | No        | No       | Yes         | No          | Yes           | INO          | No   | No       |
| Systematic and/or | Other substances           | Seabed<br>habitats,     | INO   | NO          | NO       | NO        | INO      | res         | NO          | res           |              | INO  | NO       |
| intentional       | Substances                 | functional              |       |             |          |           |          |             |             |               |              |      |          |
| release of        |                            | groups                  |       |             |          |           |          |             |             |               |              |      |          |
| substances        |                            | groups                  |       |             |          |           |          |             |             |               |              |      |          |
| Nutrient and      | Nutrients                  | Water column            | Yes   | No          | Yes      | No        | No       | Yes         | Yes         | Yes           | Yes          | No   | No       |
| organic matter    | Organic                    | and seabed              | Yes   | No          | Yes      | No        | No       | Yes         | Yes         | Yes           | Yes          | No   | No       |
| enrichment        | matter                     | habitats,               |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | species,                |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | functional              |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | groups,                 |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | ecosystems              |       |             |          |           |          |             |             |               |              |      |          |
| Biological        | Microbial                  | Safety of food          | Yes   | No          | Yes      | No        | No       | Yes         | Yes         | Yes           | No           | No   | No       |
| disturbance       | pathogens                  | (fish and other         |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | seafood),               |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | bathing water           |       |             |          |           |          |             |             |               |              |      |          |
|                   | N                          | quality                 | NI-   | NI-         | NI-      | NI-       | NI-      | V           | V           | V             | V            | NI-  | NI-      |
|                   | Non-native                 | Water column            | No    | No          | No       | No        | No       | Yes         | Yes         | Yes           | Yes          | No   | No       |
|                   | species and translocations | and seabed<br>habitats, |       |             |          |           |          |             |             |               |              |      |          |
|                   | translocations             | species,                |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | functional              |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | groups,                 |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | ecosystems              |       |             |          |           |          |             |             |               |              |      |          |
|                   | Extraction of              | Water column            | No    | No          | No       | No        | No       | Yes         | Yes         | Yes           | Yes          | No   | No       |
|                   | selected                   | and seabed              |       |             |          |           |          |             |             |               |              |      |          |
|                   | species incl.              | habitats,               |       |             |          |           |          |             |             |               |              |      |          |
|                   | non-target                 | species,                |       |             |          |           |          |             |             |               |              |      |          |
|                   | catches                    | functional              |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | groups,                 |       |             |          |           |          |             |             |               |              |      |          |
|                   |                            | ecosystems              |       |             |          |           |          |             |             |               |              |      | <u> </u> |
| Others            | <u> </u>                   |                         | No    | No          | No       | No        | No       | No          | No          |               | No           | No   | No       |

<sup>&</sup>lt;sup>395</sup> The Table is similar to Table 2 from the EC document: **Guidance for 2012 reporting under the Marine Strategy Framework Directive**, however covers broader scale impacts under certain pressures as seen being possible in the Black Sea.

# Conclusions on the gaps in data/information availability in Turkey to meet the requirements of the MSFD

**Note:** It will be beneficial to compare the conclusions below with the findings of the TR DeKoS Project, when this project is at the more advanced stage. MoEU and TUBITAK/MRC has already found a lot of gaps in biodiversity and other parameters monitoring, which are not sufficiently well reflected in the responses of the TR stakeholders to the MISIS Questionnaire (on data availability). Therefore, the findings further (reflected also in the Tables for TR above) are not completely reflecting the present situation in TR. The stakeholders contacted most probably meant that they had the capacity to work on the MSFD indicators but in reality they do not perform such monitoring all along the TR coastline.

**1. Biological data gaps**: Seabirds look like non-studied, however, this information should be verified with the relevant organizations, such as BirdLife International (http://www.birdlife.org/seabirds/index.html), etc. Benthic macroalgae and seagrasses are studied with limited geographical coverage.

#### 2. MSFD Descriptors gaps

#### **Descriptor 1:** Biological diversity is maintained

No gaps have been found, some stakeholders reported 'Yes' even for habitat area and habitat volume. It would be needed to clarify with them how they study these and do they perform habitat mapping. The geographical coverage is also an issue, according to the monitoring activities reported in Chapter I, benthic habitats are poorly studied along the TR Black Sea coast with small exceptions.

# Descriptor 2: Environmental impact of non-indigenous species

No substantial gaps have been identified, 'ballast water' is mentioned as the vector of introduction. A GloBALLAST Project (IMO) took place in TR in the period 2006-2008 (implemented by MRC/TUBITAK and Ministry of Transport), and the issue of 'vectors' was well studied (including origin of ballast water and respective risk assessments for large TR ports). However, it is not clear whether such investigations continue for new non-natives. For instance, in 2010 Ozturk&Shiganova (Diagnostic Report I) reported that some new species move from the Mediterranean Sea to the Black Sea (north-ward migration) on their own due to increase in water temperature. Therefore, ballast water might not be the only vector of introduction of non-natives. Biopollution Level (BPL) is being tested for certain species. Work will continue.

**Descriptor 3:** Populations of all commercially exploited fish and shellfish are within safe biological

limits, exhibiting a population age and size distribution that is indicative of a healthy stock No substantial gaps have been identified, however, the stakeholders have not specified whether they can provide the listed indicators for all commercial species or for a few of them. A confirmation is needed that stock assessments are carried out for all commercial species and that maximum sustainable yield and others are known for all of these species as well.

Within DeKoS only two indicators are considered (look at the MoEU QII) for a list of species. This data are accessible. Work is on-going.

**Descriptor 4:** All elements of the marine food webs, to the extent that they are known, occur at normal abundance and diversity and levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity

A few stakeholders have reported availability of data to cover this Descriptor. Worse known are:

- Diet composition of species
- Ratio benthic production required/benthic production

**Descriptor 5:** Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters

- Algal community structure limited data
- Benthos and fish kills limited data

**Descriptor 6:** Sea-floor integrity is at a level that ensures that the structure and function of the ecosystems are safeguarded and benthic ecosystems, in particular, are not adversely affected

This Descriptor is rather poorly ensured by data. Most limited in data availability are:

- Type, abundance, biomass and areal extent of relevant biogenic substrate
- Extent of the seabed significantly affected by human activities for the different substrate types
- Abundance of bio-engineering species no data
- Proportion of biomass or number of individuals in the macrobenthos above some specified length/size
- Biomass size spectrum
- Shape of cumulative abundance curves of numbers of individuals by size group
- Secondary production
- Parameters describing the characteristics (shape, slope and intercept) of the size spectrum of the benthic community

**Descriptor 7:** Permanent alteration of hydrographical conditions does not adversely affect marine ecosystems

This descriptor is rather poorly covered by data availability.

For spatial characterisation of permanent alterations very limited data:

- Extent of area affected by permanent alterations
- Changes in sedimentation

For Impact of permanent hydrographical changes:

- Extent of area with spatial or temporal hypoxia/anoxia
- Presence of benthic communities associated with low oxygen conditions

**Descriptor 8:** Concentrations of contaminants are at levels not giving rise to pollution effects

• Occurrence and extent of acute pollution events – very limited data

**Descriptor 9:** Contaminants in fish and other seafood for human consumption do not exceed levels established by Community legislation or other relevant standards Very limited data for all indicators of the Descriptor are available.

**Descriptor 10:** Properties and quantities of marine litter do not cause harm to the coastal and marine environment

Very limited data for:

- ML washed ashore and/or deposited on coastlines
- ML in the water column, including floating and suspended litter on the sea floor

No data for:

- ML ingested by marine animals/birds
- Microparticles (mainly mircroplastics) derived from degradation of litter
- Impact rates of degraded litter on organisms
- Potential chemical pollution resulting from degraded litter (plastic)

**Descriptor 11:** Introduction of energy, including underwater noise, is at levels that do not adversely affect the marine environment

Very limited data, most probably mainly for the Bosporus area are available.

#### 3. Characteristics - state of the Sea

No data for seabirds reported, as mentioned already above.

#### 4. Human Activities description gaps

The outlined gaps are most probably due to problems related with data/information accessibility. They are:

- Placement & operation of offshore structures (other than for energy production)
- Marine hydrocarbon extraction (oil & gas)
- Defence recurrent operations

# 5. Pressures gaps

The main gaps are in all possible pressures related to:

- · Land claim and coastal defence
- Port operations
- Placement & operation of offshore structures (other than for energy production)
- Submarine cables and pipeline operations
- Marine mining
- Marine hydrocarbon extraction

#### 6. Impacts gaps

Especially poorly known are all impacts related to:

- · Physical loss and damage
- Underwater noise
- · Marine litter
- · Thermal regime change
- · Contamination by hazardous substances

Further verification of the gaps is needed as the information provided was contradictory when cross-checked.

Table 110. Synthetic analysis of pressures and impacts (Turkey)

|   |                      | 1                                                         | 2                                          | 3                                        | 4                              | 5                | 6                                          | 7             | 8                | 9                                         |
|---|----------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------|--------------------------------|------------------|--------------------------------------------|---------------|------------------|-------------------------------------------|
|   | Pressures Impact on: | Changes in fresh water<br>and sediment riverine<br>fluxes | Nutrients and organic<br>matter enrichment | Contamination by<br>hazardous substances | Physical damage of<br>habitats | Loss of habitats | Introduction of non-<br>indigenous species | Marine litter | Underwater noise | Other pressure<br>(extraction of species) |
| Α | Plankton             |                                                           |                                            |                                          |                                |                  |                                            |               |                  | *                                         |
| В | Macroalgae           |                                                           |                                            | *                                        |                                |                  |                                            |               |                  | *                                         |
| С | Seagrass             |                                                           |                                            | *                                        |                                |                  |                                            |               |                  | *                                         |
| D | Zoobenthos           |                                                           | *                                          | *                                        |                                |                  |                                            |               |                  |                                           |
| F | Fish                 |                                                           | *                                          | *                                        |                                |                  |                                            |               |                  |                                           |
| G | Marine mammals       |                                                           |                                            |                                          |                                |                  |                                            |               |                  | *                                         |
| Н | Birds                |                                                           |                                            |                                          |                                |                  |                                            |               |                  |                                           |

 $<sup>^{\</sup>star}$  Low or very low data/information availability and lack of proper quantified assessments

Note: For D4 and D5 only the Karadeniz University/FMS reported availability of data, which means that the impact of physical loss and damage on seabed habitats is almost not studied in TR. This is why we mark these fields in green.

| Intensity of the impact (based on their associated risk for biodiversity conservation) |
|----------------------------------------------------------------------------------------|
| High impact                                                                            |
| Significant impact                                                                     |
| Low impact                                                                             |
| No impact                                                                              |
| Existing interaction, but the impact has not been determined even qualitattively       |
| Misread interaction, impact not determined                                             |

# VII. Harmonization process (needs)



This chapter deals with the requirements of the MSFD stipulated in Art 11.2:

- 2. Member States sharing a marine region or subregion shall draw up monitoring programmes in accordance with paragraph 1 and shall, in the interest of coherence and coordination, endeavour to ensure that:
- (a) monitoring methods are consistent across the marine region or subregion so as to facilitate comparability of monitoring results.

## And in Annex V of the MSFD:

- (8) Need to ensure comparability of assessment approaches and methods within and between marine regions and/or subregions.
- (9) Need to develop technical specifications and standardised methods for monitoring at Community level, so as to allow comparability of information.
- (10) Need to ensure, as far as possible, compatibility with existing programmes developed at regional and international level with a view to fostering consistency between these programmes and avoiding duplication of effort, making use of those monitoring guidelines that are the most relevant for the marine region or subregion concerned.

All stakeholders contacted have confirmed the need for harmonization both at the national and regional level. Some of them spoke also about the need to upgrade equipment, increase number of stations, geographical coverage and frequency of observations, having in mind that the insufficient harmonization between experts, organizations and states is not the only problem in the Black Sea region. The main problems are to be again stressed – the lack of sufficient funding and coordination between the organizations involved to sustain a regular, problem-oriented and complex, cost-efficient and non-overlapping monitoring with consequent assessments to support knowledge-based decision-making in environment protection utilising the principles of the ecosystem approach.

The opinions expressed on the harmonization needs were as follow.

#### **National level**

- **a.** Sampling strategy (equipment, frequency, sampling area coverage) setting regularly implemented and adequate monitoring program, covering also the Exclusive Economic Zone of BG, with special attention on the missing domains priority substances including contamination of biota at the national level, and for the regional level to provide for harmonised stock assessments of commercial living resources and bathing water quality assessments based on common standards.
- **b.** Data analysis harmonisation of analytical methods (e.g. statistical, models) at national and regional level
- **c.** Indicators development both at the national and regional level the indicators used should be agreed and calculated based on common methodologies
- d. GES assessment development at the national level and harmonization at the regional

#### **ROMANIA**

Romanian institutions have specified the lack of sufficient harmonization at the national level:

- Sampling strategies: equipment used, area coverage, frequency and methodologies
- · Samples processing and data management
- Data analysis and assessment methodologies
- Indicators development to facilitate decision-making

# **TURKEY**

TR stakeholders have mentioned that harmonization is needed both at the national and regional level.

# **Regional level**

In **Bulgaria** the stakeholders have identified the following regional priorities in harmonization:

- Setting of reference/threshold values
- Monitoring and assessments, including loads and marine litter
- Joint implementation of the CFP principles at Black Sea basin scale (not only in BG and RO as EC countries), harmonization of monitoring, data collection, stock assessments and indicators for GES

In **Romania** all mentioned issues for the national level are eligible for the regional as well, additional issues have been specified with priorities listed as follow:

- Indicators development, taking into consideration the MSFD Descriptors
- GES identification and consequent assessments
- MPAs identification, designation and related monitoring

In **Turkey** the stakeholders mentioned the same priorities as already listed above by Bulgaria and Romania, except the EC Common Fishery Policy utilization.

# VIII. Conclusions and Recommendations

# Legal/policy.

BG, RO and TR have strong legal/policy and scientific foundations which could provide for the development of integrated monitoring/assessment programmes following the DPSIRR model. Much of the further work will involve building on, or adapting already existing monitoring arrangements. GES identification and environment targets for pressures, state and impact are under development (though with delays). They will allow designing a full-body monitoring program in line with the requirements of the MSFD. However, important regulations are missing, and it is recommended to address the gaps in policy, namely for:



- 3. Monitoring NIS and ship ballast water in risk areas
- 5. Control on the level of underwater noise
- 6. Development of operational monitoring
- 7. Coordinated and regular monitoring of pressures/impacts
- 8. Inter-sectoral cooperation in monitoring and data management
- 9. Regular exchange of data between sectors

#### Financing of monitoring.

In all beneficiary countries the financial mechanism, sustaining environmental monitoring programmes, is in need for improvement. In the case of Turkey and Bulgaria, financing for the implementation of monitoring programs is through competitive bidding, and usually for short periods of time which hampers the long-term development of the networks and investments in capacity building, as there are no long-term guarantees.

Delays in providing funding do often occur. They hamper the frequency of observations and the geographical coverage. The insufficiency of funding leads to improper geographical coverage and mandatory parameters are impossible to cover. The latter of course could be also related to lack of human capacity and expertise, which is mostly related to lack of sufficient funding to hire staff and train people in point of fact.

Therefore, it is recommended to find the ways to increasing funding for monitoring. This can be not only through governmental budgets dedicated to state monitoring, but also through the private sector, and through projects (different funding agencies from abroad, for instance, and of course, national).

#### Monitoring.

Going back to the recommendations of the Diagnostic Report I in relation to monitoring, the following important issues were found to be still insufficiently addressed:

| N | Issue                      |                                     | Bulgaria    | Romania           | Turkey        |
|---|----------------------------|-------------------------------------|-------------|-------------------|---------------|
| 1 | Maintain                   | frequency of observations – in      | Since 2012  | Mostly Yes        | No            |
|   | line with \                | WFD and MSFD                        |             |                   |               |
| 2 | Ensure pr                  | oper geographical coverage –        | Since 2012, | No                | Yes           |
|   | include or                 | oen sea to cover the EEZ            | partially   |                   |               |
| 3 | Sustain st                 | ations and transects with long-     | Mostly Yes, | Yes               | No such       |
|   | term obse                  | ervations (and create network of    | but with no |                   | stations and  |
|   | Reference                  | e stations)                         | network of  |                   | transects, no |
|   |                            |                                     | Reference   |                   | Reference     |
|   |                            |                                     | stations    |                   | stations      |
| 4 | Cover ma                   | ndatory parameters                  | No          | <b>Mostly Yes</b> | Partially     |
| 5 | Improve                    | Fisheries monitoring                | Yes         | Yes               | Yes           |
|   |                            | Cetacean surveys                    | No          | Partially         | Partially     |
|   |                            | Marine Litter monitoring            | No          | Partially (not    | Partially     |
|   | (especially in the sea)    |                                     |             | in the sea)       |               |
|   | Contamination of sediments |                                     | No          | Yes               | Yes           |
|   |                            | Contamination of biota              | No          | Partially         | Partially     |
|   |                            | Habitats monitoring                 | Poor        | Poor              | Mostly No     |
|   |                            | Biodiversity change monitoring      | Partially   | Partially         | Partially     |
| 6 | Utilization                | of the capacities of all Institutes | No          | No                | No            |
|   | dealing w                  | ith monitoring in the country (not  |             |                   |               |
|   | only those                 | e, which are officially nominated   |             |                   |               |
|   | by the Mi                  | nistries of Environment or others   |             |                   |               |
|   | to implem                  | nent National Programmes)           |             |                   |               |
| 7 | Avoid ove                  | erlapping of activities and efforts | No          | No                | No            |

Additionally, operational monitoring development is basically poorly attended. There is much to desire in the introduction of automated systems of observation in the sea, as well as in the development of remote sensing.

Hense, it is recommended to pay attention to all those domains of the monitoring which are missing or partially developed, such as cetacean surveys, marine litter, habitats and biodiversity change. It is crucial also to avoid overlapping of monitoring activities.

# Institutional framework of monitoring

The analysis shows that the coordination between the organizations involved in monitoring/data collection in the beneficiary countries is in general poor, especially between those engaged in tracing pressures and those who study the state of the environment, not to mention the socioeconomy and fishery statistics collections. Hence, to properly build (in a quantitative form) the causal chains of the DPSIRR model turns to be a nearly impossible task at present.

Thus, many institutions, weak integration and lack of systematic approach characterise the institutional framework of monitoring in BG, RO and TR. Often inadequate fragmentation of responsibilities is in place, which hampers mobilization of resources. There are also areas of overlap, duplication of efforts and even conflicts.

## The need for a systematic approach:

A systematic approach is urgently needed to identify and effectively use the synergies that exist among the many institutions and actors involved in monitoring activities serving directly or indirectly environment protection. There should be a stable networking between institutions dealing with governance, funding, and implementation of monitoring programmes. This will reduce the burdens placed on national authorities, promote the efficient use of resources and ensure that environmental laws and policies implementation is supported by adequate integrated monitoring program.

Strengthening of institutional framework means also capacity development. Capacity building activities are poorly attended in the beneficiary countries, due to lack of funding almost no regulat trainings take place (further see conclusions on Training).

Thus, improvements of the institutional framework are needed in:

- competent authorities capacity (including monitoring capacity)
- mechanisms of interaction between state institutions responsible for monitoring
- arrangements for agencies to coordinate and cooperate effectively with an adequate degree of operational autonomy
- adequate fragmentation of responsibility, avoiding overlaps

A major problem in the beneficiary countries is the constant change in governmental structures and redistribution of activities. Ministries not only change their names, but also their responsibilities and affiliated/subordinated bodies. Besides, staff changes, experienced professionals leave because working in governmental organizations is not an attractive option in view of the numerous responsibilities, stress and low salaries associated. The instability of human factor is not a prerequisite for a good governance practices, but often for non-continuity in decision-making. The same stands for the political instability, which is also an issue in the beneficiary countries. Constant reforms are hardly 'bought in' by the society, because in the sort-term run of their existence the gains ('payoff) are not realized. However, all of these are socio-economic problems, and MISIS is not in the position to deal with them as well.

More information on the subject 'institutional framework of monitoring' will be provided in a special Position Paper of the MISIS Project on the Institutional framework of monitoring, together with more concrete recommendations on strengthening.

# DPSIRR. Data availability to meet the requirements of the MSFD

As per country the gaps identified are given in the conclusions of Chapter VI. Here general remarks are given, as follow.

Drivers (human activities) are relatively well mapped in all beneficiary countries. Accessibility of data/information, which are dispersed in many different organizations, is an issue.

In all beneficiary countries land-based pressures are defined as part of pollution source monitoring programs. These programmes are rather well financed and implemented. However, the methods and results of the pressures monitoring programs are seldom coordinated with, or used in, the ambient monitoring programs in the same areas. Hence, impacts are poorly related to pressures, and especially scarce is the knowledge on cumulative effects. Networking of institutions controlling pressures with those which deal with state and impacts observed in the Black Sea is crucial, yet obviously absent in the beneficiary countries.

The main gaps are in the pressures related to the following human activities:

- Aquaculture
- Port operations
- Submarine cables and pipeline operations
- Agriculture

Insufficiently well known are the pressures related to:

- Land claim and coastal defence
- Marine mining
- Placement & operation of offshore structures (other than for energy production)<sup>396</sup>
- Dredging
- Dumping of spoils
- Shipping
- Marine hydrocarbon extraction

<sup>&</sup>lt;sup>396</sup> To be verified whether such structures exist.

Most poorly known pressures are: physical loss and damage, other physical disturbance (noise and marine litter), thermal and salinity regime change, and contamination by hazardous substances (especially for sediments and biota). More studies are needed to better understand what are the critical loads of nutrients and pollutants stemming from LBS (point sources) and to evaluate the contribution of diffuse sources.

For the following pressures the impacts are not known:

- Underwater noise (for water column and seabed habitats)
- Radionuclides

Little is known about the impacts related to:

- Physical loss and damage
- Underwater noise
- Marine litter
- Thermal regime change
- Contamination by hazardous substances

In all beneficiary countries most limited are the data/information for Descriptors 6-11.

#### Recommendations.

The monitoring should be improved to cover the following insufficiently studied domains:

| Descriptor                                | Additional monitoring requirements               |
|-------------------------------------------|--------------------------------------------------|
| Descriptor 1, 4 and 6 – functional groups | Protozoa, ichthyoplankton, meiobenthos           |
| Descriptor 1, 4 and 6 – functional groups | Marine mammals: 5 yearly census of dolphins      |
|                                           | populations                                      |
|                                           | Birds: seabirds colonies and seabird by-catch    |
| Descriptor 1, 4 and 6 - habitats          | Deep sea biogenic structures                     |
|                                           | Seabed, mapping of habitats, tracing of habitat  |
|                                           | change and loss, hot spots of habitat            |
|                                           | destruction/degradation                          |
| Descriptor 2 - NIS                        | Abundance and distribution of NIS, especially in |
|                                           | high risk locations                              |
| Descriptor 3 - fish                       | More species                                     |
| Descriptor 4 – food web                   | Energy flows through the food web/production     |
| Descriptor 5 - eutrophication             | Primary production (phytoplankton and            |
|                                           | macroalgae), areas of hypoxia, change in         |
|                                           | macroalgal communities                           |
| Descriptor 7 – hydrographical conditions  | Changes in water temperature and salinity        |
|                                           | related to human activities                      |
| Descriptor 8 - contaminants               | Screening for new pollutants                     |
| Descriptor 9 – contaminants in seafood    | Commercial fish                                  |
| Descriptor 10 – marine litter             | Floating and seafloor litter                     |
| Descriptor 11 – underwater noise          | Underwater noise level                           |

Furthermore, biodiversity of the Black Sea is insufficiently attended in the routine monitoring programmes. Especially important is to better study: bacteria, phytoplankton, Protozoa and meiobenthos. Genetic investigations are scarce. Better knowledge of the Black Sea populations genetic structure and gene pool are required. Acidification and carbon storage studies need to be advanced.

All gaps mentioned above should be taken into consideration in revision of monitoring programmes and improvement of existing practices.

# QA/QC in the field of monitoring and laboratory work.

QA/QC in monitoring is well advanced in BG and RO. However, a few common guidelines are used in BG and RO in conducting monitoring, so the comparability of data is an issue. In TR QA/QC is either not receiving due attention in all Institutions or the stakeholders insufficiently reflected their efforts.

Proficiency tests in the field of chemistry (limited list of parameters though) are carried out on a relatively regular basis in all beneficiary countries, but not the case for the biological monitoring. In the latter, insufficient number of inter-calibration exercises have been organised by different projects only (e.g. phytoplankton and zooplankton) at the national and regional level.

Therefore, QA/QC developments are especially needed in the field of biological/biodiversity studies. In all fields the compliance with existing guidelines/manuals need to be strengthened.

# Data reporting.

The data of different organizations are reported to various end-users, however, the bulk of them remains for internal use only. At the national level in the beneficiary countries, there was no real effort to create a single Data/Information Center where all Black Sea-related data (DPSIRR) would be stored and used for ecosystem-based management. This gap in data accessibility became especially evident while preparing the Initial Assessments in BG and RO for the MSFD.

Harmonization of reporting is in its very early stage, requires more attention to reduce the coast and to make reporting less time-consuming. Data accessibility should be increased, centralised databases development should be encouraged.

**Projects.** The projects are a powerful tool, addressing specific questions, and advancing scientific knowledge, in general, however, most of them share none of their data compiled, and often the reports prepared under their activities are available for the partner-organizations only (password protected).

Integration of project results into national databases and assessments should be stimulated. Incentives should be provided.

#### Data bases with easy access.

Those which are available on-line such as SeaDataNet (incl. BS Scene Network) contain meta data, which are not regularly updated (depending on projects, not on regular financial assistance) and contain little information which would be useful for most of the MSFD descriptors and parameters in Annex III. In Bulgaria and Romania the Ministries of Environment have not specified availability of data bases, though the scientific Institutions reported on data delivered to the Ministries. Institutional and national data bases are poorly developed. The former do not incorporate all data/information generated in the course of monitoring.

Networks of databases should be created, their inter-operability should be enhanced as a first step in integration.

# Data products.

The lack of well-developed data bases is closely related to the poor provision of data products in the beneficiary countries. Of course, the scientific community provides in different reports statistical analysis and indicators, but the statistical processing is not embedded in the available data bases and the indicators are mostly not automatically derived. Graphs and maps of distribution of various parameters are also produced by manual input of data into the used softwares, such as Ocean Data View, ArcGIS, etc. Consequently, most of the data remain poorly managed, statistically unprocessed, insufficiently visualised and not included in the calculation of indicators. Development of models is poorly attended either (except hydrophysical).

Much improvement is required in the field of data products generation. However, the few institutions involved in national monitoring programmes are heavily overloaded, and together with the insufficient funding, these are the main reasons for the scientists to be unable to properly manage the data produced. Besides, funding for relevant trainings is rarely foreseen in the budgets to ensure for capacity building in the field of data management.

Nevertheless, data products generation should be in the focus, and considered as the most important part of data management. Relevant trainings should be provided, as well as data bases conseptualisation should be rethought with a view of data management systems development to follow.

# QA/QC in data management.

Data management QA/QC is not paid due attention in the beneficiary countries. It is not clear how the reliability of data is checked and whether any of the available Guidelines is taken into consideration in practice. This is especially valid for biological and fishery data.

Data Quality Control softwares should be incorporated in the data bases.

#### Assessments.

Various assessments are produced on a regular or irregular (for projects) basis, however, except in Romania the reports stay unpublished and undistributed for wider and public use. The reason for the latter is rooted in the historical legacy of secrecy in the field of environmental issues, and also in the habitual attitude of the scientific community to not disclose data which are not published in peer reviewed journals. The reports prepared by scientists are not qualified the same as the publications in journals with impact factor, which predetermines their keeping for internal use only or most often for no use.

Assessments will improve if the following recommendations are observed:

- 1. Create mechanism for exchange of data/information between the various organizations managing environment data
- **2.** Develop data management systems (to ensure indicator-based reporting and provision of diverse data products)
- **3.** Provide for QA/QC in data management in all organizations dealing with generation of environment data
- **4.** Develop models, especially those with bio-chemical components, application of Ecosim and Ecospace
- **5.** Ensure transparency of reporting
- **6.** Provide for official status of the reports (e.g. registration as official electronic publications or publications as peer reviewed in hard copies)

#### Equipment/vessels.

The inventory of equipment available in the Laboratories of the beneficiary countries shows a very high level of capacity to manage the various samplings and analyses required by the MSFD. Laboratory equipment can be shared with visiting scientists upon written request to the administrations of the institutes.

In the beneficiary countries there are in total 26 vessels of different classes (from coastal to global), which have the capacity to carry out monitoring. 9 of them are vessels over 35 m long and they can be used for regional investigations. These vessels are available for rent and the terms of rental are specified for some of them. The fees per day vary a lot depending on the class of the vessel and services provided. However, the stakeholders contacted have poorly communicated on the issue of rent, for only 3 vessels the prices per day were specified: Akademik, IO-BAS, BG (6000 Euro); Prof. Valkanov, IFR-Varna, BG (1000 Euro) and Mare Nigrum, GeoEcoMar, RO (6800 Euro). Large exchangeable vessel equipment includes multibeam and side scan sonars, echosounders,

underwater video cameras, and CTDs. In total 22 units of these have been identified in BG, RO and TR. There are also two underwater vehicles (one remote operated in Erdemly, TR and the second one is manned submersible, belonging to IO-BAS, BG.

Major problems: most of the vessels are old and most of the equipment was not specified as being available for sharing.

# Capacity building.

Many stakeholders mentioned the lack of regular trainings, though there are some nice exceptions in RO and TR. Widely distributed practice is the organization of trainings in the frames of different projects. Fortunately, during the last decade many projects have taken place in the Black Sea region, and correspondingly almost annually trainings have been carried out. The shortcomings in such a practice is that the trainings are for the partner-organizations in the projects (who have the budget to attend the trainings) and in very rare cases specialists from other organizations are invited or have the opportunity to join. As per today, the priority needs in training identified by the MISIS stakeholders are as follow:

# 1. Monitoring

- Optimization of field surveys
- Modern methods in monitoring (chemical oceanography, pollutants (incl. radioactivity), biological elements (especially for macroalgae and angiosperms), measuring pollution effects via biomarkers, bathing water)
- Biodiversity monitoring, including phytoplankton and zooplankton taxonomy, and molecular taxonomy
- Ecotoxicological monitoring
- Measuring toxicity of phytoplankton species

# 2. Data processing and assessments

- Oceanographic data statistical processing, visualization and analysis (especially applications in biology and ecology of STATISTICA, PRIMER 6, XLSTAT2012, as well as ArcView, Grapher, Surfer)
- MSFD-and WFD-related training: integrated chemistry and biology data assessment (according to WFD and MSFD requirements), identification of GES, development of indicators and methodologies for their calculation

**Note:** Such training can be very beneficial, communicating the experience of BG and RO in identification of good ecological status sensu WFD.

 Modern analytical/assessment tools (all spheres of investigations, priority mentioned - macro algae and angiosperms)

# 3. Habitat mapping

4. Communication of research, development of public awareness (e.g. for beach users preparation of communications on water quality, etc.)

The identified needs in training have been incorporated in the MISIS document 'Training Program".

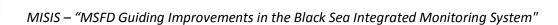
**Harmonization**. This report highlights also priority **needs in harmonization**, both at the national and regional level. They are as follow:

- Sampling strategies: equipment used, area coverage, frequency and methodologies
- Monitoring of loads, especially for rivers

- Samples processing and data management
- Data analysis and assessment methodologies
- Fisheries data collection, stock assessments
- Indicators development to facilitate decision-making
- GES identification
- MPAs identification, designation and related monitoring

The identified needs have been incorporated in the MISIS document "Harmonization Program".

# **ANNEXES**


### **ANNEX I.A. The Questionnaire/Part I**



European Commission
DG Environment

# Diagnostic Report Questionnaire Part 1







General

#### Questionnaire

The purpose of this questionnaire is to identify your organization's observational and informational capacity in the area of Black Sea monitoring, data management and assessments in relation with the MSFD implementation.

| Name of organization                                                                                                | Postal address/webpage                                    |            | ct person<br>ss, tel/fax, e-mail, sky | ype)                                    |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------|---------------------------------------|-----------------------------------------|--|--|
|                                                                                                                     |                                                           |            |                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |  |  |
| What type is your organization?                                                                                     |                                                           |            |                                       |                                         |  |  |
| Governmental NGO Private other (please specify here)                                                                |                                                           |            |                                       |                                         |  |  |
| Is your organization part of a national                                                                             | s your organization part of a national monitoring system? |            |                                       |                                         |  |  |
| If Yes, please specify.                                                                                             |                                                           |            |                                       |                                         |  |  |
| Is your organization part of SeaData                                                                                | Net? Yes No                                               |            |                                       |                                         |  |  |
| What other national and internation                                                                                 | al networks related to monitoring /data a                 | analysis i | is your organization pa               | art of?                                 |  |  |
| (Note: Please press the enter key in the                                                                            | e field above in order to add more lines)                 |            |                                       |                                         |  |  |
| appropriate cells of the table).                                                                                    | g to other human activities beyond envir                  |            | . "                                   | on YES or NO in the                     |  |  |
| Human activity                                                                                                      |                                                           | Υ          | es/No                                 |                                         |  |  |
| Public health                                                                                                       |                                                           |            | ☐ Yes                                 | ☐ No                                    |  |  |
| Coastal and urban development                                                                                       |                                                           |            | ☐ Yes                                 | ☐ No                                    |  |  |
| Marine and riverine traffic                                                                                         |                                                           |            | Yes                                   | ☐ No                                    |  |  |
| Fishery and aquaculture                                                                                             |                                                           |            |                                       | ☐ No                                    |  |  |
| Tourism and recreation                                                                                              |                                                           |            | Yes                                   | ☐ No                                    |  |  |
| Offshore gas and oil exploitation                                                                                   |                                                           |            | ☐ Yes                                 | ☐ No                                    |  |  |
| Agriculture and farming                                                                                             |                                                           |            | ☐ Yes                                 | ☐ No                                    |  |  |
| Various branches of industry                                                                                        |                                                           |            | ☐ Yes                                 | ☐ No                                    |  |  |
| Military activities                                                                                                 |                                                           |            | ☐ Yes                                 | ☐ No                                    |  |  |
| Other activities (please specify)  (Note: Please press the enter key in the field above in order to add more lines) |                                                           |            |                                       |                                         |  |  |







| II. | NA it             |
|-----|-------------------|
|     |                   |
|     | <b>Monitoring</b> |

| 1. | Legal/policy instruments and institutional framework (Note: please add to the Tables as many lines |
|----|----------------------------------------------------------------------------------------------------|
|    | as you need)                                                                                       |

A. International environmental legislation (conventions, multi- and bilateral agreements relevant to the monitoring performed by your organization; print dates when these instruments have been entered into force in your country)

| N | Title of Convention or Agreement | dd.mm.yy of ratification |
|---|----------------------------------|--------------------------|
|   |                                  |                          |
|   |                                  |                          |
|   |                                  |                          |
|   |                                  |                          |
|   |                                  |                          |

B. National environmental legislation (please specify laws, decrees, other legal acts related to the monitoring performed by your organization; print dates when these instruments have been entered into force)

| N | Title of National Legal Act | dd.mm.yy |
|---|-----------------------------|----------|
|   |                             |          |
|   |                             |          |
|   |                             |          |
|   |                             |          |
|   |                             |          |

C. Administrative instruments (statements, resolutions, ministerial regulations, national standards, guidelines, etc. related to the monitoring performed by your organization, including sub-national level instruments)

| N | Title of Document | dd.mm.yy |
|---|-------------------|----------|
|   |                   |          |
|   |                   |          |
|   |                   |          |
|   |                   |          |
|   |                   |          |

D. Responsible organizations (those which provide the budget for the monitoring carried out by your organization and approve the program)

| Name of organization | Postal address/webpage | Contact person (address, tel/fax, e-mail, skype) |
|----------------------|------------------------|--------------------------------------------------|
|                      |                        |                                                  |
|                      |                        |                                                  |
|                      |                        |                                                  |
|                      |                        |                                                  |
|                      |                        |                                                  |
|                      |                        |                                                  |







#### 2. Type of monitoring, stations, parameters, frequency

| Type of monitoring* | Geographical scope | Time period<br>(from-to) | Frequency<br>(from-to) | Number of stations | Number of parameters |
|---------------------|--------------------|--------------------------|------------------------|--------------------|----------------------|
|                     |                    |                          |                        |                    |                      |
|                     |                    |                          |                        |                    |                      |

<sup>\*</sup>Environment routine complex monitoring; Ecotoxicological monitoring; Surveillance monitoring<sup>1</sup>; Compliance monitoring<sup>2</sup>; Operational monitoring (based on real-time observations<sup>3</sup>.

#### Please provide:

A. Map of sampling stations and list with coordinates

| N of station | Coordinates | Area/name of transect* | Type of station** |
|--------------|-------------|------------------------|-------------------|
|              |             |                        |                   |
|              |             |                        |                   |

<sup>\*</sup>e.g. Varna Bay, or Constanta / Mamaia transect, etc.

B. List of parameters (of biodiversity, eutrophication, contamination, commercial fish, litter, noise etc) with frequency of observations

|           | A                    | Frequency                              |          |       |          |
|-----------|----------------------|----------------------------------------|----------|-------|----------|
| Parameter | Analytical<br>Method | Water (specify<br>Surface/Depth/Layer) | Sediment | Biota | On-Coast |
|           |                      |                                        |          |       |          |
|           |                      |                                        |          |       |          |

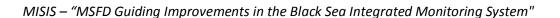
<sup>\*</sup>on coast: monitoring at land-based point sources like at waste water discharges or at rivers

C. Does your monitoring provide for long-term trends? If yes, please specify for which parameters trends are regularly updated.

|           | Trend (Yes/No)                         |          |       |          |  |
|-----------|----------------------------------------|----------|-------|----------|--|
| Parameter | Water (specify<br>Surface/Depth/Layer) | Sediment | Biota | On-Coast |  |
|           |                                        |          |       |          |  |
|           |                                        |          |       |          |  |

<sup>\*</sup>on coast: monitoring at land-based point sources like at waste water discharges or at rivers

<sup>&</sup>lt;sup>3</sup> Operational monitoring - real time (satellites, radars, any automatic devices working for real-time collection of data).






<sup>\*\*</sup>transitional, coastal or marine waters; Please indicate which stations are Reference stations.

<sup>&</sup>lt;sup>1</sup> Surveillance monitoring is usually the environment monitoring for trends (complex and routine monitoring);

<sup>&</sup>lt;sup>2</sup> Compliance monitoring is the one checking the relevance of water quality and level of discharges against certain norms (governmentally established);





#### 3. Procedures of QA/QC in the field and in laboratory

- A. Please provide References of major guiding documents and where possible links.
- B. Please list proficiency tests/exercises which your organization takes part in and their frequency.

#### 4. Reporting (to whom, kind of formats used)

A. If the data are reported (not the assessments), please specify to whom.

| Name of organization | Postal address/webpage | Contact person (address, tel/fax, e-mail, skype) |
|----------------------|------------------------|--------------------------------------------------|
|                      |                        |                                                  |
|                      |                        |                                                  |

- B. Please provide links to formats used (if any), (e.g. the EEA, SeaDataNet, etc. formats are available online) or the Formats themselves (as Annex to this Questionnaire).
- 5. On-going projects with monitoring component (**Note**: the projects which are currently implemented regardless the starting date)

Please provide the name of the project, duration, brief annotation (objectives of the project) and for each project specify:

A. Number of cruises planned, timing, stations, parameters

| Number of cruises planned | Timing | Stations | Parameters |
|---------------------------|--------|----------|------------|
|                           |        |          |            |
|                           |        |          |            |

B. Reporting (what data and how the data are reported, where stored)







#### III. Data management, data products, QA/QC procedures applied, assessments

#### 1. Please provide information on availability of data base(s) in your organization

Note: if you have more than one data base, please insert rows and describe each of them in separate.

| Name of the data base (if any) | Link (if any) <sup>1</sup> | Year of launch <sup>2</sup> | Type of data base <sup>3</sup> | Is the data<br>base linked to<br>models? <sup>4</sup> | Terms of access |
|--------------------------------|----------------------------|-----------------------------|--------------------------------|-------------------------------------------------------|-----------------|
|                                |                            |                             |                                |                                                       |                 |
|                                |                            |                             |                                |                                                       |                 |

Note – if the data base is not on-line, please specify it and provide information on how the data base is organised and replenished.

#### 2. Data products

A. Please list what indicators are automatically calculated or produced with query in the data base (Note: not the initial data but the derivatives of them).

| Indicator | Unit | Type of representation <sup>1</sup> |
|-----------|------|-------------------------------------|
|           |      |                                     |
|           |      |                                     |

<sup>&</sup>lt;sup>1</sup>Note – the indicator can be derived from the data base in Table and Figures, or distribution / classification maps and reports can be produced.

B. Please list what kind of statistical methods are part of the data base (if any).

| Indicator | Statistical method | Product |
|-----------|--------------------|---------|
|           |                    |         |
|           |                    |         |

#### 3. QA/QC procedures

- A. Please provide References of major guiding documents and where possible links.
- B. Please specify the needs of your organization to improve QA/QC.





<sup>&</sup>lt;sup>2</sup>Note – when the data base became operational? If the data are kept in Excel sheets or similar (not organised in a data base through specialised software), please specify the first year when an initial data have been stored electronically (e.g. not on hard copy in Protocols only).

<sup>&</sup>lt;sup>3</sup>Note – specify how the data base is organised (Excel, DBF, ACCESS, Microsoft SQL Server (2008-R2 or other), ORACLE, etc.)

<sup>4</sup>Note – if yes, please specify in separate what kind of models and what these models are used to simulate.



# 4. Please list what kind of assessments are regularly prepared by your organization

| Name of assessment/Report | Frequency | To whom the report is delivered | Where published (link, if any) |
|---------------------------|-----------|---------------------------------|--------------------------------|
|                           |           |                                 |                                |
|                           |           |                                 |                                |





# **ANNEXES**

#### **ANNEX I.B. The Questionnaire/Part II**



European Commission
DG Environment

# Diagnostic Report Questionnaire Part 2





#### Questionnaire

The purpose of this questionnaire is to identify your organization's observational and informational capacity in the area of Black Sea monitoring, data management and assessments in relation with the MSFD implementation.

#### General

| Name of organization | Postal address/webpage | Contact person (address, tel/fax, e-mail) |
|----------------------|------------------------|-------------------------------------------|
|                      |                        |                                           |

#### IV. Laboratory infrastructure, equipment, vessels

- 1. Please specify major units in your organization infrastructure;
- 2. Please specify major equipment (especially those which can be shared with other laboratories);
- 3. Please specify availability of vessels and characteristics of the vessel/s (including terms of rent).

#### V. Training

- 1. Please specify what kind of training are regularly conducted in your organization.
- 2. Please specify what kind of trainings have been organised by your organization during the last 5 years.
- 3. Please specify what kind of trainings you would recommend to be organised by MISIS.

#### VI. Data availability (versus Annex I and III of the MSFD)

This part of the Questionnaire aims at identifying the data availability for marine/uses activities, pressures/impacts and state of the Black Sea environment, so that to meet the requirements of the MSFD related to the Initial Assessment, GES and Targets identification.

The target period is 2006-2011. The frequency of observations is meant from monthly to annual, depending on the parameter discussed. The geographical coverage meant is the Exclusive Economic Zone of your country. In the column 'Your organization' of the Tables below, please write 'Yes' or 'No', where necessary you may wish to include Notes to specify better the data availability.

Please specify which of these are studied by your organization.

| Species          | Your organization (Yes or No) |
|------------------|-------------------------------|
| Bacteria         |                               |
| Phytoplankton    |                               |
| Protozoa         |                               |
| Macroalgae       |                               |
| Mesozooplankton  |                               |
| Macrozooplankton |                               |
| Meiobenthos      |                               |







| Species         | Your organization (Yes or No) |
|-----------------|-------------------------------|
| Macrozoobenthos |                               |
| Fish            |                               |
| Mammals         |                               |
| Birds           |                               |
| Others          |                               |

#### A. Data availability versus Annex I of the MSFD

The Questionnaire follows the EC COM Decision 2010/477/EU<sup>4</sup>, which specifies criteria and indicators for Good Environmental Status definition (GES, *sensu* MSFD). Selected additional indicators are included, which could be used to identify GES.

**Descriptor 1:** Biological diversity is maintained. The quality and occurrence of habitats and the distribution and abundance of species are in line with prevailing physiographic, geographic and climatic conditions.

Progress towards GES for this descriptor must address several ecological levels: ecosystem, habitat/community and species. For assessment at the levels of habitat/community and species, it is not required to use all criteria for each species and habitat/community type to be assessed. To support a holistic and adaptive management of human activities based on the ecosystem approach, a risk-based selection is to be applied, to ensure that the assessment and monitoring required is effective and efficient.

#### At species level

A set of relevant species types are to be drawn up for each region/sub-region. Sub-species and populations are to be assessed separately where the initial assessment identifies them as being at risk of not meeting targets for GES.

#### 1.1. Species distribution

| MSFD   |                                                             | Your organization (Yes or No) |
|--------|-------------------------------------------------------------|-------------------------------|
| 1.1.1. | Distributional range                                        |                               |
| 1.1.2. | Distributional pattern within the latter, where appropriate |                               |
| 1.1.3. | Area covered by the species (for sessile/benthic species)   |                               |

<sup>&</sup>lt;sup>4</sup> Commission Decision of 1 September 2010 on criteria and methodological standards on good environmental status of marine waters (notified under document C(2010) 5956)/(2010/477/EU)







#### 1.2. Population Size

| MS  | FD                                                       | Your organization (Yes or No) |
|-----|----------------------------------------------------------|-------------------------------|
| 1.2 | 2.1. Population abundance and/or biomass, as appropriate |                               |

#### 1.3. Population condition

| MSFD   |                                                                                                                                       | Your organization (Yes or No) |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1.3.1. | Population demographic characteristics (e.g. body size or age class structure, sex ratio, fecundity rates, survival/ mortality rates) |                               |
| 1.3.2. | Population genetic structure, where appropriate                                                                                       |                               |

#### At habitats/communities level

This level ensures the organisation of complex associations of species (in benthic and plankton communities) into more manageable units. As a general rule, the habitat and its associated community are to be treated together. A set of relevant habitat types are to be drawn up for each region/sub-region.

#### 1.4. Habitat distribution

| MSFD                          | Your organization (Yes or No) |
|-------------------------------|-------------------------------|
| 1.4.1. Distributional range   |                               |
| 1.4.2. Distributional pattern |                               |

#### 1.5. Habitat extent

| MSFD   |                                | Your organization (Yes or No) |
|--------|--------------------------------|-------------------------------|
| 1.5.1. | Habitat area                   |                               |
| 1.5.2. | Habitat volume, where relevant |                               |







#### 1.6. Habitat condition

| MSFD   |                                                   | Your organization (Yes or No) |
|--------|---------------------------------------------------|-------------------------------|
| 1.6.1. | Condition of the typical species and communities  |                               |
| 1.6.2. | Relative abundance and/or biomass, as appropriate |                               |
| 1.6.3. | Physical, hydrological and chemical conditions    |                               |

#### **Ecosystem level**

Assessment at the level of species and habitat/community state provides the basis for assessment at the level of the ecosystem, in particular the ecosystem structure and ecosystem processes and functions. The regions and sub-regions, or appropriate subdivisions, provide suitable scales for this assessment. Certain aspects of ecosystem functioning and processes are provided by other descriptors (such as 4 and 6, further presented).

#### 1.7. Ecosystem structure

| MSFD   |                                                                                                          | Your organization (Yes or No) |
|--------|----------------------------------------------------------------------------------------------------------|-------------------------------|
| 1.7.1. | Composition and relative proportions of ecosystem components (habitats and species)                      |                               |
| 1.7.2. | Ecosystem processes and functions:<br>Interactions between the structural<br>components of the ecosystem |                               |

#### Descriptor 2: Non-indigenous species introduced by human activities are at levels that not adversely alter the ecosystem.

Apart from abundance, the identification and assessment of pathways and vectors of spreading of non-indigenous species as a result of human activities is a prerequisite to prevent that such species introduced as a result of human activities reach levels that adversely affect the ecosystems and to mitigate any impacts. For the latter, the environmental impact of non-natives should be also carefully regarded.

#### 2.1. Abundance and spreading of non-indigenous species, in particular invasive species

| MSFD                                                                                                                                                                                                                                                          | Your organization (Yes or No) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 2.1.1.Trends in abundance, temporal occurrence and spatial distribution in the wild of non-indigenous species, particularly invasive non-indigenous species, notably in risk areas, in relation to the main vectors and pathways of spreading of such species |                               |
| 2.1.2. Vectors of introduction                                                                                                                                                                                                                                |                               |







#### 2.2. Environmental impact of non-indigenous species

| MSFD                                               | Your organization (Yes or No) |
|----------------------------------------------------|-------------------------------|
|                                                    |                               |
| 2.2.1. Ratio between non-indigenous species and    |                               |
| native species in some well-studied taxonomic      |                               |
| groups, e.g. fish, macroalgae, molluscs            |                               |
| 2.2.2. Magnitude of the impacts of non-indigenous  |                               |
| species, in particular invasive species, on native |                               |
| communities, habitats and ecosystem functioning    |                               |
| 2.2.3. The Biopollution Level (BPL) (index)        |                               |
|                                                    |                               |

Descriptor 3: Populations of all commercially exploited fish and shellfish are within safe biological limits, exhibiting a population age and size distribution that is indicative of a healthy stock.

This section applies for all the stocks covered by Regulation (EC) No 199/2008 (within the geographical scope of Directive 2008/56/EC) and similar obligations under the common fisheries policy.

#### 3.1. Level of pressure of the fishing activity

The primary indicator for this criterion is *Fishing mortality (F)*. Achieving good environmental status requires that F values are equal to or lower than the level capable of producing Maximum Sustainable Yield (MSY) over the long term  $(F_{MSY})$ .

| MSFD                                                      | Your organization (Yes or No) |
|-----------------------------------------------------------|-------------------------------|
| 3.1.1. Fishing mortality (F) related to a reference value |                               |

Secondary indicators: If analytical assessments yielding values for F are not available, then a possible secondary indicator is the *ratio between catch and a biomass index (hereinafter catch/biomass ratio) (3.1.2)*, where the biomass index is ideally taken from sources independent from the commercial fishing activity (e.g. catch rates from bottom trawl surveys, biomass estimates from acoustic surveys, biomass estimates from egg-surveys).

|   | MSFD                       | Your organization (Yes or No) |
|---|----------------------------|-------------------------------|
| Ī | 3.1.2. Catch/biomass ratio |                               |

Alternatively to the catch/biomass ratio, secondary indicators may be developed on the basis of any other appropriate proxy for fishing mortality, adequately justified.







#### For example:

| MSFD                        | Your organization (Yes or No) |
|-----------------------------|-------------------------------|
| Maximum Sustainable Yield   |                               |
| Trends in catches / biomass |                               |

#### 3.2. Reproductive capacity of the stock

The primary indicator is the *Spawning Stock Biomass (SSB)*. SSB is estimated from appropriate analytical assessments based on the analysis of catch at age or at length and ancillary information.

Secondary indicators: If analytical assessments yielding values for SSB are not available, then the *biomass indices taken* from independent sources can be used if these indices can be obtained for the fraction of the population that is sexually mature. Where, in absence of analytical assessments, abundance indices are chosen as indicator, then the abundance indices observed must be used when scientific judgement is able to determine, through detailed analysis of the historical trends of the indicator combined with other information on the historical performance of the fishery, that there is a high probability that the stock will be able to replenish itself under the prevailing exploitation conditions.

| MSFD                                                       | Your organization (Yes or No) |
|------------------------------------------------------------|-------------------------------|
| 3.2.1. Spawning Stock Biomass related to a reference value |                               |
| 3.2.2. Biomass indices                                     |                               |

#### 3.3. Population age and size distribution.

| MSFD                                                                                                              | Your organization (Yes or No) |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 3.3.1. The proportion of fish larger than a given length, e.g. the length at which 100% of the females are mature |                               |
| 3.3.2. The mean maximum length across all species found in research vessel surveys                                |                               |
| 3.3.3. The 95% percentile of the fish length distribution observed in research vessel surveys                     |                               |

Secondary indicators: Size at full sexual maturation (3.9), which may reflect the extent of undesirable genetic effects of exploitation.







Given that the indicator "mean maximum length across all species" already incorporates information of a large set of fish and shellfish stocks, this criterion applies to the fish community rather than to individual stocks.

| MSFD                                                                                                                     | Your organization (Yes or No) |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 3.3.4. Size at full sexual maturation, which may reflect<br>the extent of undesirable genetic effects of<br>exploitation |                               |

**Descriptor 4:** All elements of the marine food webs, to the extent that they are known, occur at normal abundance and diversity and levels capable of ensuring the long-term abundance of the species and the retention of their full reproductive capacity.

The species composition of food webs varies according to habitat and region, but the principles of energy transfer from sunlight and plants through successive trophic levels are the same. Criteria proposed are in relation to major attributes.

#### 4.1. Productivity (production per unit biomass) of key species or trophic groups

If sufficient information is available, where appropriately developed, indicators such as the Marine Trophic Index can address the *trophic relationships within the food web*. The diet composition of a species or group of species describes the relative abundance of prey in a food web and can be diagnostic of food web changes.

| MSFD                                              | Your organization (Yes or No) |
|---------------------------------------------------|-------------------------------|
| 4.1.1. Performance of key predator species using  |                               |
| their production per unit biomass (productivity)* |                               |
| 4.1.2. Production per unit biomass                |                               |
| 4.1.3. Marine Trophic Index                       |                               |
| 4.1.4. Trophic Levels (Functional feeding groups) |                               |
| 4.1.5. Diet composition                           |                               |

If you have indicators developed to reflect the performance of key predator species, please specify them.

#### 4.2. Proportion of selected species at the top of food webs

The rate of change in abundance of functionally important species highlights important changes in food web structure. For large fish, data can be used from fish monitoring surveys, on an annual basis, at the scale of a regional or subregional sea.

| MSFD                                                     | Your organization (Yes or No) |
|----------------------------------------------------------|-------------------------------|
| 4.2.1. % Large fish (by weight)                          |                               |
| 4.2.2. Body size (length, weight) in selected functional |                               |
| groups/species                                           |                               |







#### 4.3. Abundance/distribution of key groups/species

Indicators describe *abundance trends* (4.3.1) to identify changes in population status potentially affecting food web status. Assessments are required at regular intervals, taking account of seasonal changes.

Particularly suitable groups/species in a region or sub-region include:

- (i) biological groups with fast turnover rates (e.g. phytoplankton, zooplankton, jellyfish, short-living pelagic fish, and bacteria) that will respond quickly to ecosystem change and are useful as early warning indicators;
- (ii) groups/species that are targeted by human activities;
- (iii) habitat-defining groups/species (e.g. benthic fauna);
- (iv) groups/species at the top of the food web (which may accumulate harmful substances or respond to cascading effects from ecosystem changes);
- (v) groups/species that are tightly linked to other groups/species at another trophic level.

| MSFD                                                   | Your organization (Yes or No) |
|--------------------------------------------------------|-------------------------------|
| 4.3.1. Abundance trends - Abundance and spatial        |                               |
| distributions of species (of fast turnover rates,      |                               |
| fish targeted by fishery, habitat-defining             |                               |
| groups/species, species/groups tightly linked to other |                               |
| trophic levels, etc.)                                  |                               |

Additional: Energy flows in food webs: Ratio of production or biomass between different trophic levels Indicators aim at measuring the degree of energy flow between different trophic levels. Ratios between primary production and top level predators are to be analyzed and controlled in order to test the efficiency of energy transfer through the food-web and whether the long term viability of all components is secured.

| MSFD                                                 | Your organization (Yes or No) |
|------------------------------------------------------|-------------------------------|
| Ratio of pelagic to demersal fish biomass and/or     |                               |
| production                                           |                               |
| Ratio of macrobenthos invertebrate to demersal fish  |                               |
| production or biomass                                |                               |
| Ratio zooplankton production required/ zooplankton   |                               |
| production                                           |                               |
| Ratio benthic production required/benthic production |                               |

**Descriptor 5:** Human-induced eutrophication is minimised, especially adverse effects thereof, such as losses in biodiversity, ecosystem degradation, harmful algae blooms and oxygen deficiency in bottom waters

The analysis to be made combines information on nutrient loads, analyses of a range of primary symptoms and, where ecologically relevant, of secondary symptoms.

| MSFD           | Your organization (Yes or No) |
|----------------|-------------------------------|
| Nutrient loads |                               |







#### 5.1. Nutrient level

| MSFD                                                                                                                                   | Your organization (Yes or No) |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 5.1.1. Nutrients concentration in the water column                                                                                     |                               |
| 5.1.2. Nutrients ratio: Deviate from normal proportion of nutrient ratios (Si:N:P) (e.g. Si is reduced in relation to other nutrients) |                               |

#### 5.2. Primary symptoms or directs effects of eutrophication

| MSFD                                                                                    | Your organization (Yes or No) |
|-----------------------------------------------------------------------------------------|-------------------------------|
| 5.2.1. Chlorophyll (concentration, spatial areas of high concentrations)                |                               |
| 5.2.2. Water transparency due to increase in suspended algae                            |                               |
| 5.2.3. Algal community structure - Abundance/Increase of opportunistic macroalgae       |                               |
| (e.g. can form blankets over the natural flora and suffocate benthic animals            |                               |
| 5.2.4. Species shift in floristic composition (e.g. diatom:flagellate ratio, benthic to |                               |
| pelagic shifts, indicator species, and harmful algae blooms). Annual bloom events of    |                               |
| nuisance/toxic algal blooms. Annual to multi-year changes in frequency and/or           |                               |
| duration of blooms. Changes in balance of diatoms/flagellates/cyanobacteria             |                               |
| 5.2.5. Primary production                                                               |                               |
| 5.2.6. Nuisance / toxic algal blooms                                                    |                               |
| 5.2.7. Submerged aquatic vegetation - spatial coverage and density of beds              |                               |

#### 5.3. Secondary symptoms or indirect effects of eutrophication

| MSFD                                                                                              | Your organization (Yes or No) |
|---------------------------------------------------------------------------------------------------|-------------------------------|
| 5.3.1. Abundance/Decrease in perennial seaweeds and seagrasses                                    |                               |
| 5.3.2. Dissolved oxygen                                                                           |                               |
| 5.3.3. Benthos - diversity and proportion of sensitive vs. non-sensitive species (e.g. P-R model) |                               |
| 5.3.4. Benthos / fish kills                                                                       |                               |

**Descriptor 6:** Sea-floor integrity is at a level that ensures that the structure and function of the ecosystems are safeguarded and benthic ecosystems, in particular, are not adversely affected.

The scale for assessing GES by this descriptor can be particular challenging because of the patchy features of some benthic ecosystems, both for natural and pressure aspects. Assessment of GES will have to integrate results from local scale, to much







larger regional and sub-regional scales, taking into consideration substrate characteristics<sup>5</sup>, benthic communities composition and functional traits. Special attention is to be given to: i) distinct biogeographic regions, ii) different water depth habitat types, iii) different substrate type. In other words, physical damage regarding substrate characteristics and condition of benthic community for each particular type of substrate should be considered.

| MSFD                                                   | Your organization (Yes or No) |
|--------------------------------------------------------|-------------------------------|
| 6.1. Physical damage, having regard to substrate       |                               |
| characteristics                                        |                               |
| 6.2. Type, abundance, biomass and areal extent of      |                               |
| relevant biogenic substrate                            |                               |
| 6.3. Extent of the seabed significantly affected by    |                               |
| human activities for the different substrate types     |                               |
| 6.4. Condition of benthic community                    |                               |
| 6.5. Structure of benthic habitats                     |                               |
| 6.6. Abundance of bio-engineering species              |                               |
| 6.7. Diversity and richness indices also taking into   |                               |
| account species -area relationships                    |                               |
| 6.8. Proportion of biomass or number of individuals in |                               |
| the macrobenthos above some specified length/size      |                               |
| 6.9. Biomass size spectrum                             |                               |
|                                                        |                               |
| 6.10. Shape of cumulative abundance curves of          |                               |
| numbers of individuals by size group                   |                               |
| 6.11. Secondary production                             |                               |
|                                                        |                               |
| 6.12. Opportunistic-sensitive species proportion (e.g. |                               |
| AMBI, P-R-model)                                       |                               |
| 6.13. Parameters describing the characteristics        |                               |
| (shape, slope and intercept) of the size spectrum of   |                               |
| the benthic community                                  |                               |
| 6.14. Presence of particularly sensitive and or        |                               |
| tolerant species                                       |                               |

#### Descriptor 7: Permanent alteration of hydrographical conditions does not adversely affect marine ecosystems

Permanent alteration of hydrographical conditions can derive from activities such as constructions at sea, landfills and land claim, barrages, windmill farms and other renewable energy constructions, oil and gas platforms and bridges, dredging and deposition in the sea, but also from constructions on land with outlets into the sea e.g. power plants outfalls (Annex III, Table 2). Permanent alterations of the hydrographical conditions can consist in changes in the tidal (emergence) regime, current or wave action, salinity and temperature characteristics, water clarity, which can affect marine ecosystems.

<sup>&</sup>lt;sup>5</sup> Together with hydrodynamics, substrate is a main factor structuring benthic habitats, being a driver of patterns in diversity, function and integrity of benthic communities. Indirect indicators of functions (i.e. the benthic communities associated with the substrate) can be more practical to use in assessing GES than indicators of the substrate itself. The magnitude of impacts of human activities differs greatly between substrate types.







| MSFD pressures                                                      | Your organization (Yes/No)* |
|---------------------------------------------------------------------|-----------------------------|
| Data/information on constructions at sea, landfills and land claim, |                             |
| barrages, windmill farms and other renewable energy                 |                             |
| constructions, oil and gas platforms and bridges, dredging and      |                             |
| deposition in the sea, constructions on land with outlets into the  |                             |
| sea e.g. power plants outfalls (Annex III, Table 2).                |                             |

• If 'Yes', please specify for which human activity/use are the data/information belonging to your organization.

The impacts are to be considered through the following indicators:

| MSFD                                                                                                                                                                                                                                     | Your organization (Yes or No) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 7.1. Spatial characterisation of permanent alterations                                                                                                                                                                                   |                               |
| 7.1.1. Extent of area affected by permanent alterations                                                                                                                                                                                  |                               |
| 7.1.2. Changes in sedimentation                                                                                                                                                                                                          |                               |
| 7.2. Impact of permanent hydrographical changes                                                                                                                                                                                          |                               |
| 7.2.1. Spatial extent of benthic habitat affected by the permanent alteration                                                                                                                                                            |                               |
| 7.2.2. Changes in benthic communities and or biomass production                                                                                                                                                                          |                               |
| 7.2.3. Extent of area with spatial or temporal hypoxia/anoxia                                                                                                                                                                            |                               |
| 7.2.4. Presence of benthic communities associated with low oxygen conditions                                                                                                                                                             |                               |
| 7.2.5 Diversity and richness indices, based on species number and relative abundance in the benthic community                                                                                                                            |                               |
| 7.2.6 Presence of particularly sensitive or tolerant species                                                                                                                                                                             |                               |
| 7.2.7. Changes in habitat functions due to altered hydrographical conditions (e.g. changes in areas for fish/mammals reproduction (spawning areas, breeding), nursery and feeding areas and migration routes of fish, birds and mammals) |                               |

#### **Descriptor 8:** Concentrations of contaminants are at levels not giving rise to pollution effects.

The Member States will consider the substances or group of substances that:

- (i) have been identified as exceeding the relevant Ecological Quality Standards set for coastal or transitional water bodies adjacent to the marine region or subregion, be it in water, sediment or biota and/or
- (ii) are included in the list of priority pollutants in Annex X of EC Directive 2000/60 and are discharged into the concerned marine region or subregion and/or
- (iii) are pollutants under the terms of the Directive and their discharges, releases, losses or emissions are significant in the marine region or subregion, including acute pollution events following accidents.

Progress towards good environmental status will depend on whether their presence in the marine environment is consistently decreasing for synthetic or priority substances, or is progressively stabilised at background values for natural ones, as well as on whether their biological effect are kept within acceptable limits.







| MSFD                                                                                                                                                                                                                                                                                                                                               | Your organization (Yes or No) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 8.1 Concentrations in water, sediments and biota (measured, where relevant, in the same matrix*)                                                                                                                                                                                                                                                   |                               |
| 8.2. Biological effects on the elements of concerned ecosystems, after having established at national, regional or subregional level (i) the appropriate taxonomic groups where the effects must be identified, taking into account their sensitivity towards the pollutant concerned and within them (ii) the nature of the effect to be assessed |                               |
| 8.3. Occurrence and extent of acute pollution events (e.g. slicks from oil and oil products) and impact on biota physically affected by this pollution                                                                                                                                                                                             |                               |

<sup>\*</sup>Is there an agreed list of contaminants which is developed based on existing national regulations? If yes, please specify which contaminants are agreed.

**Descriptor 9:** Contaminants in fish and other seafood for human consumption do not exceed levels established by Community legislation or other relevant standards

Member States are to monitor the presence in wild caught fish, crustaceans, molluscs, echinoderms, roe and seaweed harvested in the different (sub) regions destined for human consumption for substances:

- for which maximum levels contained within products destined to human consumption are established at EU, regional, or national level, and/or
- referred to in descriptor 8, for which the predicted or measured environmental concentration is above the level where no biological effects appear.

The presence of the contaminants above is to be assessed against regulatory levels set for human consumption. This includes the performance of a trend analysis when either environmental concentration levels or biological effect levels are still in the process of being set.

Progress towards good environmental status will depend on whether the contaminants subject to surveillance are at levels below the levels established for human consumptions or showing a downward trend (for the contaminants for which regulatory levels are in the process of being set).

Levels, number and frequency of substances:

| MSFD                                                                                      | Your organization (Yes or No) |
|-------------------------------------------------------------------------------------------|-------------------------------|
| 9.1. Frequency of levels exceeding regulatory levels (*)                                  |                               |
| 9.2. Actual levels detected                                                               |                               |
| 9.3 Numbers of contaminants for which exceeding levels have been detected                 |                               |
| 9.4. Origin of contaminants (geological versus anthropogenic; local versus long distance) |                               |

<sup>\*</sup>Is there list of contaminants to be considered which has been developed based on existing regulations? If yes, please specify which contaminants are agreed.

#### **Descriptor 10:** Properties and quantities of marine litter do not cause harm to the coastal and marine environment.

The distribution of litter is highly variable due to short time variations caused by meteorological and hydrodynamic events, including seasonal fluctuations. Such variability is to be taken into considerations when planning monitoring schemes. The descriptor deals with amount, composition and sources of litter, as well as with its impacts.







| MSFD                                                                                   | Your organization (Yes or No) |
|----------------------------------------------------------------------------------------|-------------------------------|
| 10.1. ML washed ashore and/or deposited on coastlines                                  |                               |
| 10.2. ML in the water column, including floating and suspended litter on the sea floor |                               |
| 10.3. ML ingested by marine animals/birds                                              |                               |
| 10.4. Microparticles (mainly mircroplastics) derived from degradation of litter        |                               |
| 10.5. Impact rates of degraded litter on organisms                                     |                               |
| 10.6. Potential chemical pollution resulting from degraded litter (plastic)            |                               |

**Descriptor 11:** Introduction of energy, including underwater noise, is at levels that do not adversely affect the marine environment.

As well as underwater noise, other forms of energy inputs can be distinguished such as electromagnetic fields from electricity cables and light at the surface. At this stage, and subject to further development, only the aspect of underwater noise has been developed further as a fist priority.

Noise input can occur at many scales of both space and time. Anthropogenic sounds may be of short duration (e.g. impulsive) or be long lasting (e.g. continuous). Higher frequency sounds transmit less well in the marine environment whereas lower frequency sounds can travel far.

Organisms that are exposed to sounds can be adversely affected over a short time-scale (acute effect) or a long time-scale (permanent or chronic effects). Adverse effects can be subtle (e.g. temporary harm to hearing, behavioural effects) or obvious (e.g. death in the worst case). With sufficient resources and research, it might be possible to develop indicators for these many facets of harm from energy input; however the initial indicators described below (pressure indicators) focus on sounds that affect relatively broad areas rather than sounds that affect only local parts of the marine environment.

| MSFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Your organization<br>(Yes or No) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 11.1. Distribution in time and place of loud, low and mid frequency impulsive sounds (Proportion of days and their distribution within a calendar year over areas of a determined surface, as well as their spatial distribution, in which anthropogenic sound sources exceed levels that are likely to entail significant impact on marine animals measured as Sound Exposure Level (in dB re 1µPa 2 .s) or as peak sound pressure level (in dB re 1µPa peak ) at one metre, measured over the frequency band 10 Hz to 10 kHz (11.1.1)) |                                  |
| 11.2 Continuous low frequency sound (Trends in the ambient noise level within the 1/3 octave bands 63 and 125 Hz (centre frequency) (re 1µPa RMS; average noise level in these octave bands over a year) measured by observation stations and/or with the use of models if appropriate (11.2.1))                                                                                                                                                                                                                                         |                                  |







#### B. Data availability versus Annex III of the MSFD

Avoiding duplication with Annex I, here selected parts of Annex III are given for data availability check.

Table 1. Characteristics -state of the Sea

| Characteristic             | Component                                                                                                                                            | Criteria                                                 | Your Organization<br>(Yes or No) |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|
| Physical and chemical      | Bathymetry and topography                                                                                                                            |                                                          |                                  |
| features                   | Temperature and salinity regime, ice cover, current velocity, stratification (CIL <sup>6</sup> ), upwelling, wave pH, pCO, H <sub>2</sub> S profiles | Seasonal variability,<br>spatial distribution,<br>trends |                                  |
| Biological features at the | Seabirds                                                                                                                                             | Diversity, abundance,                                    |                                  |
| level of functional        | Mammals                                                                                                                                              | spatial distribution,                                    |                                  |
| groups                     |                                                                                                                                                      | migrations, trends                                       |                                  |

In the Table below, please check whether you have data/information to describe the human activities exercised in your national waters and on coast. In the column 'Description of marine use/activity' please specify what kind of indicators you use in your country.

Table 2. Description of human activities

| Activity Theme                 | List of Human Activities                                  | Description of marine use/activity |
|--------------------------------|-----------------------------------------------------------|------------------------------------|
|                                | Fisheries incl. recreational fishing (fish & shellfish)   |                                    |
| Extraction of living resources | Seaweed and other sea-based food harvesting               |                                    |
|                                | Extraction of genetic resources/<br>bioprospecting/ maerl |                                    |
| Food production                | Aquaculture (fin-fish & shellfish)                        |                                    |
|                                | Land claim, coastal defence                               |                                    |
| Man-made                       | Port operations                                           |                                    |
| structures (incl. in           | Placement & operation of offshore                         |                                    |
| construction)                  | structures (other than for energy                         |                                    |
| Construction                   | production)                                               |                                    |
|                                | Submarine cable & pipeline operations                     |                                    |
| Extraction of non-             | Marine mining (sand, gravel, rock)                        |                                    |
| living resources               | Dredging                                                  |                                    |
| iiviiig resources              | Desalination/water abstraction                            |                                    |
|                                | Marine-based renewable energy                             |                                    |
| Energy production              | generation (wind, wave & tidal power)                     |                                    |
| Lifergy production             | Marine hydrocarbon extraction (oil & gas)                 |                                    |
| Transport                      | Shipping                                                  |                                    |

<sup>&</sup>lt;sup>6</sup> Cold Intermediate Layer







| Activity Theme                    | List of Human Activities                         | Description of marine use/activity |
|-----------------------------------|--------------------------------------------------|------------------------------------|
| Waste disposal                    | Solid waste disposal incl. dredge material       |                                    |
| -                                 | Storage of gases                                 |                                    |
| Tourism and recreation            | Tourism & recreation incl. yachting              |                                    |
| Research and survey               | Marine research, survey & educational activities |                                    |
| Military                          | Defence recurrent operations                     |                                    |
| Military                          | Dumping of munitions                             |                                    |
| Land-based                        | Urban (municipal waste water discharge)          |                                    |
| activities (coastal, riverine and | Industry (discharges, emissions)                 |                                    |
| atmospheric)                      | Agriculture & forestry (run-off, emissions)      |                                    |
| Other marine uses and activities  |                                                  |                                    |

In the Table below, please cross-check whether for each human activity you have data/information to describe the pressures exercised on the Black Sea. In the shaded boxes please indicate 'Yes' or 'No' considering level of input/load (where appropriate) and/or level of pressure in the environment.

Table 3. Human activities and pressures (cross-check)

| Activity<br>Theme              | List of Human<br>Activities                                      |                                                  | PRESSURES                               |                                                    |                                    |                                |                                                       |                                                                        |                                                           |                                                          |                                                                   |                                           |                        |
|--------------------------------|------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------|------------------------------------|--------------------------------|-------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|------------------------|
|                                |                                                                  | Physical<br>loss (area,<br>extent <sup>7</sup> ) | Physical<br>damage<br>(area,<br>extent) | Interference<br>with<br>hydrological<br>processes  | disturban                          | ohysical<br>ce (areas,<br>ent) | Contamination<br>by hazardous<br>substances<br>(load) | Systematic<br>and/or intentional<br>release of<br>substances (load)    | Nutrient and<br>organic<br>matter<br>enrichment<br>(load) | Bio                                                      | ogical disturbances                                               |                                           | Acidification          |
|                                |                                                                  |                                                  | Smothering<br>Sealing                   | Siltation<br>Abrasion<br>Extraction<br>(e.g. sand) | Thermal and salinity regime change | Noise<br>(trends<br>in level)  | Marine litter (trends in amount on coast and in sea)  | Synthetic<br>compounds<br>Non-synthetic<br>substances<br>Radionuclides | e.g. produced<br>water, carbon<br>storage                 | Fertilizers<br>and other<br>nutrient-rich<br>substances. | Extraction of<br>species,<br>including<br>non-target <sup>8</sup> | Invasives,<br>translocations <sup>9</sup> | Microbial<br>pathogens |
|                                | Fisheries incl.<br>recreational<br>fishing (fish &<br>shellfish) |                                                  |                                         |                                                    |                                    |                                |                                                       |                                                                        |                                                           |                                                          |                                                                   |                                           |                        |
| Extraction of living resources | Seaweed and other sea-<br>based food harvesting                  |                                                  |                                         |                                                    |                                    |                                |                                                       |                                                                        |                                                           |                                                          |                                                                   |                                           |                        |
|                                | Extraction of genetic resources/ bioprospecting/ maerl           |                                                  |                                         |                                                    |                                    |                                | _                                                     |                                                                        |                                                           |                                                          |                                                                   |                                           |                        |
| Food production                | Aquaculture<br>(fin-fish &<br>shellfish)                         |                                                  |                                         |                                                    |                                    |                                |                                                       |                                                                        |                                                           |                                                          |                                                                   |                                           |                        |

<sup>&</sup>lt;sup>7</sup> Area and extent, where mentioned, are meant for different types of affected substrates.

<sup>&</sup>lt;sup>9</sup> The pressure can be described by vectors of introduction, risk areas, number of new species identified per year, number of established species per decade, etc.





<sup>8</sup> The Pressure can be described by number of vessels, fishing effort, frequency trawled, etc.



|                                                       | List of Human<br>Activities                                                                                           | PRESSURES                                        |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|------------------------|----------------|--|
| Activity<br>Theme                                     |                                                                                                                       | Physical<br>loss (area,<br>extent <sup>7</sup> ) | Physical<br>damage<br>(area,<br>extent)            | Interference with hydrological processes Other physical disturbance (areas, extent) |                               | ohysical<br>ace (areas,<br>ent)                      | Contamination<br>by hazardous<br>substances<br>(load)                  | Systematic<br>and/or intentional<br>release of<br>substances (load) | Nutrient and<br>organic<br>matter<br>enrichment<br>(load) | Biological disturbances                                           |                                           |                        | Acidification  |  |
|                                                       |                                                                                                                       | Smothering<br>Sealing                            | Siltation<br>Abrasion<br>Extraction<br>(e.g. sand) | Thermal and salinity regime change                                                  | Noise<br>(trends<br>in level) | Marine litter (trends in amount on coast and in sea) | Synthetic<br>compounds<br>Non-synthetic<br>substances<br>Radionuclides | e.g. produced<br>water, carbon<br>storage                           | Fertilizers<br>and other<br>nutrient-rich<br>substances.  | Extraction of<br>species,<br>including<br>non-target <sup>8</sup> | Invasives,<br>translocations <sup>9</sup> | Microbial<br>pathogens | Decrease in pH |  |
|                                                       | Land claim,<br>coastal defence                                                                                        |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
|                                                       | Port operations                                                                                                       |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Man-made<br>structures<br>(incl. in<br>construction)  | Placement & operation of offshore structures (other than for energy production) Submarine cable & pipeline operations |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Extraction of                                         | Marine mining<br>(sand, gravel,<br>rock)                                                                              |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| non-living<br>resources                               | Dredging                                                                                                              |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| 100041000                                             | Desalination/w<br>ater abstraction                                                                                    |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Energy<br>production                                  | Marine-based<br>renewable<br>energy<br>generation<br>(wind, wave &<br>tidal power)                                    |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
|                                                       | Marine<br>hydrocarbon<br>extraction (oil &<br>gas)                                                                    |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Transport                                             | Shipping                                                                                                              |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Waste<br>disposal                                     | Solid waste<br>disposal incl.<br>dredge material<br>Storage of                                                        |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Tourism and recreation                                | gases Tourism & recreation incl.                                                                                      |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Research<br>and survey                                | yachting Marine research, survey & educational activities                                                             |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Military                                              | Defence<br>recurrent<br>operations<br>Dumping of                                                                      |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| Land-based<br>activities<br>(coastal,<br>riverine and | munitions Urban (municipal waste water discharge) Industry (discharges, emissions)                                    |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| atmospheric) Other marine                             | Agriculture & forestry (run-<br>off, emissions)                                                                       |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |
| uses and<br>activities                                |                                                                                                                       |                                                  |                                                    |                                                                                     |                               |                                                      |                                                                        |                                                                     |                                                           |                                                                   |                                           |                        |                |  |







In the Table below, please cross-check for each pressure do you have the data/information to describe the impacts. Please indicate 'Yes' or 'No'.

Table 4. Pressures and impacts (cross-check)<sup>10</sup>

| Pressure theme                 | Pressure                             | Impact on                           | Yes/No |
|--------------------------------|--------------------------------------|-------------------------------------|--------|
| Physical loss                  | Smothering                           | Seabed Habitats                     |        |
| -                              | Sealing                              |                                     |        |
| Physical damage                | Siltation                            |                                     |        |
|                                | Abrasion                             |                                     |        |
|                                | Extraction                           |                                     |        |
| Other physical disturbance     | Underwater noise                     | Functional groups and habitats      |        |
| • •                            | Marine litter                        | (water column and seabed)           |        |
| Interference with hydrological | Thermal regime change                | Functional groups and habitats      |        |
| processes                      | Salinity regime change               | (water column and seabed)           |        |
| Contamination by hazardous     | Synthetic compounds                  | Seabed habitats, functional groups, |        |
| substances                     | Non-synthetic substances             | seafood                             |        |
|                                | Radionuclides                        | 7                                   |        |
| Systematic and/or intentional  | Other substances                     | Seabed habitats, functional groups  |        |
| release of substances          |                                      |                                     |        |
| Nutrient and organic matter    | Nutrients                            | Water column and seabed habitats,   |        |
| enrichment                     | Organic matter                       | species, functional groups,         |        |
|                                | -                                    | ecosystems                          |        |
| Biological disturbance         | Microbial pathogens                  | Safety of food (fish and other      |        |
|                                |                                      | seafood), bathing water quality     |        |
|                                | Non-native species and               | Water column and seabed habitats,   |        |
|                                | translocations                       | species, functional groups,         |        |
|                                |                                      | ecosystems                          |        |
|                                | Extraction of selected species incl. | Water column and seabed habitats,   |        |
|                                | non-target catches                   | species, functional groups,         |        |
|                                |                                      | ecosystems                          |        |
| Others                         |                                      |                                     |        |

#### VII. Needs in harmonization

Please specify your opinion on the needs in harmonization as per the MSFD:

- 1. National level
- 2. Regional level

Please specify the needs in harmonization in the following categories (examples):

- a. Sampling strategy (equipment, frequency, sampling area coverage)
- b. Data analysis
- c. Indicators development
- d. GES assessment

<sup>&</sup>lt;sup>10</sup> The Table is similar to Table 2 from the EC document: Guidance for 2012 reporting under the Marine Strategy Framework Directive, however covers broader scale impacts under certain pressures as seen being possible in the Black Sea.





# **ANNEXES**

#### **ANNEX II. Inventories of Stakeholders**



European Commission DG Environment

# Diagnostic Report Inventories of Stakeholders





# **BULGARIA**

| No  | Organization                                                                                                    | Cat.    | Sector                             | City    | Web page                           | Title           | Contact<br>Name                                 | Position                                                       | email                                                                     | Phone                                         |
|-----|-----------------------------------------------------------------------------------------------------------------|---------|------------------------------------|---------|------------------------------------|-----------------|-------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|
| 1.  | Ministry of<br>Environment and<br>Water                                                                         | public  | Government                         | Sofia   | http://www.moew.gover<br>nment.bg/ | Mrs             | Marinka<br>Bogdanova                            | MFSD coordinator<br>Expert Water<br>management<br>Directorate  | bogdanovam@moe<br>w.government.bg                                         | 00359<br>2 940 6644                           |
| 2.  | Ministry of Regional development and Public Work                                                                | public  | Government                         | Sofia   | http://www.mrrb.govern<br>ment.bg/ | Mrs.            | Ekaterina<br>Zaharieva                          | Deputy Minister                                                | ezaharieva@mrrb.g<br>overnment.bg                                         | 00359<br>2 9405 9                             |
| 3.  | Ministry of economy,<br>energy and tourism                                                                      | public  | Government                         | Sofia   | http://www.mi.governme<br>nt.bg/bg | Mr.             | Nikolai<br>Nalbantov;<br>Alexandrina<br>Ivanova | Director "Energy<br>and environment<br>protection"             | n.nalbantov@mee.g<br>overnment.bg                                         | 00359<br>2 9263 208                           |
| 4.  | Ministry of Health                                                                                              | public  | Government                         | Sofia   | http://www.mh.governm<br>ent.bg/   | M.D.            | Dimitar<br>Dimitrov                             | Head "Public health directorate"                               | dimdimitrov@mh.go<br>vernment.bg                                          | 00359<br>2 930 11 59                          |
| 5.  | Ministry of Defence                                                                                             |         |                                    |         |                                    |                 |                                                 |                                                                |                                                                           |                                               |
| 6.  | Ministry of Foreign<br>Affairs                                                                                  | public  | Government                         | Sofia   | http://www.mfa.bg/                 | Mr.             | Ivan Petkov                                     | Ambassador for<br>special cases for<br>the Black Sea<br>region | iprd@mfa.bg                                                               | 00359<br>2 971 14 08                          |
| 7.  | Ministry of Transport,<br>Information<br>Technology and<br>communications                                       | public  | Government                         | Sofia   | http://www.marad.bg/               | Mr.             | Petar Kirov                                     | Deputy Director "Executive Agency Maritime Administration"     | pkirov@marad.bg                                                           | 00359<br>2 930 09 41                          |
| 8.  | Ministry of Agriculture<br>and Food/National<br>Agency for Fishery<br>and Aquaculture                           | public  | Government - Fishery & Aquaculture | Sofia   | http://iara.government.b<br>g/     | Mr.             | Ivailo<br>Simeonov                              | Head Dep. "Fisheries and control"                              | office@iara.governm<br>ent.bg;<br>lvaylo.simeoonov@i<br>ara.government.bg | 00359<br>2 80 51 666;<br>00359<br>2 80 51 674 |
| 9.  | Ministry of Culture                                                                                             | public  | Government                         | Sofia   | http://mc.government.bg<br>/       | Mr.             | Georgy<br>Stoev                                 | Deputy Minister                                                | g.stoev@mc.govern<br>ment.bg                                              | 00359<br>2 9400916                            |
| 10. | Executive<br>Environmental<br>Agency                                                                            | public  | Government                         | Sofia   | http://eea.government.b<br>g/      | Mr.             | Velcho<br>Kuyumdjiev                            | Head Dep. "Water monitoring"                                   | blacksea@eea.gove rnment.bg.                                              | 00359<br>2 9559 818                           |
| 11. | Basin directorate for<br>water management in<br>the Black Sea<br>region/Ministry of<br>Environment and<br>water | public  | Government                         | Varna   | http://www.bsbd.org/               | Eng.            | Ventzislav<br>Nikolov<br>Desislava<br>Konsulova | Director Head<br>Dept. "Management                             | bsbd_mp@bsbd.org                                                          | 00359<br>52 631447                            |
| 12. | Institute of<br>Oceanology-BAS                                                                                  | public  | Research                           | Varna   | www.io-bas.bg                      | Prof.           | Snejana<br>Moncheva                             | Head Dep. "Marine<br>biology and<br>Ecology"                   | snejanam@abv.bg                                                           | 00359<br>52 370485                            |
| 13. | National Institute of<br>Hydrology and<br>Meteorology-BAS                                                       | public  | Research                           | Sofia   | http://www.meteo.bg/               | Assoc.<br>prof. | Dobri<br>Dimitrov                               | Deputy General<br>Director                                     | office@meteo.bg                                                           | 00359<br>2 9753996                            |
| 14. | Center of hydro-and<br>aerodynamics-BAS                                                                         | public  | Research                           | Varna   | http://www.bshc.bg/                | Assoc. prof.    | Konstantin<br>Josifov                           | Director                                                       | office@bshc.bg                                                            | 00359<br>52 370500                            |
| 15. | LUKOIL Bulgaria Ltd                                                                                             | private | Gas and oil                        | Sofia   | http://www.lukoil.bg/              | Mr.             | Valentin<br>Zlatev                              | General Director                                               | office@lukoil.bg                                                          | 00359<br>2 91 74 100                          |
| 16. | Petrol-AD Bulgaria                                                                                              | private | Gas and oil                        | Sofia   | http://www.petrol.bg/              | Mr.             | Svetoslav<br>Yordanov                           | Executive Director                                             | office@petrol.bg                                                          | 00359<br>2 4960 300                           |
| 17. | Navy Academy "N.<br>Vaptzarov"                                                                                  | public  | Education                          | Varna   | http://www.naval-<br>acad.bg/      | Prof.D. sci.,   | Boyan<br>Mednikarov                             | Dean                                                           | dean-eng@naval-<br>acad.bg                                                | 00359<br>52 632 015                           |
| 18. | Bulgarian Association<br>of Tourist Agencies                                                                    | other   | NGO -<br>tourism                   | Sofia   | http://www.batabg.org/             | Mrs.            | Donka<br>Sokolova                               | Chair of the<br>Steering Committee                             | bata@mail.orbitel.bg                                                      | 00359<br>2 980 6929                           |
| 19. | Bulgarian Tourist<br>Chamber                                                                                    | other   | NGO -<br>tourism                   | Sofia   | http://www.btch.org/               | Assoc.<br>Prof. | Tzvetan<br>Tonchev                              | Chair of the<br>Steering Committee                             | btch@btch.org                                                             | 00359<br>2 9874059                            |
| 20. | Black Sea Institute                                                                                             | other   | NGO -<br>environment               | Bourgas | http://bs-ml.eu/                   | Assoc.<br>prof. | Maruysya<br>Lyubcheva                           | President of the<br>Administrative<br>council                  | mar_lyb@yahoo.co<br>m                                                     | 00359<br>56 843 667                           |
| 21. | Consultancy Center<br>for sustainable<br>Development (CCSD)<br>Geopont-Intercom<br>Ltd.                         | private | Environment                        | Varna   | http://geopont.enviro-<br>link.org | Eng.            | Lyudmil<br>Ikonomov                             | General Manager                                                | ikonomov@enviro-<br>link.org                                              | 00359<br>52 612858                            |
| 22. | Black Sea NGO<br>Network (BSNN)                                                                                 | other   | NGO -<br>environment               | Varna   | http://www.bsnn.org/               | Mrs.            | Emma<br>Gileva                                  | Head Regional office                                           | bsnn@bsnn.org                                                             | 00359<br>52 615 856                           |
| 23. | Association of Fish<br>Products Producers<br>BG Fish (AFPP BG<br>Fish)                                          | other   | NGO -<br>Fishery                   | Sofia   | http://www.bgfish.com/             | Dr.             | Dr. Yordan<br>Gospodinov<br>-                   | Executive Director                                             | bgfish@bgfish.com                                                         | 00359<br>2 9817589                            |







| No  | Organization                                                                                     | Cat.   | Sector            | City                                | Web page                                   | Title | Contact<br>Name        | Position                                                              | email                            | Phone               |
|-----|--------------------------------------------------------------------------------------------------|--------|-------------------|-------------------------------------|--------------------------------------------|-------|------------------------|-----------------------------------------------------------------------|----------------------------------|---------------------|
| 24. | Fisheries Association "BLACK SEA SUNRISE"                                                        | other  | NGO -<br>Fishery  | Varna                               | http://www.bssfishing.co<br>m/             | Mr.   | Emil Milev             | President                                                             | bss.varna.bg@gmail<br>.com       | 00359<br>898699060  |
| 25. | Union of the<br>Bulgarian Black Sea<br>local authorities<br>(UBBSLA)                             | other  | NGO               | Varna                               | http://www.ubbsla.org/                     | Mrs.  | Mariana<br>Kancheva    | Director                                                              | office@ubbsla.org                | 00359<br>52 600 266 |
| 26. | Bulgarian Association for Plastics                                                               | other  | NGO -<br>Industry | Sofia                               | http://www.bap-bg.org/                     | Mrs.  | Antoaneta<br>Pernikova | Executive Director                                                    | e-mail: bap@mail.bg              | 00359<br>2 9430500  |
| 27. | Ministry of Environment and Water (representation in Belgium, Brussels, EU)                      | public | Government        | Brussels                            |                                            | Mrs   | Violeta<br>Popova      | Environment<br>attachee<br>Permanent<br>Representation of<br>BG to EU | violeta.popova@bg-<br>permrep.eu | 0032<br>2 280 31 62 |
| 28. | Central Laboratory<br>for High Geodezy<br>(Stations in<br>Varna,Irakli, Bourgas<br>and Achtopol) | public | Research          | Sofia                               | Sofia, 111, ul. Acad. G.<br>Bonchev, bl. 1 |       |                        |                                                                       |                                  | 02 720 841          |
| 29. | Institute for Fishing<br>Resources (IFR-<br>Varna)                                               | public | Research          | Varna                               | http://www.ifrvarna.com                    | Dr    | Vesselina<br>Mihneva   | Scientist                                                             | vvmihneva@yahoo.c<br>om          | 052632066           |
| 30. | Regional Laboratory-<br>Varna, Executive<br>Agency for<br>Environment                            | public | Government        | Varna                               |                                            |       |                        |                                                                       |                                  |                     |
| 31. | Regional Laboratory-<br>Bourgas, Executive<br>Agency for<br>Environment                          | public | Government        | Bourgas                             |                                            |       |                        |                                                                       |                                  |                     |
| 32. | Maritime<br>administration -Varna                                                                | public | Government        | Varna                               |                                            |       |                        |                                                                       |                                  |                     |
| 33. | Maritime<br>administration-<br>Bourgas                                                           | public | Government        | Bourgas                             |                                            |       |                        |                                                                       |                                  |                     |
| 34. | RHI (Bathing water)-<br>Varna, Dobrich and<br>Bourgas                                            | public | Government        | Varna,<br>Dobrich<br>and<br>Bourgas |                                            |       |                        |                                                                       |                                  |                     |
| 35. | Geozashtita - Varna                                                                              | public | Government        | Varna                               |                                            |       |                        |                                                                       |                                  |                     |
| 36. | Municipalities Varna,<br>Dobrich and<br>Bourgas <sup>1</sup>                                     | public | Government        | Varna,<br>Dobrich<br>and<br>Bourgas |                                            |       |                        |                                                                       |                                  |                     |
| 37. | Bulgarian Agency for<br>Food Safety                                                              | public | Government        | Sofia                               |                                            |       |                        |                                                                       |                                  |                     |
| 38. | National Statistical<br>Institute                                                                | public | Government        | Sofia                               |                                            |       |                        |                                                                       |                                  |                     |
| 39. | Institute of<br>Biodiversity and<br>Ecosystem<br>Research, BAS<br>(IBER-BAS)                     | public | Government        | Sofia                               | www.iber.bas.bg                            |       |                        |                                                                       |                                  |                     |

<sup>&</sup>lt;sup>1</sup> Note: largest municipalities have been mentioned, there are a number of smaller which are also potential holders or end-users of environmental data/information.







# **ROMANIA**

| No  | Name                                                                                               | Postal address                                | Phone                                                                | Mail                                                                       | Web                              | Contact person            |
|-----|----------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------|---------------------------|
|     | INSTITUTES                                                                                         |                                               |                                                                      |                                                                            |                                  |                           |
| 1   | Constanta County Department for Statistics                                                         | Bd. Tomis No. 51, Constanta                   | 00 40 241 672032/<br>Fax: 0241/672032                                | tele@constanta.insse.ro /<br>nicoleta.trandafir@constanta.insse.ro         | www.constanta.insse.ro           | Nicoleta<br>Trandafir     |
| 2   | National Research and<br>Development Institute for<br>Marine Geology and<br>Geoecology - GeoEcoMar | Bd. Mamaia No. 304, RO-<br>900581, Constanta  | 00 40 21 2522594<br>(Bucharest) /<br>00 40 241 548420<br>(Constanta) | headquarter@geoecomar.ro /<br>branch.constanta@geoecomar.ro                | www.geoecomar.ro                 | Tatiana Begun             |
| 3   | National Institute for Research and Development in Tourism                                         | St.Apolodor No. 17, Cod<br>050741, Bucharest  | 00 40 21 3162565 /<br>00 40 21 3162535                               | office@incdt.ro                                                            | www.incdt.ro                     | Dir. Ovidiu<br>Teodorescu |
| 4   | National Institute for Marine<br>Research and Development<br>"Grigore Antipa" (NIMRD)              | Bd. Mamaia No. 300, Ro-<br>900581, Constanta  | 00 0 241 540870                                                      | office@alpha.rmri.ro                                                       | www.rmri.ro                      | Dir. Simion<br>Nicolaev   |
| 5.  | INCDD Tulcea                                                                                       |                                               |                                                                      |                                                                            |                                  |                           |
| 6.  | ARBDD Danube Delta                                                                                 |                                               |                                                                      |                                                                            |                                  |                           |
|     | UNIVERSITIES                                                                                       |                                               | I                                                                    |                                                                            |                                  |                           |
| 7.  | Ovidius University                                                                                 |                                               |                                                                      |                                                                            |                                  |                           |
|     | MINISTRIES                                                                                         |                                               |                                                                      |                                                                            |                                  |                           |
| 8.  | Ministry of Environment and Forests<br>Ministry of Health                                          | Bd. Libertatii No. 12, Sector 5,<br>Bucharest | 00 40 21 4089641                                                     | otilia.mihail@mmediu.ro                                                    | www.mmediu.ro                    | Otilia Mihail             |
| 9.  | Ministry of Agriculture                                                                            |                                               |                                                                      |                                                                            |                                  |                           |
| 10. | Ministry of Transport                                                                              |                                               |                                                                      |                                                                            |                                  |                           |
| 11. | Ministry of Defence                                                                                |                                               |                                                                      |                                                                            |                                  |                           |
| 12. | Ministry of Tourism and<br>Development                                                             |                                               |                                                                      |                                                                            |                                  |                           |
| 13. | Ministry of Industry                                                                               |                                               |                                                                      |                                                                            |                                  |                           |
| 14. | Ministry of Energy                                                                                 |                                               |                                                                      |                                                                            |                                  |                           |
| 15. | Ministry of Economy                                                                                |                                               |                                                                      |                                                                            |                                  |                           |
|     | MUNICIPALITIES                                                                                     |                                               |                                                                      |                                                                            |                                  |                           |
| 16. | Constanta City Hall<br>(Environmental Department –<br>Urban Ecology)                               | Bd. Tomis no. 51, Cod 900725,<br>Constanta    | 00 40 241 488132                                                     | octavia.Bardasu@primaria-<br>constanta.ro; mediu@primaria-<br>constanta.ro | www.primaria-constanta.ro        | Octavia Bardasu           |
| 17. | S.C. Aquaserv                                                                                      | St. Rezervorului no. 2, Tulcea                | 00 40 240 524042                                                     | aquaserv_tl@yahoo.com                                                      | http://www.aquaservtulcea.r<br>o | Dir. Ionel<br>Caraiman    |
|     | GOVERNMENTAL AGENCIES                                                                              |                                               |                                                                      |                                                                            |                                  |                           |
| 18. | Constanta County Department of Public Health                                                       | St. Lăcrămioarei No.1,<br>Constanta           | 00 40 241 480939 /<br>00 40 241 480946                               | secretariat@dspct.ro /<br>igiena_mediului_cta@yahoo.com                    | www.dspct.ro                     | Luiza Caruceru            |
| 19. | Tulcea County Department of<br>Public Health                                                       | Str. Viitorului, nr. 50, Tulcea               | 00 40 240 534134 /<br>00 40 240 534404                               | dspj.tulcea@x3m.ro;<br>giaa_2004@yahoo.com                                 | http://www.dspjtulcea.ro         | Giorgiana Maria<br>Ghigu  |
| 20. | Romanian Waters National<br>Administration                                                         |                                               |                                                                      |                                                                            |                                  |                           |
| 21  | Environmental Protection<br>Agency Constanta (Monitoring<br>Department)                            | St. Unirii, No. 23, RO-900532,<br>Constanta   | 00 40 241 546596 /<br>00 40 241546696                                | office@apmct,anpm.ro                                                       | http://apmct.anpm.ro             | Daniela Serban            |
| 22. | National Company Maritime<br>Ports Administration<br>(Environmental Department)                    | Constanta, Port, Maritime station             | 00 40 241 601 624                                                    | apmc@constantza-port.ro;<br>pioncescu@constantza-port.ro                   | www.portofconstantza.com         | Paul loncescu             |
| 23. | General Border Police<br>Inspectorate (Coast Guard,<br>Constanta)                                  | St. Zmeurei No. 3, RO-900433,<br>Constanta    | 00 40 241 641188 /<br>00 40 241 698668                               | contact@garda-de-coasta.ro                                                 | http://www.ijpfconstanta.ro/     | Dumitru Radu              |
| 24. | National Environmental Guard -<br>Constanta                                                        |                                               |                                                                      |                                                                            |                                  |                           |
| 25. | National Environmental Guard -<br>Tulcea                                                           |                                               |                                                                      |                                                                            |                                  |                           |







| No  | Name                                                                                 | Postal address                                                          | Phone                                              | Mail                                                   | Web                                   | Contact person      |
|-----|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|---------------------------------------|---------------------|
| 26. | Environmental Protection<br>Agency Tulcea (Monitoring<br>Department)                 | St. 14 Noiembrie No. 5, RO-<br>820009, Tulcea                           | 00 40 240 510620 /<br>00 40 240 510622             | office@apmtl.anpm.ro /<br>monitoring_integrat@anpm.ro  | http://apmtl.anpm.ro                  | Niculai<br>Gheorghe |
| 27. | Romanian Space Agency                                                                | St. Mendeleev, No. 21-25, RO-<br>010362, Sector 1, Bucharest            | 00 40 21 3168722 /<br>00 40 21 3128804             | marius-ioan.piso@rosa.ro                               | http://www.rosa.ro                    | Marius Piso         |
| 28. | Water Administration Dobrogea<br>Littoral                                            | St. Mircea cel Batran No.127,<br>RO-900592, Constanta                   | 00 40 241 673036 /<br>00 40 241 673025             | camelia.pulbere@dadl.rowater.ro                        | www.rowaterct.ro                      | Camelia Pulbere     |
| 29. | RAJA Constanta (waste water treatment plant)                                         |                                                                         |                                                    |                                                        |                                       |                     |
| 30. | Romanian Naval Authority                                                             |                                                                         |                                                    |                                                        | www.rna.ro                            |                     |
| 31. | Naval Academy                                                                        | Str. Fulgerului, No.1                                                   | 0040723498579                                      | nicolae_florin_m@yahoo.com                             |                                       | Nicolae Florin      |
| 32  | Shipping Agencies                                                                    |                                                                         |                                                    |                                                        |                                       |                     |
| 33. | Municipal waste managers (POLARIS)                                                   |                                                                         |                                                    |                                                        |                                       |                     |
| 34. | Constanta Maritime<br>Hydrographic Directorate                                       | St. Fulgerului , no. 1, Constanta,                                      |                                                    | hidro@dhmfn.ro                                         |                                       | Adrian Filip        |
| 35. | Border Police General<br>Inspectorate                                                | Bucuresti, str. Razoare no. 5,<br>Sector 6, code 050506                 | 021.316.25.98<br>int. 19338,<br>Fax: 021.312.11.89 | pfr@igpf.ro                                            | http://www.politiadefrontiera.<br>ro/ | Adrian Sbarcea      |
|     | NGOs                                                                                 |                                                                         |                                                    |                                                        |                                       |                     |
| 36. | Mare Nostrum                                                                         | Bd. 1 Decembrie 1918, no. 3, Bl. F17, Sc.A, Ap.3, Cod 900711, Constanta | 00 40 241 612 422;<br>00 40 341 407 432            | office@marenostrum.ro<br>mihaela_candea@marenostrum.ro | www.marenostrum.ro                    | Mihaela Candea      |
| 37. | NGO SOR                                                                              |                                                                         |                                                    |                                                        |                                       |                     |
|     | PRIVATE COMPANIES                                                                    |                                                                         |                                                    |                                                        |                                       |                     |
| 38. | S.C. Thermo-electric factory<br>Midia S.A. (Environment<br>Department)               | Bd. Navodari, No. 9A, RO-<br>905700, Navodari, Constanta                | 00 40 241 486235                                   | cetmidia@utmidia.ro /<br>dana.rasica@utmidia.ro        | www.utmidia.ro                        | Dana Rasica         |
| 39. | ExxonMobil Exploration and<br>Production Romania Limited<br>(Environment Department) | St. Floreasca 169 A, Building A,<br>4th floor, sector 1, Bucharest      | 00 40 745 327291                                   | alin.stirbu@exxonmobil.com                             |                                       | Alin Stirbu         |
| 40. | OMV Petrom SA                                                                        | Constant, the Port - Dana 34                                            | 00 40 372 824366 /<br>00 40 241 585420             | wolfgang.leeb@omv.com                                  |                                       | Wolfgang Leeb       |
| 41. | Diving Center Constanta                                                              |                                                                         |                                                    |                                                        |                                       |                     |







# MISIS-``MSFD Guiding Improvements in the Black Sea Integrated Monitoring System''

# TURKEY

| No  | Name                                                                                                | Postal address                                                                                                               | Phone                            | Mail                               | Web                                                                                                               | Contact person                      |
|-----|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|     | INSTITUTES                                                                                          |                                                                                                                              | •                                | •                                  |                                                                                                                   |                                     |
| 1.  | Trabzon Central Fisheries<br>Research Institute                                                     | Su Ürünleri Merkez Araştırma Enstitüsü<br>Vali Adil Yazar Cd. No:14 Kaşüstü, Yomra,<br>61250, TRABZON                        | (242)872 14 00                   | info@sumae.gov.tr                  | http://www.sumae.gov.tr                                                                                           | Prof. Kadir<br>Seyhan               |
| 2.  | Elazığ Fisheries Research<br>Station                                                                | Sürsürü Neighborhood, Martyr Police<br>M.Lami KARAAĞAÇ Street, No : 9,<br>P.O.Box : 62, Post Code: 23040 ELAZIĞ              | +90 (424) 241 10 85<br>241 10 86 | bilgi@elazigsuurunleri.<br>gov.tr  | http://www.elazigsuurunleri.g<br>ov.tr/                                                                           |                                     |
| 3.  | Mediterranean Fisheries<br>Research Production and<br>Training Institute                            | Finike Karayolu 6 km Demre / ANTALYA                                                                                         | (242)872 14 00                   | info@akdenizsuurunler<br>i.gov.tr  | http://www.akdenizsuurunleri.<br>gov.tr/index_tr.asp                                                              |                                     |
| 4.  | TÜBİTAK Marmara Research<br>Center, Institute of Environment                                        | TÜBİTAK Marmara Araştırma Merkezi<br>Çevre Enstitüsü 41470 Gebze / KOCAELİ                                                   | (262) - 677 20 00                | ce.web@mam.gov.tr                  | http://www.mam.gov.tr/CE/ind<br>ex.html                                                                           | Dr. Colpan<br>Beken                 |
|     | UNIVERSITIES                                                                                        |                                                                                                                              |                                  |                                    |                                                                                                                   |                                     |
| 5.  | Akdeniz University (Faculty of Fisheries)                                                           | Akdeniz University Dumlupınar Boulevard<br>Post Code: 07058 Campus ANTALYA,<br>TURKEY                                        | + 90 242 310 1575                | sufak@akdeniz.edu.tr               | http://sufak.akdeniz.edu.tr/en                                                                                    |                                     |
| 6.  | Ankara University (Faculty of Agriculture, Department of Fisheries)                                 | Ankara Üniversitesi Ziraat Fakültesi 06110<br>Dışkapı - Ankara                                                               | 903125961000/01-<br>02           | agricul@agri.ankara.ed<br>u.tr     | http://www.agri.ankara.edu.tr/<br>su/index.php?&fNo=21                                                            |                                     |
| 7.  | Atatürk University (Faculty of Fisheries)                                                           | Atatürk Üniversitesi Su Ürünleri Fakültesi<br>25240 Erzurum                                                                  | +90 442 2314726                  | suurunlerifak@atauni.e<br>du.tr    | http://www.atauni.edu.tr/#biri<br>m=su-urunleri-fakultesi                                                         |                                     |
| 8.  | Çanakkale Onsekiz Mart<br>University (Faculty of Fisheries)                                         | Çanakkale Onsekiz Mart Üniversitesi<br>Terzioğlu Kampüsü 17100<br>Çanakkale/TÜRKİYE                                          | 0 286 218 05 42                  | suurunleri@comu.edu.t<br>r         | http://suurunleri.comu.edu.tr                                                                                     |                                     |
| 9.  | Çukurova University (Faculty of Fisheries)                                                          | Ç.Ü. Su Ürünleri Fakültesi 01330,<br>Balcalı/Adana/Türkiye                                                                   | +90 (322) 338 60 84              | suf@cu.edu.tr                      | http://suurunleri.cu.edu.tr                                                                                       |                                     |
| 10. | Dokuz Eylul University (Institute of Marine Science and Management)                                 | Bakü Bulvarı No:100 35340 İnciraltı /<br>İZMİR                                                                               | +90 (232) 278 51 12              | deuimst@deu.edu.tr                 | http://web.deu.edu.tr/deuimst/                                                                                    |                                     |
| 11. | Ege University (Faculty of Fisheries)                                                               | E.Ü. Su Ürünleri Fakültesi 35100 Bornova / iZMİR TÜRKİYE                                                                     | (232) 388 32 25<br>311 2988      | sufak_dekanlik@mail.e<br>ge.edu.tr | http://egefish.ege.edu.tr/                                                                                        |                                     |
| 12. | Firat University (Faculty of Fisheries)                                                             | Fırat Üniversitesi, Su Ürünleri Fakültesi PK: 23119 Elazığ-TÜRKİYE                                                           | +90 424 237 00 00                | mncakmak@firat.edu.tr              | http://portal.firat.edu.tr/WebP<br>ortal/?BirimID=84                                                              |                                     |
| 13. | Gaziosmanpaşa University<br>(Faculty of Agriculture,<br>Department of Fisheries and<br>Aquaculture) | Gaziosmanpaşa Üniversitesi Ziraat<br>Fakültesi Dekanlığı60240 Taşlıçiftlik<br>Yerleşkesi – Tokat/Türkiye                     | +90 (356) 252 1616               | ziraatdekanlik@gop.ed<br>u.tr      | http://ziraat.gop.edu.tr/bolum<br>Default.aspx?dilld=1&birimler<br>Id=13&bolumlerId=141&menu<br>Kod=unitetanitimi |                                     |
| 14. | İstanbul University (Faculty of Fishery)                                                            | Ordu Cad. No: 200 Laleli İstanbul 34130                                                                                      | (212) 455 57 00/<br>16383        | ozturkb@istanbul.edu.t<br>r        | http://www.istanbul.edu.tr/suu<br>runleri/                                                                        |                                     |
| 15. | İstanbul University (Institute of<br>Maritime Sciences and<br>Management                            | Müşküle Sok. No:1 Vefa- İstanbul                                                                                             | (212) 5282539                    | rapak@istanbul.edu.tr              | http://www.istanbul.edu.tr/eng<br>lish/inst_maritime.php                                                          | Prof.Dr. Reşat<br>Apak              |
| 16. | Karadeniz Technical University<br>(Sürmene Faculty of Marine<br>Sciences)                           | KTÜ. Sürmene Deniz Bilimleri Fakültesi,<br>Çamburnu Kampüsü, 61530<br>Çamburnu/TRABZON                                       | (462) 752 24 19                  | seyhan@ktu.edu.tr                  | http://www.deniz.ktu.edu.tr/in<br>dex.htm                                                                         |                                     |
| 17. | Mersin University (Faculty of Fisheries)                                                            | Mersin Üniversitesi Çiftlikköy Kampusu<br>33343 Yenisehir / Mersin                                                           | 0 324 361 00 01                  | obasturk@mersin.edu.t<br>r         | http://www.mersin.edu.tr/akad<br>emikf/su-urunleri-fakultesi                                                      |                                     |
| 18. | Muğla University (Faculty of Fisheries)                                                             | Muğla Üniversitesi Su Ürünleri Fakültesi<br>48000 Kötekli / MUĞLA                                                            | 0 252 211 18 86                  | sufak@mu.edu.tr                    | http://akademik.mu.edu.tr/def<br>ault.aspx?bkod=04070000                                                          |                                     |
| 19. | Mustafa Kemal University (Faculty of Fisheries)                                                     | TÜRKİYE                                                                                                                      | (326) 614-1693                   | sufak@mku.edu.tr                   | http://suf.mku.edu.tr                                                                                             | Dref Dr Henife                      |
| 20. | Ondokuz Mayıs University<br>(Faculty of Engineering,<br>Department of Environmental<br>Engineering) | Ondokuz Mayıs Üniversitesi Mühendislik<br>Fakültesi Çevre Mühendisliği Bölümü<br>Kurupelit Kampüsü 55139<br>Kurupelit/Samsun | (362)3121919                     | hbuyukg@omu.edu.tr                 | http://mf.omu.edu.tr/cevre/                                                                                       | Prof. Dr. Hanife<br>BÜYÜKGÜNGÖ<br>R |
| 21. | Middle East Technical University (nstitute of Marine Sciences)                                      | Middle East Technical University, Institute of Marine Sciences, P.O.Box 28, 33731, Erdemli-Mersin, TURKEY                    | +90-324 521 3434                 | adminims.metu.edu.tr               | http://www.ims.metu.edu.tr/                                                                                       |                                     |
| 22. | Ordu University (Fatsa Faculty of Marine Sciences)                                                  | T.C. ORDU ÜNİVERSİTESİ FATSA DENİZ<br>BİLİMLERİ FAKÜLTESİ EVKAF MAH.<br>52400 FATSA / ORDU                                   | (452) 4235053<br>4234722         | fdbf@odu.edu.tr                    | http://fdbf.odu.edu.tr/Tr/                                                                                        |                                     |
| 23. | Recep Tayyip Erdoğan<br>University (Faculty of Fisheries)                                           | Rize Üniversitesi Rektörlüğü 53100 Merkez<br>Rize-TÜRKİYE                                                                    | 0 464 223 61 26<br>1636          | nurhayat61@yahoo.co<br>m           | http://suf.rize.edu.tr/tr/                                                                                        |                                     |
| 24. | Sinop University (Faculty of Fisheries)                                                             | Akliman Mevkii Abalı Köyü 57000 – Sinop                                                                                      | 0 368 287 62 54                  | oidb@sinop.edu.tr                  | http://www.sinop.edu.tr/akade<br>mikbirimler/fakulteler/su_urunl<br>eri/default.asp                               |                                     |







| No         | Name                                                                                                                                       | Postal address                                                                                    | Phone                           | Mail                                      | Web                                                                                | Contact person |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|----------------|
| 25.        | Süleyman Demirel University (Eğirdir Faculty of Fisheries)                                                                                 | Süleyman Demirel Üniversitesi Eğirdir Su<br>Ürünleri Fakültesi 32500 Eğirdir ISPARTA              | 246 313 34 47/47                | esuf@sdu.edu.tr                           | http://esuf.sdu.edu.tr/                                                            |                |
| 26.        | Tunceli University (Faculty of Fisheries)                                                                                                  | Tunceli Üniversitesi Rektörlüğü, Atatürk<br>Mahallesi Muhlis Akarsu Caddesi, Tunceli /<br>Türkiye | +90 428 213 33 93               | tusuf@tunceli.edu.tr                      | http://www.tunceli.edu.tr/akad<br>emik/fakulteler/suurunleri/sur<br>unanasayfa.htm |                |
| MINISTRIES |                                                                                                                                            |                                                                                                   |                                 |                                           |                                                                                    |                |
| 27.        | Republic of Turkey Ministry of<br>Environment and Urban<br>Planning (General Directorate<br>of Environmental Management)                   | Vekaletler Caddesi No:1 Bakanlıklar 06573<br>Çankaya ANKARA TÜRKİYE                               | +90 312 586 30 00               | cygm@csb.gov.tr                           | http://www.csb.gov.tr/gm/cyg<br>m/                                                 |                |
| 28.        | Republic of Turkey Ministry of<br>Environment and Urban<br>Planning (Environmental<br>Protection Agency for Special<br>Areas)              | Alparslan Türkeş Caddesi 17. sokak 10<br>Nolu Bina 06510 Beştepe<br>Yenimahalle/ANKARA            | +90 312 222 1234                | tabiat@csb.gov.tr                         | http://www.csb.gov.tr/gm/tabi<br>at/                                               |                |
| 29.        | Republic of Turkey Ministry of<br>Transport, Maritime Affairs and<br>Communications                                                        | Hakkı Turayliç Caddesi No:5 Emek 06510<br>ANKARA TÜRKİYE                                          | +903122031000                   | bilgi@ubak.gov.tr                         | http://www.ubak.gov.tr/                                                            |                |
| 30.        | Republic of Turkey Ministry of<br>Food, Agriculture and Livestock<br>(General Directorate of<br>Fisheries and Fishery Products)            | Eskişehir Yolu 9 km. Lodumlu<br>ANKARA Çankaya ANKARA TÜRKİYE                                     | +903122873360                   |                                           | http://www.tarim.gov.tr/;<br>http://www.bsgm.gov.tr/                               |                |
| 31.        | Republic of Turkey Ministry of<br>Food, Agriculture and Livestock<br>(General Directorate of<br>Agricultural Research and<br>Policy, GDAR) | Istanbul Yolu Uzeri Tarım Kampusu,<br>P.K.51, 06171 Yenimahalle/ANKARA                            | +903123157623                   |                                           | http://www.tagem.gov.tr/                                                           |                |
| 32.        | Republic of Turkey Ministry of<br>Forestry and Water Affairs<br>(General Directorate of Water<br>Management)                               | Söğütözü Cad. No: 14/E Söğütözü<br>Çankaya ANKARA TÜRKİYE                                         | +903122075000;<br>+903122076330 | bilgiedinme@cevreorm<br>an.gov.tr         | http://www.ormansu.gov.tr/;<br>http://suyonetimi.ormansu.go<br>v.tr                |                |
| 33.        | Republic of Turkey Ministry of<br>Health (General Directorate of<br>Health for Borders and Coastal<br>Areas)                               | Kemankeş Cad. Karamustafapala Sk.<br>No:21 Karaköy/Beyoğlu/ İSTANBUL                              | +902122933674                   | hssgm@hssgm.gov.tr                        | http://www.hssgm.gov.tr/                                                           |                |
| 34.        | Republic of Turkey Ministry for<br>EU Affairs (Agriculture and<br>Fisheries Directorate)                                                   | Mustafa Kemal Mah. 2082. Cadde No:<br>4 06510 Bilkent, Ankara                                     | + 90 312 218 13 00              | bilgiedinme@ab.gov.tr                     | http://www.abgs.gov.tr                                                             |                |
|            | COAST GUARD                                                                                                                                |                                                                                                   |                                 |                                           |                                                                                    |                |
| 35.        | TURKISH COAST GUARD<br>COMMAND                                                                                                             | Deniz Arama Kurtarma Koordinasyon<br>Merkezi,ANKARA                                               | 0312 425 33 37                  |                                           | http://www.sgk.tsk.tr                                                              |                |
| 36.        | Coast Guard Blacksea District<br>Command                                                                                                   | 1 Nolu Yardımcı Arama Kurtarma<br>Koordinasyon Merkezi, SAMSUN                                    | 0362 445 29 08                  |                                           | http://www.sgk.tsk.tr                                                              |                |
| 37.        | Coast Guard Trabzon Group<br>Command                                                                                                       | 1 Nolu Arama Kurtarma Alt Merkezi                                                                 | 0462 328 07 93                  |                                           | http://www.sgk.tsk.tr                                                              |                |
| 38.        | Coast Guard Amasra Group<br>Command                                                                                                        | 2 Nolu Arama Kurtarma Alt Merkezi                                                                 | 0378 315 10 04<br>2102          |                                           | http://www.sgk.tsk.tr                                                              |                |
| 39.        | Coast Guard Marmara and<br>Straits District Command                                                                                        | 2 Nolu Yardımcı Arama Kurtarma<br>Koordinasyon Merkezi, İSTANBUL                                  | 0212 242 40 00                  |                                           | http://www.sgk.tsk.tr                                                              |                |
|            | MUNICIPALITIES                                                                                                                             | TOOTUITASYOTT WEEKEZI, ISTANDUL                                                                   | 1                               | 1                                         | l                                                                                  | <u>l</u>       |
| 40.        | Artvin Municipality                                                                                                                        | Çarşı Mah. Cumhuriyet Cad. Belediye                                                               | +90 (466) 212 37 11             | artvin@artvin.bel.tr                      | http://www.artvin.bel.tr                                                           |                |
| 41.        | Rize Municipality                                                                                                                          | İşhanı No:3 Kat:4 ARTVİN<br>Piriçelebi Mh. Menderes Bulvarı No:82                                 | 444 50 53                       | belediye@rize.bel.tr                      | http://www.rize.bel.tr                                                             |                |
| 42.        | Trabzon Municipality                                                                                                                       | Gülbaharhatun Mahallesi Kahramanmaraş<br>Caddesi No:201 (Varlıbaş AVM Yanı)<br>TRABZON            | 0-462-224 6161                  | belediye@trabzon.bel.t<br>r               | http://www.trabzon.bel.tr                                                          |                |
| 43.        | Ordu Municipality                                                                                                                          | Belediye Sarayı ORDU                                                                              | 0452-2250104                    | belediye@ordu.bel.tr                      | http://www.ordu.bel.tr                                                             |                |
| 44.        | Giresun Municipality                                                                                                                       | Belediye Sarayı GİRESUN                                                                           | 444 4 028                       | halklailiskiler@giresun.<br>bel.tr        | http://www.giresun.bel.tr                                                          |                |
| 45.        | Samsun Metropolitan<br>Municipality                                                                                                        | Pazar Mah.Necipbey Cad.No:35 İlkadım /<br>SAMSUN                                                  | +90 (362) 431 60 90             | info@samsun.bel.tr                        | http://www.samsun.bel.tr/                                                          |                |
| 46.        | Sinop Municipality                                                                                                                         | Sinop Belediye Başkanlığı Merkez-SİNOP                                                            | 0-368-261 1844                  | bilgi@sinop.bel.tr                        | http://www.sinop.bel.tr                                                            |                |
| 47.        | Kastamonu Municipality                                                                                                                     | Kastamonu Belediyesi KASTAMONU                                                                    | 0 366 214 10 48                 | admin@kastamonu.bel                       | http://www.kastamonu.bel.tr                                                        |                |
|            |                                                                                                                                            |                                                                                                   | L                               | .tr                                       |                                                                                    |                |
| 48.        | Bartın Municipality                                                                                                                        | Bülentecevit Bulvarı Elmalık mevkii No:1<br>Merkez BARTIN                                         | 0 378 227 10 97                 | bartinbelediyesi@barti<br>nbelediyesi.com | http://bartinbelediyesi.com/bel                                                    |                |







| No  | Name                                                       | Postal address                                                                                                                                                | Phone                       | Mail                                 | Web                          | Contact person       |
|-----|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|------------------------------|----------------------|
| 50. | Düzce Municipality                                         | Cedidiye Mah. Hükümet Sok. / Düzce                                                                                                                            | 0 380 524 5821              |                                      | http://www.duzce.bel.tr      |                      |
| 51. | Kocaeli Metropolitan<br>Municipality                       | Karabaş Mah.Salim Dervişoğlu Cad. No:80<br>41040 İzmit / Kocaeli                                                                                              | 0 262 318 10 01             | RasitFidan@kocaeli.be                | http://www.kocaeli.bel.tr/   |                      |
| 52. | İstanbul Metropolitan<br>Municipality                      | İstanbul Büyükşehir Belediye Başkanlığı<br>Kemalpaşa Mahallesi Şehzadebaşı Cad.<br>No:25. 34134 Fatih / İST                                                   | +90 (212) 455 1300          | webmaster@ibb.gov.tr                 | http://www.ibb.gov.tr        |                      |
| 53. | Tekirdağ Municipality                                      | Mimar Sinan Cad. No:50 59030<br>TEKİRDAĞ                                                                                                                      | 444 18 15                   | hesap@tekirdag.bel.tr                | http://www.tekirdag.bel.tr/  |                      |
| 54. | Kırklareli Municipality                                    | Kırklareli Belediye Başkanlıpı KIRKLARELİ                                                                                                                     | 0288 214 12 67              | kirklarelibelediyesi@ho<br>tmail.com | http://www.kirklareli.bel.tr |                      |
|     | FISHERIES COOPERATIVES                                     |                                                                                                                                                               |                             |                                      |                              |                      |
| 55. | Adana Regional Union of<br>Fsheries Cooperatives           | Karataş Balıkçı Barınağı                                                                                                                                      | 0.322.681 26 82             |                                      |                              | Mithat Altunay       |
| 56. | Balıkesir Regional Union of<br>Fisheries Cooperatives      | Çınarlı Mahallesi Servet Çırpan Cad.No:64<br>Bandırma / BALIKESİR                                                                                             | 0.266.712 47 71             |                                      |                              | Kenan Çınar          |
| 57. | Çanakkale Regional Union of<br>Fisheries Cooperatives      | Namık Kemal Mahallesi Köpübaşı Cad.<br>Yeni Balık Hali No:12 ÇANAKKALE                                                                                        | 0.286.213 42 84             |                                      |                              | Hasan Uysal          |
| 58. | Doğu Karadeniz Regional<br>Union of Fisheries Cooperatives | Foroz Balıkçı Barınağı İçi TRABZON                                                                                                                            | 0.462.224 38 97             |                                      |                              | Ahmet Mutlu          |
| 59. | Hatay Regional Union of<br>Fisheries Cooperatives          | İskenderun Su Ürünleri Balıkçı Barınağı<br>Tay Mahallesi İskenderun/HATAY                                                                                     | 0.326.617 68 23             |                                      |                              | Nihat Beyazıt        |
| 60. | İstanbul Regional Union of Fisheries Cooperatives          | Kennedy Cad.Sahil Yolu Mendirek İçi<br>No:38 Bakırköy/İSTANBUL                                                                                                | 0.212.572 63 80             | info@istbirlik.com                   | www.istbirlik.com            | Erdoğan Kartal       |
| 61. | İzmir Regional Union of Fisheries Cooperatives             | Yalı Mahallesi Mithat Paşa Cad.No:228<br>İZMİR                                                                                                                | 0.232.234 24 30             |                                      |                              | Ahmet Yapıcı         |
| 62. | Kocaeli Regional Union of<br>Fisheries Cooperatives        |                                                                                                                                                               |                             |                                      |                              | Şükrü İlikhan        |
| 63. | Marmara Regional Union of<br>Fisheries Cooperatives        | Balık Hali İçi No:93 Kumkapı / İSTANBUL                                                                                                                       | 0.212.518 12 24             |                                      |                              | Aytunç Toker         |
| 64. | Mersin Regional Union of<br>Fisheries Cooperatives         | Kiremithane Mah.4420 Sok. 2/20 MERSİN                                                                                                                         | 0.324.231 33 90             |                                      |                              | Hüseyin<br>Beşkardaş |
| 65. | Muğla Regional Union of<br>Fisheries Cooperatives          | Tarım İl Müdürlüğü MUĞLA                                                                                                                                      | 0.252.214 12 42             |                                      |                              | Osman Demirkol       |
| 66. | Sinop Regional Union of<br>Fisheries Cooperatives          | Camikebir Mahallesi Derinboğaz Ağzı<br>No:32 SİNOP                                                                                                            | 0.368.261 87 83             |                                      |                              | Ali Bayrak           |
| 67. | Tekirdağ Regional Union of<br>Fisheries Cooperatives       | Hoşköy Kas.Liman İçi Şarköy / TEKİRDAĞ                                                                                                                        | 0.282.538 61 00             |                                      |                              | Mümin Yazır          |
|     | PRIVATE, NGOs                                              |                                                                                                                                                               |                             |                                      |                              |                      |
| 68. | Derinsu Underwater<br>Engineering                          | Nilgün Sokak 5/1, 06650 Kavaklıdere<br>ANKARA TÜRKİYE                                                                                                         | (90) 312 467 3670           | derinsu@derinsu.com                  | http://www.derinsu.com/      |                      |
| 69. | Envy Energy and Environmental Investments Inc.             | Çetin Emeç Bulvarı 1314. Cadde (Eski 8.<br>Cadde) No:7 Aşağı Öveçler 06450 Ankara<br>/ TÜRKİYE                                                                | 0 312 583 88 00             | envy@envy.com.tr                     | http://www.envy.com.tr       |                      |
| 70. | DenAr Ocean Engineering Ltd.<br>Co.                        | Gazeteciler Sitesi, Hikaye Sokak No:1/4<br>34394 Şişli İSTANBUL                                                                                               | 0 212 216 64 82             | info@den-ar.com                      | http://www.den-ar.com        |                      |
| 71. | GeoMarine Land and Marine<br>Engineering                   | Palmiye Mah. 1208 Sok. Necip Bey Apt.<br>No:9/1 Yenişehir - Mersin                                                                                            | 0324 325 26 86              | bilgi@geomarine.com.t                | http://www.geomarine.com.tr/ |                      |
| 72. | Detek Offshore Technology Ltd.<br>Co.                      | Güzelyalı Mahallesi Aydınlı Koyu Batı<br>Sahili Yosun Sokak No: 3 34480 Pendik,<br>İSTANBUL                                                                   | 0216 494 0 828              |                                      | http://www.detek-tr.com      |                      |
| 73. | ABALIOĞLU YEM SOYA VE<br>TEKS.SAN.A.Ş.                     | KEMALPAŞA MAH. 7412 SK. NO:4<br>PINARBAŞI/İZMİR                                                                                                               | 0232 479 21 68              | kursad.unal@abalioglu<br>.com        | http://www.abalioglu.com     |                      |
| 74. | AGROMEY GIDA VE YEM<br>SAN.TİC.A.Ş.                        | AGROMEY GIDA VE YEM SANAYI<br>TICARET A.S. Ismet Kaptan Mah. Sair<br>Esref Blv. No:48 Kat:5 Tuzcuoglu Is<br>Merkezi 35220 Alsancak, Konak - IZMIR /<br>TURKEY | +90 232 4468811             | info@agromey.com                     | http://www.agromey.com       |                      |
| 75. | Akuvatur Su Ürünleri Tic. San.<br>A.Ş.                     | Mansuroğlu Mah. 295/2 Sok. No:1 Ege<br>Sun Plaza A Blok Kat:2 Daire: 220 35010<br>Bayraklı İzmir/TÜRKİYE                                                      | +90 232 462 10 58-<br>68-78 | info@akuvatur.com                    | http://www.akuvatur.com      |                      |
| 76. | GÜMÜŞDOĞA SU<br>ÜRÜN.ÜRETİM İHR VE<br>İTH.AŞ               | AKYOL KÖYÜ DİBECİK MEVKİİ MİLAS –<br>MUĞLA                                                                                                                    | 0 252 536 62 28 -29         | info@gumusdoga.com.<br>tr            | http://www.gumusdoga.com.tr  |                      |
| 77. | KILIÇ DENİZ ÜRÜNLERİ<br>ÜRETİMİ İHR.İTH.VE TİC.A.Ş.        | Kemikler Köyü Mavkii, Milas Bodrum<br>Karayolu 18. km 48200 Milas - Muğla /<br>Türkiye                                                                        | +90 252 559 0283            | info@kilicdeniz.com.tr               | http://www.kilicdeniz.com.tr |                      |
| 78. | MARENOSTRO DIŞ TİC.VE<br>PAZ.A.Ş.                          | Güllük Karayolu 2.km, Milas 48670 Muğla,<br>TÜRKİYE                                                                                                           | +90 (252) 522 24 07         | info@marenostro.net                  | http://www.marenostro.net    |                      |
| 79. | ÖZPEKLER İTHİHR. SU<br>ÜRÜN.SAN VE TİC.LTD.ŞTİ.            | Bozburun Mh. A.Nazif Zorlu Sanayi Sitesi<br>7152 Sk.No.2 DENİZLİ                                                                                              | +90 258 3718338             | info@ozpekler.com.tr                 | http://www.ozpekler.com      |                      |







| No  | Name                                                                | Postal address                                                                                | Phone               | Mail                                 | Web                                        | Contact person    |
|-----|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|--------------------------------------|--------------------------------------------|-------------------|
| 80. | UĞURLU BALIK ÜR.SAN.VE<br>TİC.A.Ş                                   | Korutürk Mah. Poyraz Sokak No:3/A<br>Balçova-İzmir - TÜRKİYE                                  | +90.232.277 33 36   |                                      | http://www.ugurlubalik.com                 |                   |
| 81. | Kızılırmak Su Ürünleri San. ve<br>Tic. LTD. ŞTİ                     | Samsun Ankara Yolu 15. km Sastaş<br>Soğutma Tesisleri Çivril Köyü Altı /<br>SAMSUN            | +90 362 611 28 26   | info@kizilirmaksuurunl<br>eri.com.tr | http://www.kizilirmaksuurunler<br>i.com.tr |                   |
|     | FOUNDATIONS, SOCIETIES                                              |                                                                                               |                     |                                      |                                            |                   |
| 82. | Turkish Marine Research Foundation                                  | P.O.Box: 10 , Beykoz, 81650, İSTANBUL                                                         | + 90 216 424 07 72  | info@tudav.org                       | http://www.tudav.org                       |                   |
| 83. | Turkish Marine Environment<br>Protection Association                | Nakkaştepe, Aziz Bey Sokak No:1 34674<br>Kuzguncuk - İstanbul - Türkiye                       | (0216) 310 9301     | info@turmepa.org.tr                  | http://www.turmepa.org.tr                  |                   |
| 84. | United Nations Development<br>Programme Turkey                      | Birlik Mahallesi, 415. Cadde (Eski 2.<br>Cadde), No: 11, 06610 Çankaya, Ankara<br>Türkiye     | +90 312 454 1100    | registry.tr@undp.org                 | http://www.undp.org.tr                     | Harun<br>GÜÇLÜSOY |
| 85. | Underwater Research Society<br>Mediterranean Seal Research<br>Group | Akincilar sok. 10/1 Maltepe, Ankara,<br>TURKIYE                                               | +90 312 230 3520    | afag@sad.org.tr                      | http://sadafag.org                         |                   |
| 86. | Turkish Sturgeon Conservation Society                               | Gelincik Mah. Gelincik Yolu Dostlar Sitesi<br>No: 49/4 MERKEZ / SİNOP                         | 0 368 260 54 64     | info@merkoder.org                    | http://www.merkoder.org/                   |                   |
| 87. | Word Wildlife Fund Turkey                                           | Büyük Postane Caddesi No: 43-45 Kat:5<br>34420 Bahçekapı İstanbul                             | (0212) 528 20 30    | info@wwf.org.tr                      | http://www.wwf.org.tr                      |                   |
| 88. | Society of Fisheries Engineers                                      | Su Ürünleri Mühendisleri Derneği PK: 76<br>Fatih/İstanbul                                     | 0 535 307 86 73     | sumder@gmail.com                     | http://www.suurunleri.org.tr               |                   |
| 89. | Nature Conservation Center                                          | Doğa Koruma Merkezi 1293 Sokak, No:<br>9/32, Beyazıt Apartmanı, Aşağı Öveçler<br>06830 Ankara | +90 (312) 287 40 67 | dkm@dkm.org.tr                       | http://www.dkm.org.tr                      |                   |





#### **ANNEXES**

#### ANNEX III. TR Legislation/Policy in the field of environmental protection



European Commission DG Environment

# Diagnostic Report TR Legislation/Policy in the field of environmental protection





#### A. Laws

- 1. By-law on Industrial Air Pollution Control (03.07.2009 27277 numbered Official Gazette)
- 2. By-law on Egzost Gases Emission Control (04.04.2009 27190 numbered Official Gazette)
- 3. Amendment of By-law on Control of Air Pollution due to the Domestic Heating (07.02.2009 27134 numbered Official Gazette)
- 4. Sensitive and Less Sensitive Water Areas Commnique Concerning urban Wastewater Treatment Regulation (27.06.2009 27271 numbered Official Gazette)
- 5. Regulation on Control of Water Pollution Communique on Administrative Procedure (10.10.2009 27372 numbered Official Gazette)
- 6. Regulation on Control of Water Pollution Communique on Sampling and Analysis Methods (10.10.2009 27372 numbered Official Gazette)
- 7. By Law on Environmental Inspection (21.11.2008 27061 numbered Official Gazette)
- 8. Regulation on General Principles of Waste Management (05.07.2008 26927 numbered Official Gazette)
- 9. Regulation on the Environmental Impact Assessment (Revised) (17.07.2008 26939 numbered Official Gazette)
- 10. Regulation on Qualifying the Environmental Measurement and Analysis Labratories (05.09.2008 26988 numbered Official Gazette)
- 11. Environmental Law (26.04.2006),
- 12. Regulation of the Urban Waste Water Treatment (08.01.2006 26047 numbered Official Gazette),
- 13. Regulation of Bathing Water directive (09.01.2006 26048 numbered Official Gazette),
- 14. The by-law on control of air pollution from industrial plants (22.07.2006 26236 numbered Official Gazette),
- 15. The by-law on Priciples of Organic Agriculture and Implementation (17.10.2006, 263220 numbered Official Gazette)
- 16. Communiqué on imports of ozone depleting substances (published on 31.12.2011 dated and 28159 numbered Official Gazette)
- 17. Communiqué on integrated pollution control and prevention on textile industry published on 14.12.2011dated and 28142 numbered Official Gazette)







#### B. Regulations

- 1. Regulation on The Control of Major Industrial Accidents (published on 18.08.2010 dated and 27676 numbered Official Gazette)
- 2. Regulation on the determination of the procedures and principles on the tariffs of waste water infrastructures and domestic solid waste disposal facilities (published on 27.10.2010 dated and 27742numbered Official Gazette)
- 3. Regulation On The Procedures And Principles To Be Used For The Incentive Measures Of The Waste Water Treatment Facilities In Accordance With The Article 29 Of The Environmental Law (published on: 01.10.2010 dated and 27716 numbered Official Gazette)
- 4. Regulation on using the urban and domestic sludge on the soil (published on 03.08.2010 dated and 27661 numbered Official Gazette)
- 5. Regulation on the control of soil pollution and areas polluted by point sources(published on 08.06.2010 dated and 27605 numbered Official Gazette)
- 6. Regulation on Reception of Waste from the Ships and Waste Control (updated and published on 18/3/2010dated and 27525 numbered Official Gazette)
- 7. Regulation on management and assessment of environmental noise (published on 04.06.2010 dated and 27601 numbered Official Gazette)
- 8. Regulation on the measures to be taken for the protection of environment and public health from negative consequences of nonionized radiation (published on 24.07.2010 dated and 27651 numbered Official Gazette)
- 9. Regulation on the control of the emissions generated odor (published on 04.09.2010 dated and 27692 numbered Official Gazette)
- 10. Regulation on the quality of surface waters for obtaining drinking water or for planning to obtain (published on 29.06.2012 dated and 28338 numbered Official Gazette)
- 11. Regulation on control of groundwater against pollution and degradation (published on 07.04.2012 dated and 28257 numbered Official Gazette)
- 12. Regulation on Monitoring of Greenhouse Gas Emissions (published on 25.04.2012 dated and 28274 numbered Official Gazette)









Coordinator of the MISIS project

National Institute for Marine Research and Development "Grigore Antipa"a

Constantza - Romania

office@alpha.rmri.ro; boicenco@alpha.rmri.r